ebook img

Feshbach resonances in ultracold atom-molecule collisions PDF

0.37 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Feshbach resonances in ultracold atom-molecule collisions

Feshba h resonan es in ultra old atom-mole ule ollisions Andrea Simoni and Jean-Mi hel Launay Institut de Physique de Rennes, UMR 6251 du CNRS and Université de Rennes 1, 35042 Rennes Cedex, Fran e Pavel Soldán Department of Chemi al Physi s and Opti s, Fa ulty of Mathemati s and Physi s, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2, Cze h Republi (Dated: January 20, 2009) We investigate the presen e of Feshba h resonan es in ultra old alkali-dialkali rea tive ollisions. 3 Quantums attering al ulations are performedon a new Na quartetpotential energysurfa e. An 9 analysisofs atteringfeaturesisperformedthroughasystemati variationofthenonadditivethree- 0 body intera tion potential. Our results should provide useful information for interpreting future 0 atom-mole ule ollision experiments. 2 PACSnumbers: 34.50.Cx,31.50.B n a J I. INTRODUCTION boththeoreti allyandexperimentallyinultra oldatomi 0 gases; see e.g. [29, 30, 31℄. 2 Inre entyears,therehasbeenagrowinginterestinul- On the other hand, very little is known about atom- ] tra old mole ules [1℄, parti ularly in the produ tion and mole ule resonan es in ultra old ollisions. Similarly to h propertiesofthemole ulesformedfromultra oldatomi atomi s atteringthehyper(cid:28)ne-indu edresonan es ould p gases [2℄. Photoasso iation [3℄ and Feshba h resonan e in prin ipleexist atverylow ollisionenergies. However, - t tuning[4℄aretwomainexperimentalte hniquesfora o- model al ulations have shown that for a general polar- n a herent produ tion of ultra old mole ules from ultra old ization they will be quen hed by inelasti spin-ex hange u alkali-metal atoms. In 2003 long-lived mole ular Bose- transitions forming singlet mole ules [32℄. q Einstein ondensates were reated from weakly bound Alkali-metal dimers on the lowest ele troni triplet [ homonu lear lithium and potassium dimers by exploit- manifold are only stable if they are in a doubly spin- 1 ing magneti ally tunable Feshba h resonan es between polarized state under ollisions with doubly spin polar- v fermioni isotopes [5, 6, 7℄. ized atoms (assuming that the relativisti spin intera - 9 While Feshba h resonan es are always lo ated at the tions are negle ted). Unfortunately, for this spe i(cid:28) po- 2 highest vibrational manifold of the dimer, photoasso i- larizationhyper(cid:28)ne-indu edresonan esarepreventedby 1 ation ould in prin iple allow a ess to low vibrational symmetry (resonan es indu ed by relativisti spin inter- 3 dimer states. In 2005 RbCs mole ules were reated in a tions are still possible). In spite of this, long-lived . 1 their ground vibroni state [8℄. Very re ently, several three-atom omplexes anin prin iple exist and giverise 0 di(cid:27)erent photoasso iation s hemes for mole ular forma- to resonan es. Su h rea tive resonan es have been iden- 9 tion in the ground vibroni state have also been devel- ti(cid:28)ed in rea tive ollisions at room temperature [33℄. 0 2 oped [9, 10, 11, 12, 13℄. In this work, we fo us on ollisions of Na mole ules : v For the orre t interpretation of the forth oming ex- in the triplet ele troni state with ground-state Na Xi periments with old mole ular samples it is essential to atoms3.(1F4Aor′2)this study a new potential energy surfa e understandtheatom-mole uleandmole ule-mole ulein- of Na has been onstru ted. The o urren e of r a tera tions at sub-K temperatures [14℄. Theoreti al re- long-lived three-atom resonan es in su h ollision om- sults have already been published for the homonu lear plex is demonstratedin the ultra old regimefor the (cid:28)rst X+X2 ultra-low-energy ollisions with X=Li,Na,K [15, time. Wealsostudythedependen eof ollision rossse - 16, 18, 19, 20, 21℄. Isotopi ally heteronu lear Li+Li2 tionsonthepotentialenergysurfa eandweshowthatat ultra-low-energy ollisions have also been studied theo- least knowledge of two terms in the ross se tion partial reti ally[21,22, 23, 24, 25℄. Collision rossse tionshave waveexpansionisneededinorderto hara terizefurther been measured experimentally for the Cs+Cs2 ultra old the three-body potential. inelasti pro esses[26,27℄. Veryre entlyrea tiv∗eandin- 2 elasti rate onstants were measured for Li+Li at room temperature [28℄. II. POTENTIAL ENERGY SURFACE Cold ollisionsareknowntobeverysensitivetopoten- tial energy surfa es [16, 21℄, and therefore experimental Ab initio al ulations were performed using a single- information is needed to improvethe orrespondingthe- referen erestri tedopen-shellvariant[34℄ofthe oupled- oreti al models. In parti ular, knowledge of low-energy lustermethod [35℄ withsingle,doubleand non-iterative resonan epatternsoftenallowsdi(cid:27)erentpropertiesofthe triple ex itations [RCCSD(T)℄. A basis set onsisting of intera tion potential to be determined with high a u- [12s,12p,5d,2f,1g℄ basis fun tions [36℄ was used for the ra y. Su h resonan es have been studied in great detail dimer al ulations, and the same basis set without the 2 g fun tions was used for the trimer al ulations. Ele - trons from the 1s orbital on ea h sodium atom were not orrelatedinthe oupled- luster al ulations. Thethree- atomintera tionpotentialwasde omposedintoasumof pair-wise additive and non-additive ontributions V (r ,r ,r )= V (r )+V (r ,r ,r ). trimer 12 23 13 dimer ij 3 12 23 13 Xi<j (1) It has been shown by several authors that in the ase of alkali-metal trimers the non-additive term V (r ,r ,r ) 3 12 23 13 is rather large and annot be negle ted [37, 38, 39℄. Intera tionenergieswere al ulatedwithre- spe t to the separated-atoms disso iation limit, and the full ounterpoise orre tion of Boys and Bernardi [40℄ was employed to ompensate for the basis set superpo- sition error in both the dimer and trimer al ulations. All the ab initio al ulations were performed using the MOLPRO quantum Chemistry pa Vkage [41℄. a3Σ+ 47 dimer intera tion energies dimer on the u manifold were al ulated on an irregular grid over- ing the range of interatomi distan es from 2.0 Å to 14.0 Å. These points were interpolated using the 1D re ipro al-power reprodu ing kernel Hilbert spa e (RP- RKHS) merth2od [42℄. The interpolation wasmdo=ne2with respe t to using RP-RKHS parameters and n=3 ).rTh=e5r.e1s9u4ltingV urve(rha)d=a−m1i7n2i.m94u6m at−a1pproxi- e dimer e mately Å, m ,whi h is slightlry h=igh5e.r19t2han tVhe pre(vrio)us=ly−re1p7o7r.7ted a−b1initio e dimer e rmin=ima5.20 V Å(,r ) = −176.17 −1 m [43℄, e dimer e r =5.214 Å,V (r )=−174.025 − m1 [37℄, and e dimer e Å, m [38℄. Ivanovetal.[44℄analyzedexperimentaldataontriplet r = 5.16607 2 e NVa an(rd)de=riv−ed17t3h.6e4a9 6 0urate−1position a3Σ+ Å, dimer e m of the u minimum. Therefore our ab initio intera tion energies were shifted and s aled(shifted by -0.02754Åands aledby 1.00407) so that the minimum of the modi(cid:28)ed potential energy urve oin ided with the minimum determined from ex- periment. The RP-RKHS interpolation was then re- peated using the modi(cid:28)ed RP-RKHS method [45℄. Be- yond the last ab initio point, the potential energy was 3 FIG.1: CutsthroughtheNa quartetsurfa einv◦alen e oor- then extrapolated to the form C C C dinates. Upp−er88p1anel:− 1utforra12b=onrd13a=ngrle23o=f640.3;4theglobal 6 8 10 minimumof m isat Å.Lower V (r)=− − − . dimer r6 r8 r10 (2) −pa3n8e2l: u−t1at ollrin12ea=r gr1e3om=e5tr.0ie6s; the ollinear minimum of −1 m is at Å. Contours are labeled in C C 6 8 m . The long-range 1 .o5e6(cid:30)1 ×ien10ts3 E aa6nd 1.w16er×e 1k0ep5tE(cid:28)xae8d h 0 h 0 to the values of and , respe tively[46℄. The value ofthe (cid:16)free(cid:17) long-range oef- C (cid:28) ient 10 was then determined1f.r1o9m×t1h0e7 Eorrae1s0ponding the range of interatomi distan es from 2.5 Å to 10.0 RP-RKHS oe(cid:30) ients[417.℄1t5o8b×e107E a10 h 0 , whi h Å (geometry on(cid:28)gurations were unique up to a permu- omparesverywellwith h 0 fromRef.[46℄. t|ratio−nrof|a≤torms≤anrd s+atirs(cid:28)ed the triangular inequality 12 13 23 12 13 The resulting potential energy urve supports 16 vibra- r r r r; at linear geometries, where 23 12 13 23 tional bound states and gives a s attering length of 67.1 = + , the distan e was permitted to extend a 0, whi h ompares reasonably well (within 10%) with beyond 10.0 Å). 2v 3h published values 65.3 [48℄, 63.9 [49℄,Vatrnimde6r2.51[50℄.14A′2 Thegrid onsiste∞dvof220C points(in lud∞inhg16D 356 trimer intera tion energies on the points) and 136 C points (in luding 16 D points). manifold were al ulated on a regular 3D grid overing From the trimer intera tion energies the ounterpoise 3 V 100 3 orre ted non-additive energies were extra ted using Eq. (1). V 3 The non-additive energy fun tion was represented 50 in the same manner as in the ase of the spin-polarized potassium trimer [19, 51℄. In order to a ommodate a)0 the geometri dependen ies of the long-range multipole s of 0 terms, third-order dipole-dipole-dipole [52℄ and dipole- nit u ndoipno-laed-qduitaivdCeruepnoelregyC[5V3℄3.teTrmhesirw eorrere1ssu.p8bo9tn2rda×i n1tg0ed5loEfnrgoa-mr9anthgee a (s -50 9 11 h 0 oe(cid:30)1 .i4e6n8ts12×a1n0d5 E wa1e1re(cid:28)xedto [46℄ h 0 and respe tively [54℄. The lead- -100 ing term of the remaining multipole asymptoti expan- sion was the fourth-order dipole-dipole-dipole term [55℄, 0.985 0.99 0.995 1 1.005 1.01 1.015 and after a multipli ation by a suitable fun tion it was λ prepared for an (cid:16)isotropi (cid:17) extrapolation [19, 51℄. The resulting points were then interpolated, using the fully 2(v=0,j =0) s FIG. 2: The Na+Na -wave s attering length λ symmetrized 3D RP-RKHS interpolation method [37℄, asafun tionofthethree-body ontrolparameter (seetext). in ea h interρat=omi rd3istan e with respe t to the redu ed Haso=riz−on1t0a0lal0ines id6e0nat0ify model potentials orresponding to oordinate S and with RP-RKHS parameters and . S =10.0 m=0(cid:0), n(cid:1)=2 Å, . V trimer 14AT′he three-atom intera tion potential for the 2 state of Na3 was then re onst−ru1 ted usring=Eqr. (1=). tsermined by a small number of parameters. In fa t, the 3h 12 13 Irt2s3D= 4.g3l4obal minim∞umh -880.9 m is at −1 -wave s attering lengths and the dominant term in the Å and D saddle point -381.7 m is at long-range multipole potential expansion are su(cid:30) ient r = r = 5.06 12 13 Å. The minimum of our trimer po- in general to predi t all near-threshold s attering and tential is approximately 5% deeper than the minima re- bound state properties. This feature has allowed many ported by Higgins et al. [37℄ and Soldán et al. [38℄. Two systems of experimental interest to be a urately mod- uts through the surfa e are shown as◦ ontour p◦lots in eledbasedon alimited amountofexperimentalinforma- Fig. 1 for values of the valen e angle 60 and 180 . tion [29, 30, 31℄. Observed energy-dependent ross se - tions and Feshba h or shape resonan es often provided a key pie e of information for determining theoreti ally III. QUANTUM DYNAMICS the s attering lengths and the long-range dispersion o- e(cid:30) ients. The s atteringobservablesareobtainedby solvingthe The situation appears to be more omplex for atom- time-independent S hrödinger equation for three atoms. mole ule ollisions due to the additional ro-vibrational Quantumdynami al al ulationareperformedusinghy- degrees of freedom and anisotropi intera tions. As ol- perspheri al demo rati oordinates. This system of o- lisional data may be soon available we begin to study ordinates omprisesofthreeinternal oordinates(twohy- herewhatexperimentalinformationmightbebestsuited peranglesandonehyperradius)des ribingtheshapeand to onstrain the ollision models. For most alkali sys- 2 the size of the mole ular triangle and three Euler an- tems, and for Na in parti ular, the two body poten- gles des ribing the orientation of the mole ular plane in tial is known with high a ura y from a ombination of spa e. The total wavefun tion is expanded on a set of onventionalroomtemperatureandultra oldatomspe - hyperspheri albasis fun tions varyingwith the hyperra- tros opy[50V℄. Therefore, onemay expe t the three-body 3 dius. The resulting losed oupled equations are solved intera tion to represent the largest sour e of un er- using a log-derivative propagator approa h. Details on tainty. We assume that its shape is essentially orre t the method an be found in [56℄. and following the approa h of [16℄, weλsVolve the s atter- 3 The hyperspheri al demo rati oordinates are espe- ing problem with a s aled potential . At varian e ially well adapted in des ribing alkali spe ies rea - with Ref. [16℄ whi h onsidered inelasti s attering we tions that mainly pro eed through an insertion me h- dis uss here s attering resonan es in elasti ollisions. anism [15℄. However, the region of large interparti le We fo us on mole ules in the lowest triplet rovibra- distan es, where the system separates into atom and tional state, whi h is ollisionally stable under two-body mole ule,isnote(cid:30) ientlydes ribedinhyperspheri al o- ollisionswithatomsifboth ollidingpartnershavemax- ordinates. Therefore the s attering wavefun tion in the imal spin proje tion on the quantization axis. We show s a s outerregionis omputedusingJa obi oordinates. State- in Fig. 2the atom-diatom -waves atteringlength as λ to-state probability amplitudes are (cid:28)nally extra ted by a fun tion of the three-body ontrol parameter . Ea h mat hing to the short-rangewavefun tion obtained with time a three-body bound state rosses the disso iation a s the hyperspheri al approa h [56℄. threshold the presents a typi al divergen e, termed a Atom-atom ollisions in the ultra old regime are de- zero-energy resonan e. One may note that a 0.1-1% po- 4 −1 tential variation (1-10 m on the potential depth) is Therewill bealow-energyresonan eonly if the width −∞ +∞ a γ(E) < E s su(cid:30) ient for a omplete to variation of . is su(cid:30) iently narrow . If the more stri t on- γ(E) ≪ E γ(E) In order to investigate the relation between the zero- dition is ful(cid:28)lled an be repla ed with a γ =γ(E ) s r r energyquantity and(cid:28)nite-energys attering,wesele t the onstantquantity andthede omposition λ δ π values of the aontrol parameter orresponding to the in Eq. (3) implies that undergoes a rapid γva∼riaEti1o/n2 s samevalue of and omparethe orrespondingenergy- a ross resonan e. Note that be ause of the ℓ=0 dependent elasti ross se tions. threshold law, s attering at su(cid:30) iently low energy J =0 γ <E We (cid:28)rst onsider total angular momentum . For alwaysviolatesthe ondition and no resonantbe- j = 0 rotational states this implies an angular momen- havior will arise. However, this does not rule out the ℓ = 0 tum . Fig. 3 shows the result of the omparison presen e of resonan es at higher yet very low ollision a J = 0 s for a typi al positive value of . The partial energy (see below). σ a > 0 s ross se tions for show a qualitatively similar Resonan es an also be analyzed in terms of the a s behavior essentially determined by the value of and Wigner time delay [58℄, C by the long-range 6 oe(cid:30) ieσnt→. 4Oπnae2 an remark the Q=2~dδ , well known zero energy limit s. The minimum dE (4) of the ross se tion orresponds to the s attering phase π shiftgoingthroughamultipleof , andintheabsen eof i.e. the average delay of a s attering event ompared ontributionsfrom higherorderpartialwaveswould or- to free transit in the absen e of the potential. In the respond to a Ramsauer-Townsend minimum in the total 10 ross se tion [17℄. 1 1 2) m c 100 22 cm) 0.1 1.5 -12σ (10 0.1 10-1 -1(10 1 0.01 10-2 σ 0.01 0.5 100 101 102 103 0 100 200 300 400 500 100 101 102 103 104 E (µK) 100 101 102 103 104 E (µK) J =0 2(v=0,j =0) FIG.4: Thepartial Na+Na elasti ross se tionas a fun tionof ollision energyfordi(cid:27)erentvaluesof FIG.3: ThepartialJ =0Na+Na2(v=0,j =0)elasti ross the three-body ontrol parameter determinedasby=th−e10sa0ma0e value of the atom-diatom s attering length . se tionas a fun tionof ollision energy fordi(cid:27)erentvaluesof Cross se tions presenting resonant behavior are identi(cid:28)ed by the three-body ontrol parameter determined by the same as = 60a0 dashedlines. Thedottedline denotestheunitaritylimit (see value of the atom-diatom s attering length . The λ text). Sample ross se tions obtained using di(cid:27)erent and inset refers to the typi al energy regime of urrent ultra old presentingverysimilarenergydependen eareemphasizedin mole ule experiments. theinset. Theinsetalso shows(dash-dottedlines) twovirtu- as>0 a <0 ally identi al ross se tions for extra ted fromFig. 3. s The rossse tions al ulatedfor aremoreinter- esting. A large negative s attering length is asso iated threshold regime using Eq. (3) one obtains: wEi0thaboundstateturnedintoavirtualstatewithenergy ~γ dη 2dδbg in the ontinuum. Thissituation anbe onveniently Q = 1− + des ribed by de omposing the elasti phase shift into a (E−Er)2+ γ42 (cid:18) dE(cid:19) v dk ba kground plus a resonan e ontribution [17, 57℄ E−E 1dγ r − γ/2 (E−E )2+ γ2 vdk (5) δ =δbg+δres , δres =−arctan r 4 E−E (3) r v k where is the velo ity in the relative motion and E = E + η γ r 0 where is the resonan e position, with the relative wave ve tor. The (cid:28)rst term is the usual η and the resonan e width andℓshift, respe tively. For Lodrηentzian pro(cid:28)le arising from exponential de ay with the (cid:28)rst few angular momenta low energγy∼s aEttℓe+r1i/n2g a dE orre tion. Nearisolatedresonan esat highenergy iδs d∼eteErmℓ+i1n/e2d by tηh∼e acsoynmstptoti behavior , this isusuallythe dominant ontributηion to the time de- bg and [57℄. lay;seee.g.[59℄. Theresonan eshift isusuallyaslowly 5 a >0 a <0 s s varying fun tion of energy but in the presen e of addi- both and areputforthintheinsetofFig.4. tionals atteringfeaturessu hasshaperesonan esinthe This shows that knowledge of energy dependent ross J =0 ba kground ontinuum [60℄. se tions in the regimewhere only the partialwave The se ond term in Eq. (5) is the lassi al time for is important is in general not su(cid:30) ient to determine the 2dδbg ℓ = 0 the relative parti le to span a distan e dk . For strength of the three-body nonadditivepotential, even if δ ∼ −ka elasti s attering bg bg, and this term redu es to its shape were pre isely (cid:28)xed. −2a /v J = 0 bg orrespondingto anattra tive(repulsive) har- However, model potentials giving equivalent J > 0 a ter of the ba kground potential for negative (positive) ross se tions will not in general be equivalent if a bg ba kground s attering lengths . The third term van- s attering is explored. For instan e Fig. 6 shows the E = E J = 1 (v = 0,j = 0) r ishes for and gives a orre tion of dispersive elasti ross se tions for mole ules. shape a ross resonan e. Cal ulations use the same model potentials as the in- Note that in Fig. 4 one an essentially identify two set in Fig. 4 and an be identi(cid:28)ed a ording to the line lasses of urves. The (cid:28)rst lass (full lines) presents a style. Order of magnitude di(cid:27)eren es are observed for J = 1 J = 0 monotoni allyde reasingbehaviortowardsthe(cid:28)rstmin- ross se tions in ases where ross se - imum,whi h orrespondstononresonants attering. The tions are identi al. One an on lude that the initial se ond lass (dashed lines) present peaks at whi h the hara terization of a theoreti al model based on purely σs a=tt4eπringpartial rossse tionrea hestheunitaritylimit elasti ollisions should take into a ount aJsu>(cid:30) 0iently k2 (dotted line in Fig.3) and anin prin iple beas- broad energy range for the ontribution of par- so iated with a resonant behavior. tial waves to be ome observable. In alternative, in ases 250 where the method for the produ tion of old mole ules allowsthe initial ro-vibrationalstate to be ontrolled, at 200 least one experimental inelasti ross se tion (for some s)150 (v = 0,j > 0) n initial state, for instan e) should omple- ( Q 100 ment the elasti ollision data. 50 102 104 103 1 K) 2δn()0.07.55 2m) 100γµ (r110021 si0.25 -120 c 101 Er1 (0µ2K) 103 1 ( 0 100 200E (µK)300 400 500 σ 10-2 Q sin2δ FIG.5: TheWignertimedelay (upperpanel)andthe J =0 2(v=0,j =0) quantityfor Na+Na elasti ollisionsand λ 400µ sele ted values. Onlythepeaknear K anbe lassi(cid:28)ed 1 10 100 E(µK) as a resonan e (see text). J =1 2(v=0,j =0) Wefo usonthelowest-energypeakofFig.4andmake FIG.6: Thepartial Na+Na elasti ross the three-body potential slightly more attra tive in or- se tion al ulatedwiththesameset ofmodelpotentialsused intheinsetofFig.4. Samelinestyleisusedfor orresponding dertofurtshiner2sδhift tQhisfeaturetowardsthreshold. Fig.5 rossse tionsobtainedwiththesamepotential. Aresonan e showsthe and quantitiesforthreesele tedpoten- 400µ an be observed in the upper dashed urve. The inset shows tials. Thefeaturenear K anbeessentially lassi(cid:28)ed γr Er γ ≃ 0.5E theresonan e width as a fun tion of its position . r r as a resonan e with . As the potential be- γ E γ =E r r r omes more binding be omes larger than ( E ≃200µ r for K)andtheresonantbehaviortends to dis- Please note that one peak is also observed in Fig. 6. appear. As the peak is made to shift loser to threshold Analysisofnumeri alresultsbasedonEq.(3)showsthat γ ≃0.5E r r thetimedelayisfullydominatedbytheba kground on- , i.e. this featurerepresentsa resonan e. The tribution; see upper panel. Alssoinn2oδte=(1lower panel) that inset shows the resonanλ e width as the peak enter is in all ases the unitarity limit is attained. shifted by making the parameter vary. Its position ≃ 400µ ℓ = 1 An additionalinteresting featurethat anbe observed below the maximum K of the entrifugal J = γ =E E ≃500µ r r r by inspe tion of Figs. 3-4 is the near oin iden e of barrier(we(cid:28)nd for K)suggeststhatit 0 elasti ross se tions omputed with di(cid:27)erent three- isashaperesonan e. However,Feshba h ouplingsimilar E < 10 J = 0 body potentials in the whole energy range mK. to the one found for ollisions is not on lusively Sample ross se tions illustrating this ir umstan e for ruled out. 6 In on lusion, we(h1a4vAe′)presented a new potential en- parametrizationsofthepotentialenergysurfa ewillneed 3 2 ergy surfa e for Na . We have demonstrated that to be introdu edin orderto omparequantitatively the- long lived triatomi omplexes exist and give rise to res- ory and experiments. onan e e(cid:27)e ts in rea tive ollisions even at very low ol- lision energies. General featuresto be expe ted in atom- mole ule s attering in the ultra old regime have also in- A knowledgments vestigated by performing a systemati variation of the three-body part of the intera tion potential. Knowledge J =0 ofenergy-dependent elasti rossse tionsmaynot We wish to thank A. Viel for useful dis ussions. The be su(cid:30) ient to determine the strength of the nonaddi- authors a knowledge support of Egide (PHC Barrande tive three-body intera tion. To this aim, at least one # 13860UA) and of the Ministry of Edu ation, Youth J > 0 additional elasti or inelasti ross se tion needs and Sports of the Cze h Republi (KONTAKT proje t to be experimentally determined. In this work we have Barrande 2-07-3 and Resear h proje t no. 0021620835). studied the sensitivity of s attering observables by in- PSappre iatessupportoftheEuropeanS ien eFounda- trodu ing a global s aling parameter of the three-body tion and the Cze h S ien e Foundation (EUROCORES intera tion. In perspe tive, as old ollision empiri al programme EuroQUAM, proje t QuDipMol, grant no. datawillbe omeavailable,itislikelythatmore omplex QUA/07/E007). [1℄ R.V.Krems,Phys.Chem.Chem.Phys.10,4079(2008). [19℄ G. Quéméner, P. Honvault, J.-M. Launay, P. Soldán, [2℄ J. M. Hutson and P. Soldán, Int. Rev. Phys. Chem. 25, D.E.Potter,andJ.M.Hutson,Phys.Rev.A71,032722 497 (2006). (2005). [3℄ K.M.Jones, E. Tiesinga, P.D.Lett, andP.S. Julienne: [20℄ G.Quéméner,J.-M.Launay,andP.Honvault,Phys.Rev. Rev. Mod. Phys. 78, 483 (2006). A 75, 050701(R) (2007). [4℄ T.Köhler,K.Goral,andP.S.Julienne,Rev.Mod.Phys. [21℄ M.T.Cvita²,P.Soldán,J.M.Hutson,P.Honvault,and 78, 1311 (2006). J.-M. Launay,J. Chem. Phys.127, 074302 (2007). [5℄ S. Jo him M. Bartenstein, A. Altmeyer, G. Hendl, C. [22℄ M.T.Cvita²,P.Soldán,J.M.Hutson,P.Honvault,and Chin,J.H.Dens hlag,andR.Grimm,S ien e302,2101 J.-M. Launay,Phys. Rev. Lett. 94, 200402 (2005). (2003). [23℄ X. Li, G. A. Parker, P. Brumer, I. Thanopulos, and M. [6℄ M. W. Zwierlein, C. A. Stan, C. H. S hun k, S. M. F. Shapiro, J. Chem. Phys.128, 124314 (2008). Raupa h, S. Gupta, Z. Hadzibabi , and W. Ketterle, [24℄ X. Li, G. A. Parker, P. Brumer, I. Thanopulos, and M. Phys.Rev. Lett. 91, 250401 (2003). Shapiro, Phys. Rev. Lett. 101, 043003 (2008). [7℄ M.Greiner,C.A.Regal,andD.S.Jin,Nature(London) [25℄ X. Li and G. A. Parker, J. Chem. Phys. 128, 184113 426, 537 (2003). (2008). [8℄ J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, [26℄ N. Zahzam, T. Vogt, M. Mudri h, D. Comparat, and P. Phys.Rev. Let. 94, 203001 (2005). Pillet, Phys.Rev. Lett. 96, 023202 (2006). [9℄ M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. [27℄ P. Staanum, S. D. Kraft, J. Lange, R. Wester, and M. Dulieu, D. Comparat, and P. Pillet, S ien e 321, 232 Weidemüller,Phys. Rev. Lett. 96, 023201 (2006). (2008). [28℄ S. Coppage, P. Matei, and B. Stewart, J. Chem. Phys. [10℄ J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, 128, 241103 (2008). R. Hart, N. Bouloufa, O. Dulieu, H. Rits h, and H.-C. [29℄ P.J. Leo,C. J.Williams, andP.S.Julienne, Phys.Rev. Nägerl, S ien e, 321, 1062 (2008). Lett. 85, 2721 (2000). [11℄ J. Deiglmayr, A. Gro hola, M. Repp, K. Mörtlbauer, C. [30℄ A. Marte, T. Volz, J. S huster, S. Dürr, G. Rempe, E. Glü k, J. Lange, O. Dulieu, R. Wester, and M. Wei- G. M. vanKempen,and B. J. Verhaar, Phys.Rev. Lett. demüller,Phys.Rev. Let. 101, 133004 (2008). 89, 283202 (2002). [12℄ F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. [31℄ A. Simoni, M. Za anti, C. D'Erri o, M. Fattori, G. Dens hlag, Phys. Rev. Lett. 101, 133005 (2008). Roati, M. Ingus io, and G. Modugno, Phys. Rev. A 77, [13℄ K.-K. Ni,S. Ospelkaus, M. H. G. deMiranda, A. Pe’er, 052705 (2008). B.Neyenhuis,J.J.Zirbel,S.Koto higova,P.S.Julienne, [32℄ A.SimoniandJ.-M.Launay,LaserPhys.16,707(2006). D.S. Jin, and J. Ye,S ien e, 322, 231 (2008). [33℄ R. T. Skodje, D. Skouteris, D. E. Manolopoulos, S.-H. [14℄ J. M. Hutson and P. Soldán, Int. Rev. Phys. Chem. 26, Lee, F. Dong, and K. Liu, Phys. Rev. Lett. 85, 1206 1 (2007). (2000). [15℄ P.Soldán,M.T.Cvita²,J.M.Hutson,P.Honvault,and [34℄ P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. J.-M. Launay,Phys. Rev. Lett. 89, 153201 (2002). Phys.99,5219(1993);erratumJ.Chem.Phys.112,3106 [16℄ G.Quéméner,P.Honvault,andJ.-M.Launay,Eur.Phys. (2000). J. D 30, 201 (2004). [35℄ J. ƒíºek, J. Chem. Phys.45, 4526 (1966). [17℄ N. F. Mott and H. S. W. Massey, The theory of atomi [36℄ The Na valen e basis set [12→s,12p,5d,2f,1g℄ used for ollisions(Oxford UniversityPress, Oxford,1965). sodium onsisted of one (13s) [1s℄ ontra ted fun - [18℄ M.T.Cvita²,P.Soldán,J.M.Hutson,P.Honvault,and tionand(11s12p5d2f1g) un ontra tedGaussiantypeba- J.-M. Launay,Phys. Rev. Lett. 94, 033201 (2005). sis fun tions with exponents determined in an even- 7 temperedmanner: forselevenexponentswith entre1.0 (2000). and ratio 2.1, for p seven exponents with entre 3.0 and [48℄ F. A. van Abeelen and B. J. Verhaar, Phys. Rev. A 59, ratio 2.5 and (cid:28)ve exponents with entre 0.02 and ratio 578 (1999). 2.5,ford(cid:28)veexponentswith entre0.1andratio2.8,for [49℄ F. H. Mies, E. Tiesinga, and P. S. Julienne, Phys. Rev. f two exponents with entre 0.125 and ratio 3.0, and for A, 61, 022721 (2000). g oneexponent0.1. [50℄ C. Samuelis, E. Tiesinga, T. Laue, M. Elbs, H. Knö kel, [37℄ J. Higgins, T. Hollebeek, J. Reho, T.-S. Ho, K. K. and E. Tiemann,Phys. Rev. A 63, 012710 (2000). Lehmann, H. Rabitz, G. S oles, and M. Gutowski, [51℄ M. T. Cvita², P. Soldán, and J. M. Hutson, Mol. Phys. J. Chem. Phys. 112, 5751 (2000). 104, 23 (2006). [38℄ P. Soldán, M. T. Cvita², and J. M. Hutson, Phys. Rev. [52℄ B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 A 67, 054702 (2003). (1943); Y. Muto, Pro . Phys. Math. So . Japan 17, 629 [39℄ J.Kªos,P.S.›u howski,Š.Raj hel,G.Chaªasi«ski,and (1943). M. M. Sz z±niak, J. Chem. Phys.129, 134302 (2008). [53℄ R.J.Bell,J.Phys.B:Atom.Mole .Phys.3,751(1970). [40℄ S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). [54℄ S. H. Patil and K. T. Tang, J. Chem. Phys. 106, 2298 [41℄ MOLPRO is a pa kage of ab initio programs written (1997). by H.-J. Werner and P. J. Knowles with ontributions [55℄ W. L. Bade, J. Chem. Phys. 28, 282 (1958). from others; for more information see the www page [56℄ J.-M. Launay and M. Le Dourneuf, Chem. Phys. Lett. http://www.t .bham.a .uk/molpro/. 169, 473 (1990). [42℄ T-S.HoandH.Rabitz,J.Chem.Phys.104,2584(1996). [57℄ F. H. Mies, E. Tiesinga, and P. S. Julienne, Phys. Rev. [43℄ M. Gutowski, J. Chem. Phys.110, 4695 (1999). A 61, 022721 (2000). [44℄ V. S. Ivanov, V. B. Sovkov, and L. Li, J. Chem. Phys [58℄ E. P.Wigner, Phys.Rev. 98, 145 (1955). 118, 8242 (2003). [59℄ V.Aquilanti,S.Cavalli,A.Simoni,A.Aguilar,J.M.Lu- [45℄ T-S.HoandH.Rabitz,J.Chem.Phys.113,3960(2000). as, andD.DeFazio,J.Chem.Phys.121,11675(2004). [46℄ J.MitroyandM.W.J.Bromley,Phys.Rev.A68,052714 [60℄ A. Simoni, P. S. Julienne, E. Tiesinga, and C. J. (2003). Williams, Phys. Rev. A 66, 063406 (2002). [47℄ P. Soldán and J. M. Hutson, J. Chem. Phys. 112, 4415

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.