ebook img

Ferroelectric $\pi$-stacks of molecules with the energy gaps in the sunlight range PDF

4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ferroelectric $\pi$-stacks of molecules with the energy gaps in the sunlight range

Ferroelectricπ-stacksofmoleculeswiththeenergygapsinthesunlightrange Paweł Masiak and Małgorzata Wierzbowska Institute of Physics, Polish Academy of Sciences Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland Ferroelectricπ-stackedmolecularwiresforsolarcellapplicationsaretheoreticallydesigned,insuchaway thattheirenergygapsfallwithinvisibleandinfraredrangeoftheSunradiation. Bandengineeringistailored byamodificationofthenumberofthearomaticringsandviaachoiceofthenumberandkindofthedipole groups. Theelectronicstructuresofmolecularwiresandthechemicalcharacteroftheelectron-holepairare analyzedwithinthedensityfunctionaltheory(DFT)frameworkandthehybridDFTapproachbymeansofthe B3LYPscheme. Moreover,itisfoundthatoneoftheadvantageouspropertiesofthesesystems-namelythe 7 separate-pathelectronandholetransport-reportedearlier,stillholdsforthelargermolecules,duetothedipole 1 selectionrulesfortheelectron-holegeneration,whichdonotallowthelowestopticaltransitionsbetweenthe 0 stateslocalizedatthesamepartofthemolecule. 2 n a INTRODUCTION J 3 TheabilitytoabsorbawiderangeofSunspectrumandconvertthisenergyintothevoltagebetweentheelectrodesisakeyfactor 1 oftheefficientsolarbattery. Therefore, theopticallyactivematerialsideallyshouldbethecompositematerialsofsmall-, middle- ] andwide-bandgapsemiconductors,inordertocoverthewholeradiationrangefromthesoftultaviolet(350nm)tothefarinfrared ci ofasunset(1400nm). Thispossibilityisofferedbythemultilayersofplanarmoleculesorarraysofmolecularwires. s Recently,theso-calledcovalentorganicframeworks(COF)attractanattentionduetotheirspecialoptical,transport,andcatalytic - l properties,aswellaseasyfabrication[1–4]. Fromapointofviewofthephotovoltaics,stacksoftheCOFsaresimilartothebulk r t orintegratedheterojunctions[4,5]. Byachangeoftheplanarbondsbetweenthemoleculesfromthecovalenttohydrogenbonds, m onecanrestricttheelectronictransporttothedirectionacrossthelayers,i.e. alongthestacks,whiletheelectronictransportwithin t. theplanesshallbesuppressed. Thisisadvantageousforthesolarbatteries,wheretheplanarcurrentwouldcauseonlyadissipation a of an energy. Therefore, in the previous works [6, 7], we studied the layers of molecules with the COOH terminal groups as the m connectingpartsforbuildingthenetworks. TheCOOHgrouppossessesalsoasmalldipolemoment. - Theferroelectricallyorderedmolecules,composedofbenzeneringsandtwodipolegroups(COOHandCH CN),arrangedinthe d 2 n π-typestacksoflayersorthemolecularwires,showmanyappealingeffects[6,7]. Inparticular,theenergylevelsofthesubsequent o layers (or molecules in a stack) are aligned in a cascade, and this holds for the valence and conduction band as well [6–8]. Each c layerissimultaneouslyadonorandacceptorofelectronsandholes,dependingonadirectionofthecarriermotion[6]. Theexcitons [ insuchlayersarelocalizedandhavethecharge-transfercharacterfromthedipolegrouptothearomaticcentralring. Theelectric 1 field generated by the ferroelectrically ordered dipole groups leads to a polarization which is induced at electrodes. This effect v for the graphene sheets, chosen as the electrodes, causes a change of the work function by ±1.5 eV for the anode and cathode, 8 respectively[6]. Moreover,theelectronsandholesmoveacrosssuchπ-stacksalongdifferentpaths:theelectronsthroughthecentral 4 ringsandholesbetweenthedipolegroups[7]. Thecarriermobilities,obtainedwiththerelaxationtimeestimatedduetotheelastic 7 3 scatteringandionicintrusions,arehigherthanthoseintheorganometalhalideperovskites[7,9,10]. Foralltheabovereasons,itis 0 interestingtoinvestigatefurtherpropertiesoftheferroelectricmolecularlayersandstacks,inordertobringthesesystemscloserto 1. theexperimentalandindustrialinterest[11]. 0 Inthistheoreticalwork,wefocusontheruleswhichgovernthebandgapchange.Theenergygapshouldfallintoaninterestingfor 7 usrangeoftheSunradiation. Recently,asimilarsystem(tothecasesinvestigatedbyus)hasbeentheoreticallyandexperimentally 1 investigated, namely 2D imine polymer [12]. The authors revealed that a bandgap tunning by expanding a conjugation of the : v backboneofthearomaticdiaminesispossibleinthismaterial[12]. Itisalsowellknownthatthebandgapdecreaseswithasizeofa i system[13,14]. However,withoutcalculations,theexactvalueoftheenergygapisdifficulttopredict,aswellasitsdependenceon X asymmetryandtheedgetermination[14,15]. r a Wehavebegunourstudybychoosingatypeofmolecules,whichcouldbemostpromisingforourpurpose. Fig. 1presentssome of the molecules which are analyzed in this work. The collection of the geometries of all other studied systems, not presented in figureshere, isincludedinthesupportinginformation. Wehavechosenthreedipolegroups: COOH,CH CN,CH CF , andtheir 2 2 3 combinationsinvariousrepetitions. Thesizeofthemesogenicaromaticpartwasenlargedlinearly. Thenumberofthebenzene-type ringsisgiveninournotationbyanintegernumberfollowingthe”b”letter. Firstly, weinvestigated aneffect ofa numberof the aromaticrings and numberof dipolegroups on asize of theenergy gap; it means,thedifferencebetweentheenergeticpositionsofthelowestunoccupedandthehighestoccupiedmolecularorbital(LUMO- HOMO).Secondly,wecheckedaneffectofmixingvariouschemicalgroupsastheterminaldipolesinonemolecule. Weestimated also an effect of the π-stacking. Finally, we analyzed how the molecular modiffications - which were done in order to tailor the bandgapsize-affecttheexciton(electron-hole)characterandtheseparationofthechargecarrierpaths. 2 b1(COOH) b1(CH CN) b1(CH CF ) b1(COOH,CH CN) 3 2 3 2 3 3 2 3 b5(CH CN) b9(COOH) 2 10 4 b17(COOH) 8 FIG.1: Atomicstructuresofsomeofthestudiedmoleculesandtheirshortnames. THEORETICALMETHODS The molecular calculations have been performed with the Gaussian code [16], using the correlation-consistent valence double- zeta atomic basis set with polarization function cc-pVDZ [17]. Molecular geometries were optimized with the hybrid-functional methodintheB3LYPflavor[18],whichmixesthedensityfunctionaltheory(DFT)[19]intheBLYP[20,21]parametrizationwith theHartree-Fockexactexchangein80%and20%,respectively. Theoptimizedatomicstructureswereusedtobuildthemolecular wires. Further calculations for the molecules and 1D structures have been performed with the Quantum ESPRESSO suite of codes [22]. This package is based on the plane-wave basis set and the pseudopotentials for the core electrons. The normconserving pseudopotentialswereusedwiththeenergycutofffortheplane-wavessetto35Ry.Moreover,someoftheresults,suchasoptimized intermoleculardistances,werecheckedtobethesameasusingthelargerenergycutoffof45Ry. Theintermoleculardistanceswere obtained within the local density approximation (LDA), since it is known to give better geometries than the generalized gradient approximation(GGA).TheLDA-optimizedseparationsbetweenmoleculesinthestackwerethenusedfortheB3LYPcalculations for the molecular wires. The uniform Monkhorst-Pack k-points mesh in the Brillouin zone [23] was chosen for 1×1×10 for the wires. FortheB3LYPscheme,weusedthemeshes1×1×9and1×1×3forthek-andq-pointgrids,respectively. Inordertoobtainthebandstructuresprojectedontothelocalgroupsofatoms,weemployedthewannier90package[24],which interpolatesbandsusingthemaximally-localizedWannierfunctions[25,26]. Thesametoolhasbeenusedforthecalculationsof thedipolemoment,whichcanbeobtainedfromthepositionsofthemaximally-localizedWanniercenters,r ,usingtheformula[27] n (cid:88) (cid:88) d = Z R − r (1) a a n a n whereZ andR aretheatomicpseudopotentialchargeanditsposition,correspondingly,andindexesaandnrunoverthenumber a a ofatomsandWannierfunctions,respectively. RESULTS Dipolemoment There are a number of important implications of using the dipole groups: i) the hydrogen bonds via the COOH groups within theplanesrestricttheelectronictransportanddissipationofenergyinthedirectionsperpendiculartothephotovoltaicpath, ii)the 3 polarization generated across the solar device orders the energy levels in a cascade [6], iii) the electronic transport along the π- stacksisrestrictedtotheπ-conjugatedringsfortheelectrons, andholesmovebetweenthedipolegroups[7], iv)anadsorptionof the optically active molecules at the surfaces of the transparent conductive oxides, used as the electrodes, leads to the high power conversionwhenitisrealizedwiththeCOOHgroup[28]. Therefore,itisusefulltoexaminevariousdipolegroupsfortheirimpact on the energy gaps. In table 1, the dipole moments in the direction parallel to the photovoltaic transport for all studied groups attachedtoonearomaticringarecollected. TABLEI:Dipolemoment(inDebye)ofbenzenewithchosenpolargroups-acomponentperpendiculartothearomaticring(D )- z obtainedfromtheLDAcalculationsandtheWannier-functionsspreadsaccordingtoEq. 1. Molecule D z b1(COOH) -0.07 1 b1(CH CN) -0.59 2 1 b1(CH CF ) -0.35 2 3 1 b1(COOH,CH CN) -2.06 2 3 LUMO-HOMOenergydifferences A collection of molecules with various lengths of the aromatic chains is gathered in Fig. 2. The energy gaps are presented on a scale of the Sun radiation activity from the soft ultraviolet (350 nm) to the far infrared of a cloudy sky (1400 nm). The impact ofvariousdipolegroupsontheLUMO-HOMOenergydifferencedoesnotchangewiththegrouptypes,whentheyareattachedto thelongchains(abovefivebenzenerings). Moreover,increasinganumberofthedipolegroupsdoesnotchangetheenergygapfor thelongermolecules. Duetothelackofthiseffect,wecanfocusonthetransportpropertieswhenadesignofthedipolegroupsis considered. Itisawellknownfact,thattheenergygapsobtainedwiththedensityfunctionaltheory-bothinthelocaldensityapproximation (LDA) and the generalized gradient approximation (GGA) - are underestimated, while the energy gaps from a pure Hartree-Fock methodarelargelyoverestimated. Thus,weusedthehybrid-functionalschemebymeansoftheB3LYPfunctionalwhichcontains 20%oftheexactexchange.Thepresentedseriesoftheenergiescouldbeanapproximationoftheopticalgaps-whenjustatendency of the size and chemical group effect on the gaps is studied. The experimental data are usually closer to the combined GW+BSE approachtakingintoaccountboththequasi-particleandtheexcitonicbindingenergyeffects[29,30]. However,fromthepresented 5 X = COOH Y = CH CN 2 Z = CH CF 2 3 4 b λ = 350 nm ] 2 V X b e 4 2X [ 3 8 rgy gap 2 4b5X6b5Z8b5X10b5Y b9Z b9Y b17 b17 Ene 1 b5X b5X 10 14 18Z 22Y 0 λ = 1400 nm 10 14 4b9X8b9X 14b9X22b9X b17X b17X b17X b17X 4 8 22 38 FIG.2: TheLUMO-HOMOenergiesoftheisolatedmoleculeswithvariablenumberofbenzeneringsandthreedipolegroups: COOH(blackcircles),CH CN(redsquares),CH CF (bluetriangles)-obtainedwiththeB3LYPmethod. Thesolarspectrum 2 2 3 rangeismarkedinyellow. AllcalculationshavebeenperformedwiththeGaussiancode. 4 data,itisobviousthatarealizationofthehighlyefficient-fromthelight-absorptionpointofview-matricesofmolecularstacksis possible.Especially,ifonecombinesthelayerswithcolumnsofvariousmolecules,whichhavedifferentsizeanddifferentabsorption profiles. Impactoftheπ-stackingfortheenergygaps Theabsorptionefficiencyiscorrelatedwiththethicknessofthephotoactivelayer(Beer-LambertLaw),whichcannotbetoosmall makingthematerialtobetransparent[31]. Hence,all2Dstructuresforthesolarcellsshouldbeexaminedfortheirpropertiesacross thelayers. Stackingcausesthebanddispersionsinthedirectionperpendiculartotheslab. Thisbandwidthbroadening,inturn,acts fortheclosureoftheenergygap. InTable2,wepresentaneffectofthewireformationonthebandgap,andcomparetheLDAand B3LYPcomputationalmethodsforchosensystems. TABLEII:Energygaps(ineV)oftheisolatedmoleculesandmolecularwires,obtainedwiththeLDAandB3LYPmethods. The lastcolumndisplaystheintermoleculardistances(inÅ)inthewires(Dist.) -obtainedwiththeLDAschemeandusedalsoforthe B3LYPcalculations. AllcalculationshavebeenperformedwiththeQEcode. molecule E (isolated) E (wire) ∆E (wire-isolated) Dist.(wire) gap gap gap LDA B3LYP LDA B3LYP LDA B3LYP LDA benzene 5.119 6.717 4.026 5.452 -1.093 -1.265 3.8 b1(COOH) 4.204 6.199 4.037 6.016 -0.167 -0.183 5.1 3 b1(COOH) 3.956 5.875 3.857 5.813 -0.099 -0.062 5.1 6 b1(CH CN) 4.293 6.074 3.986 5.692 -0.307 -0.382 4.4 2 3 b1(COOH,CH CN) 3.611 5.503 2.963 5.050 -0.648 -0.452 4.6 2 3 b1(CH CF ) 4.759 6.359 4.607 6.119 -0.152 -0.239 5.2 2 3 3 b1(COOH,CH CF ) 4.084 5.958 3.946 5.871 -0.138 -0.087 5.2 2 3 3 b1(COOH,CH CN,CH CF ) 4.249 6.196 4.025 5.989 -0.224 -0.207 5.0 2 2 3 1 b5(COOH) 0.822 1.783 0.738 1.670 -0.084 -0.113 5.1 4 ThelastcolumninTable2displaystheintermoleculardistancesobtainedwiththeLDAmethod. Theseparationofbenzenes,by 3.8Å,isnotmuchlargerthanthatofthegraphenemultilayers,whichisaround3.4Å[32]. Themostdistantaremoleculeswiththe CH CF groups,of5.2Å. Thisisduetothefactthattheyarethelargestofallatomicgroupsattachedtotheringsstudiedhere,and 2 3 theFatomsdonotattracttheHatomsatthebottomoftheupperneighbor. TheCOOHgroupsarethesmallesthere,butseparations ofthemoleculesterminatedbythemarealsolarge-of5.1Å-becausetheoxygenatomsfromtheneighboringringsrepeleachother. TheCH CNgroups,althoughtheyarealsoquitelarge,attracteachotherbetweentheneighboringrings. ThisisbecauseNandC 2 tendto”exchange”hydrogen,andthiseffectleadstothesmallestintermoleculardistances,of4.6Å. Theseparationsofmolecules inawireruleaneffectofthebandgapsizeinthestack;thiseffectisthestrongestforthebenzenewiresandmoleculescontainingthe CH CNgroups.Itisinterestingtonote,thatanadditionofCOOHtotheringswithotherdipolegroupsweakensaneffectofstacking 2 onthebandgap. Thisholdsevenatthesameintermoleculardistance(seeforinstanceb1(CH CF ) andb1(COOH,CH CF ) ,or 2 3 3 2 3 3 b1(COOH) andb1(COOH) inTable2). Theoriginofthiseffectwillbemoreclearinthenextsubsection. 3 6 ComparisonoftheLDAandB3LYPapproachesfortheisolatedmoleculesandwires,usually,exhibitsabitstrongereffectofthe stackingonthebandgapforthehybrid-functionalscheme. AlsotheoriginofthiseffectissimilartothatofanadditionofCOOH, and relies on the order of the energy levels. Because the experimental results for the band gaps of the molecules studied here do notexistyet, itisnoteasytodeterminehowgoodistheB3LYPmethodinthiscase. However, onecouldexpectthatthismethod willworksimilarasinthecaseofbenzene. InordertoevaluateeffectivenessoftheB3LYPmethodusedinourstudy,wecompared energiesforbenzenecalculatedbydifferenttheoreticalmethodswithexperimentalresult. Theenergygapofthebenzenemolecule (isolated)of6.72eVbymeansoftheB3LYPshouldbecomparedwiththevaluefromtheGWapproach,of10.5eV[33],because both approaches do not take into account the excitonic effects. However, the measured optical gap is around 3.6 eV [34], due to theeffectoflargeexcitonbindingenergyinsmallmolecules. Thisexcitoniceffectcanbetheoreticallyobtainedfromthedifference ofthegapsobtainedwiththeGWandtheGW+BSE(BSEmeansBethe-Salpeterequation). Forbenzene,theGW+BSEbandgap is around 3.1 eV [30]. Although the B3LYP scheme is much simpler then the GW and GW+BSE methods, and designed for the fundamental gap only, its results are closer to the optical absorption than these of the GW aproach. Therefore, we expect that the energygapsobtainedbyuswiththeB3LYPmethodshowthesametrendsinaseriesofsimilarmolecules-whichdifferonlywitha sizeornumberortypeofthedipolegroups-astheopticalmeasurements. 5 Orderoftheenergylevels The characters of the highest occupied and lowest unoccupied states determine the excitonic radius and binding energy, the oscillatorstrengthoftheabsorptionoflight,aswellastheelectronictransportproperties. a)12 b) c) 10 NO b1(XY)3 BLYP 20 b1(XZ)3 BLYP b1YZ BLYP Density of states [arb. units] 48 CC ((rdiinpgo)le) XY YX YX Density of states [arb. units]11055 XZ XZ ZX FOCC ((rdiinpgo)le) Density of states [arb. units] 2468 Y FNCC ((rdiinpgoZ)le) 0 0 0 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Energy - E [eV] Energy - E [eV] Energy - E [eV] F F F d) e) f) Density of states [arb. units]1248 OCC ((rdiinpgo)le) XbX1X3X BLYP Density of states [arb. units]11055 NCC ((rdiinpgo)le) Yb1YY3 Y BLYP Density of states [arb. units]1210055 FCC ((rdiinpgo)le)Zb1ZZ3 Z BLYP 0 0 0 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Energy - E [eV] Energy - E [eV] Energy - E [eV] F F F g)10 h) i) 20 Density of states [arb. units] 2468 FNOCC ((rdiinpgo)blXe1)XYZZY BLYP Density of states [arb. units] 2468 FNOCC ((rdiinpgo)le) bX1XYZZ Y B3LYP Density of states [arb. units]11055 XX OCC ((rdiinpgoslb)e)5X4 BLXXYP 0 0 0 -6 -4 -2 0 2 4 6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Energy - E [eV] Energy - E [eV] Energy - E [eV] F F F j) 20 k)20 l) 40 b5XY BLYP b5XY BLYP b5Y BLYP 4 1 1 2 10 Density of states [arb. units]11055 XX NOCC ((rdiinpgYosl)e) XX Density of states [arb. units]11055 Y NOCC ((rdiinpgosXl)e) Y Density of states [arb. units]123000 YY NCCYY ((rdiinpgosl)e)YY YY YY 0 0 0 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Energy - E [eV] Energy - E [eV] Energy - E [eV] F F F m)30 n)40 o)30 Density of states [arb. units]121200555 NOCC ((rdiinpgosl)e) XXbYY5X4Y6YY BLYYYP XX Density of states [arb. units]123000 OCC ((rdiinpgosl)e) XX XX bXX5X1XX4 XXBLXXYPXX Density of states [arb. units]121200555 NOCC ((rdiinpgosl)e) YYbXX5XXX10YXX4 BXXLYXXPYY 0 0 0 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Energy - E [eV] Energy - E [eV] Energy - E [eV] F F F FIG.3: Densityofstates(DOS)projectedattheatomsofmolecules;thesystemsandmethodsaredenotedwithinthepanels;bn meansachainofnbenzenerings,X=COOH,Y=CH CN,Z=CH CF . 2 2 3 In the previous work [7], we showed that one of the systems studied here, namely a wire of b1(COOH,CH CN) molecules, 2 3 possessesverylocalizedstateattheconductionbandminimum(CBM)andthevalencebandtop(VBT).Undertheappliedvoltage, the electrons moved from the central aromatic ring of the molecule to the neighboring ring, while the holes hopped between the 6 dipolegroups. Thispropertymightreducearecombinationofcarriersandisverydesiredforsolarcelldevices[35]. Therefore,we characterizethestatesaroundthebandgapforthewirescomposedofsomeoftheπ-stackedmolecules,studiedinthisworkfortheir absorptionenergy. Plotsoftheprojecteddensityofstates(PDOS)forwiresofbenzeneandpentacenedecoratedwithvariousdipole groupsarecollectedinFig. 3. Thechoiceforthesmallestmolecule(benzene)ismotivatedbyaneedofmakingacomparison(of theresultsforthedecoratedbenzene)toourpreviousstudies[7],usingthehybrid-DFTmethod. Whilethepentacenemoleculehas beenchosen,sinceitpossessesthegapinthesunlightrange-andinthesametimevaryingatypeandanarrangementofthedipole groups. We varied the type and the arrangement of the dipole groups attached to these molecules in order to check the transport properties. Asonewillseefurther,changingthemesogenicpartofthemoleculedoesnotaltertheconclusions. All results are obtained with the BLYP functional, except for only one case - namely b1(COOH,CH CN,CH CF ) - for which 2 2 3 the PDOS is calculated also with the B3LYP method. Figs. 3(g) and 3(h) compare these two methods and lead to the following conclusions: 1)Theordersoftheenergybandsarethesame-specifically, theO-projectedstatesareclosetotheFermilevel, and N-projectedDOSisdeeperintheenergy,whiletheC-ringPDOSisbetweentheO-andN-projectedstates. 2)Theonlydifference isforthewidthoftheenergybandlocalizedattheC-ring-itismorenarrowintheB3LYPcaseandleadstothehighervalueofthe PDOSattheedgeofthevalenceband. Sinceusingthemorecompuationallyexpensivemethoddoesnotchangetheconclusions,we continuewiththeDFTapproachforthePDOSanalysis. WhentheCOOHorCH CNdipolegroupsareattachedtoasinglebenzenering,thehighestoccupiedlevelsarecomposedofthe 2 stateslocalizedatdipolesandpartiallyonthecentralaromaticring,whilethelowestunoccupiedstatesarebuiltmainlyoftheC-ring localizedorbitals. TheoxygenorbitalsareclosertotheFermilevelthanstatesoftheNorigin. Thefluorinestatesarethedeepest intheenergyofallstudieddipolegroups. Moreover,ifonlyCH CF groupsareattachedtobenzenethenbothholesandelectrons 2 3 arepredictedtomovethroughthecentralring,whichisaveryunwantedsituation. SummarizingresultsinFigs. 3(a)-(h): thebest spaceseparationsofthecarrierpathsareforCH CNandCOOH.Combinationsofthesegroupsworkaswell. TheCOOHgroupis 2 usedasaconnectingpartfortheplanarstructures,asstudiedinthepreviouswork[6]. Ithasbeendemonstrated[28],thatusingthe COOHgroupforadepositionoftheopticalmaterialatthetransparentelectrodesinthesolarcelldevicesonecanobtainthehighest photovoltaicconversionofallexperimentallytestedcontacts. Thus,onlycombinationsoftheCOOHandCH CNdipolesattached 2 topentacenemoleculesarestudiedfurther,becausetheyrepresentthegroupofmoleculeswhichhavetheenergygapsfallingwithin aconsideredrangeoftheSunspectrum. InFigs. 3(i)-(o),foreachstudiedcase,thehighestoccupiedstatesofthedipole-grouporiginareseparatedfromtheFermilevel by at least one band. It seems that the carriers separation, found for the decorated benzene in our previous studies [7], may not work very well for larger molecules. However, the PDOS for the dipole localized states is very high, which might cause that the oscillator strength for the absorption is larger than that for the band positioned at the Fermi-level. The calculations of the optical propertiesbymeansoftheGW+BSEaproacharenecessaryforafullinsight. Ontheotherhand,whenonebuildstheplanarsystems withπ-stacking,andaddstheelectrodes,andappliesthevoltage-whichleadstotheStarkshiftoftheenergylevels-thenthehole transportbetweenthedipolegroupsomittingthecentralaromaticframemightbeplausible. aDensity of states [arb. units]) 11055 NCC ((rdiinpgosl)e) YYb2Y4 BYLYYP bDensity of states [arb. units])1210055 YY NN YY NNCCN2 (((rdb-iirbnpigdo2sgl)Yee))4 BLYP cDensity of states [arb. units]) 1210055 NCCC (((rdaicinpegotysl)ele)ne) YAYc-Abc2YYY4 BLYP 0 0 0 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Energy - E [eV] Energy - E [eV] Energy - E [eV] F F F d)20 e) f) NC (rings) b2"Y4 BLYP OC (rings) b7’X6 BLYP NC (rings) b7’Y6 BLYP Density of states [arb. units]11055 C (dipole) YY YY Density of states [arb. units]1200 C (dipole) XX XX XX Density of states [arb. units]1200 C (dipole) YY YY YY 0 0 0 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Energy - E [eV] Energy - E [eV] Energy - E [eV] F F F FIG.4: Densityofstates(DOS)projectedattheatomsofmolecules;thesystemsandmethodsaredenotedwithinthepanels;bn meansanumberofbenzenerings,X=COOH,Y=CH CN,Acistheacetylenebridge-C≡C-. The”prime”and”bis”denote 2 differentwaysofconnectingthearomaticringsorshapesofthearomaticmolecularcores. 7 Additionally,wecheckedafewmorepossibleconnectionsoftwoaromaticrings,through:(i)theacetylene(-Ac-),or(ii)nitrogen (-N-)bridges,or(iii)-C-C-bond. ThePDOSofnaphthaleneandbi-phenylwithfourCH CNgroups,andsimilarsystemswiththe 2 abovebridges,arepresentedinFigs4(a)-(d). ThereisonlyalittleimprovementofthepositioningofthedipolegroupsinthePDOS, anditiswhenthe-N-bridgeisused, withrespecttotheotherpossibilities. ThismeansthatafteranadditionofCOOH,thelight holeswillmovebetweenthecarboxylgroupsandtheheavyholesbetweentheCH CNdipoles,ifmanyterminalgroupsareattached 2 to the edges. Figs 4(e)-(f) display the projected DOS for the decorated coronene molecule. They confirm earlier findings for the lineararomaticmolecules. Aspromisedearlierinthiswork,wecommentnowonthetwostackingeffectsmentionedintheprecedingsubsection.Thestrength ofthebandgaploweringduetostackingisrelatedtothebandsbroadeningclosetotheFermilevel. This, inturn, isafunctionof astrengthoftheinteractionbetweentheneighboringmolecules,andofcoursethedistancebetweenthem(theclosestneighboring groupsofatomsaretheCH moietiesbelowthemolecularplaneandtheCNorCF topsofthedipolesbelow). Sinceadditionof 2 3 theCOOHgroupmovesthelevelsofotherdipolesdownintheenergy, thebandbroadeningofthesedeeperstatesdoesnotaffect so much the energy gap. Therefore, addition of COOH weakens the effect of stacking on the gaps of molecules with CH CN or 2 CH CF dipoles. Inthesameway,theB3LYPmethod-whichlowersacontributionofthedipole-groupprojectedDOSattheFermi 2 3 levelwithrespecttotheBLYP-leadstoasmallerstackingeffectonthebandgap. Thelatesteffectisduetothefactthat,theC-ring statesoftheneighboringmoleculesoriginatefromthegroupsofatoms,whicharemoredistantthantheneighboringdipolesinthe stack. Absorptionspectraofthreemoleculesinaseriesofthegrowingsizeofthemesogenicpart Attheend,wecomparethetheoreticalabsorptionspectraforaseriesofthreemoleculeswithgrowingnumberofbenzenerings in a chain, i.e. 2, 5 and 9, but having the same number and type of the dipole groups, namely four COOH moieties attached on the both sides ofthe longer molecular axis, as in Fig. 1 for b9(COOH) (i.g. b9X4) andin Fig. 3(i) for b5X4. These spectra are 4 simulatedwiththeYambocode[36],usingitspossibilitytocalculatethedielectricfunction. Theresponsefunctionwasobtainedon therandomphaseapproximationlevel. InFig. 5,boththeinteracting(Im ε)andnoninteracting(Im ε )dielectricfunctionsshow 0 theblueshiftofthedominantabsorptionpeakswiththegrowingmolecularsize. The imaginary part of the noninteracting dielectric functions have the absorption edges at the energies which correspond to the DFTenergygaps-whichare: 2.99eVforb2X , 0.84eVforb5X , and0.04eVforb9X . Measuredabsorbanceismoresimilar 4 4 4 withtheinteractingdielectricfunction,whichhastheprominentpeaksbetween2and4eVforb5X andb9X ,andbetween4and 4 4 6eVforb2X . TheGW+BSEspectrumwouldbeshiftedupduetothemany-bodyeffectsanddownduetotheexcitoniceffects. 4 Nevertheless,ourmainmessagethatitispossibletotunetheopticalspectraofthedipoledecoratedmoleculesintheπ-stacksisstill valid. b2X4 b5X4 ε b9X4 m I b2X4 b5X4 0 ε b9X4 m I 0 1 2 3 4 5 6 Energy [eV] FIG.5: Theimaginarypartoftheinteracting(toppanel)andnoninteracting(bottompanel)dielectricfunctionforthreechosen molecules,obtainedwiththeYambocode. 8 The second optimistic message is connected to the transport properties, which are correlated with the oscillator strenth of the dipole optical transitions and creation of the electron-hole pairs. As we see from the interacting dielectric function, the lowest absorptionpeakismuchhigherintheenergythantheHOMO-LUMOgap. ThismeansthattheopticaltransitionsbetweentheDOS peakswhicharethemostclosetotheFermilevel(onitsoccupiedandunoccupiedsides)arenotallowed. Thesepeakswereofthe sameorigin,namelytheywerelocalizedatthecentralC-ringsandnotthedipolegroups. Instead,thehigherenergeticpositionsof thefirstabroptionpeaksinthesemoleculessuggestthattheallowedtransitionsarebetweentheC-ringsanddipolegroups. Thisisa wantedproperty,becausetheelectron-holepairswillbegeneratedonthespaciallydistantpartsofthemolecule. Thus,weretainthe spaceseparationofthechargetransportforelectronsandholesagain,forthelargermoleculesthanbenzene. CONCLUSIONS Ouraimistotailorthebandgapinthemolecularπ-stacks,inordertoproposesystems-withferroelectricpropertiesinvestigated earlier[6,7]-forthesolarcellapplications. Tunningtheopticalpropertiesispossiblebyvaryinganumberthebenzeneringsand a choice of the dipole groups when the molecules are small. While in cases of larger molecules, with longer aromatic chains, the band gaps are almost independent on the terminal groups. On the other hand, a choice of the dipole groups and their number are criticalparametersfortheatomiclocalizationofthehighestoccupiedandlowestunoccupiedstates. Therefore,thecharacterofthe photogeneratedelectron-holepairissensitivetothechemicalconnectionsbetweentheneighboringmoleculesinthestacksandthis, inturn,determinesthetransportproperties[7]. Summarizing: thelinearchains,betweenfiveandnineofthearomaticrings,aregoodcanditesforbuildingblocksoftheorganic nanostructesforphotovoltaicapplications,whentheyareterminatedwiththeCOOHandCH CNgroups. WhileusingtheCH CF 2 2 3 groupsdoesnotgivethedesiredproperties. Thedipoleselectionrulesfortheopticaltransitionsretainthecharge-pathsselectivity, whichappearstobelostwhenlookingjustatthePDOS. ACKNOWLEDGEMENT ThisworkhasbeensupportedbyTheNationalScienceCentreofPoland(theProjectNo. 2013/11/B/ST3/04041). Calculations have been performed in the Cyfronet Computer Centre using Prometheus computer which is a part of the PL-Grid Infrastructure, andbypartintheInterdisciplinaryCentreofMathematicalandComputerModeling(ICM). [1] CookTR,YangRY,StangPJ(2013)Metal-OrganicFrameworksandSelf-AssembledSupramolecularCoordinationComplexes: Comparing andContrastingtheDesign,SynthesisandFunctionalityofMetal-OrganicMaterials.ChemRev113(1):734-777 [2] ChakrabartyR,MukherjeePS,StangPJ(2011)SupramolecularCoordination:Self-AssemblyofFiniteTwo-andThree-DimensionalEnsem- bles.ChemRev111(11):6810-6918 [3] Medina DD, Rotter JM, Hu Y, Dogru M, Werner V, Auras F, Markiewicz JT, Knochel P, Bein T (2015) Room temperature synthesis of covalent-organicframeworkfilmsthroughvapor-assistedconversion.JAmChemSoc137(3):1016-1019 [4] Calik M, Auras F, Salonen LM, Bader K, Grill I, Handloser M, Medina DD, Dogru M, Lo¨bermann F, Trauner D, Hartschuh A, Bein T (2014) Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J Am Chem Soc 136(51):17802-17807 [5] XiaoZ,YuanY,YangB,VanDersliceJ,ChenJ,DyckO,DuscherG,HuangJ(2014)Universalformationofcompositionallygradedbulk heterojunctionforefficiencyenhancementinorganicphotovoltaics.AdvMater26(19):3068-3075 [6] Wierzbowska M, Wawrzyniak-Adamczewska M (2016) Cascade donoracceptor organic ferroelectric layers, between graphene sheets, for solarcellapplications.RSCAdv6,49988-49994 [7] Wawrzyniak-AdamczewskaM,WierzbowskaM(2016)Separate-PathElectronandHoleTransportAcross-StackedFerroelectricsforPhoto- voltaicApplications.JPhysChemC120(14),7748-7756 [8] SobolewskiAL(2015)Organicphotovoltaicswithoutp-njunctions:acomputationalstudyofferroelectriccolumnarmolecularclusters.Phys ChemChemPhys17(32):20580-20587 [9] MottaC,El-MellouhiF,SanvitoS(2015)Chargecarriermobilityinhybridhalideperovskites.SciRep5:12746(1)-12746(8) [10] LeijtensT1,StranksSD,EperonGE,LindbladR,JohanssonEM,McPhersonIJ,RensmoH,BallJM,LeeMM,SnaithHJ(2014)Electronic propertiesofmeso-superstructuredandplanarorganometalhalideperovskitefilms: chargetrapping,photodoping,andcarriermobility.ACS Nano8(7):7147-7155 [11] ZhaoYS,FuH,PengA,MaY,XiaoD,YaoJ(2008)Low-DimensionalNanomaterialsBasedonSmallOrganicMolecules:Preparationand OptoelectronicProperties.AdvMater20(15):2859-2876 9 [12] XuL,YuY,LinJ,ZhouX,TianWQ,NieckarzD,SzabelskiP,LeiS(2016)On-surfacesynthesisoftwo-dimensionaliminepolymerswitha tunablebandgap:acombinedSTM,DFTandMonteCarloinvestigation.Nanoscale8(16):8568-8574 [13] DengJP,ChenWH,ChiuSP,LinCH,WangBC(2014)Edge-terminationandcore-modificationeffectsofhexagonalnanosheetgraphene. Molecules19(2):2361-2373 [14] Hu W, Lin L, Yang C, Yang J (2014) Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes. J Chem Phys 141(21):214704(1)-214704(10) [15] SinghSK,Neek-AmalM,PeetersFM(2014)Electronicpropertiesofgraphenenano-flakes:energygap,permanentdipole,terminationeffect, andRamanspectroscopy.JChemPhys140(7):074304(1)-074304(9) [16] FrischMJetal.(2013)Gaussian09,RevisionD.01.Gaussian,Inc.,WallingfordCT [17] DunningJrTH(1989)GaussianBasisSetsforUseinCorrelatedMolecularCalculations.I.TheAtomsBoronThroughNeonandHydrogen. JChemPhys90(2):1007-1023 [18] BeckeAD(1993)Density-functionalthermochemistry.III.Theroleofexactexchange.JChemPhys98(7):5648-5652 [19] KohnW,ShamLJ(1965)Self-ConsistentEquationsIncludingExchangeandCorrelationEffects.PhysRev.140(4A):A1133-A1138 [20] BeckeAD(1988)Density-functionalexchange-energyapproximationwithcorrectasymptoticbehavior.PhysRevA,38(6):3098-3100 [21] LeeC,YangW,ParrRG(1988)DevelopmentoftheColle-Salvetticorrelation-energyformulaintoafunctionaloftheelectrondensity.Phys RevB37(2):785-789 [22] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavvazzoni C, et al. (2009) QUANTUM ESPRESSO: a modular and open-source softwareprojectforquantumsimulationsofmaterials.JPhysCondensMatter21(39):395502(1)-395502(19) [23] MonkhorstHJ,PackJD(1976)SpecialpointsforBrillouin-zoneintegrations.PhysRevB13(12):5188-5192 [24] Mostofi AA, Yates JR, Lee YS, Souza I, Vanderbilt D, Marzari N (2008) wannier90: A tool for obtaining maximally-localised Wannier functions.ComputPhysCommun178:685-699 [25] MarzariN,VanderbiltD(1997)MaximallylocalizedgeneralizedWannierfunctionsforcompositeenergybands.PhysRevB56(20):12847- 12865 [26] MarzariN,MostofiAA,YatesJR,SouzaI,VanderbiltD(2012)MaximallylocalizedWannierfunctions: Theoryandapplications.RevMod Phys84(4):1419-1475 [27] RestaR(1994)Macroscopicpolarizationincrystallinedielectrics:thegeometricphaseapproach.RevModPhys66(3):899-915 [28] ManoharanS,AsiriAM,AnandanS(2016)Impactofanchoringgroupsforimprovingthebindingnatureoforganicdyestowardhighefficient dyesensitizedsolarcells.SolarEnergy126:22-31 [29] vanSettenMJ,CarusoF,SharifzadehS,RenX,SchefflerM,LiuF,LischnerJ,LinL,DeslippeJR,LouieSG,YangC,WeigendF,Neaton JB,EversF,RinkeP(2015)GW100:BenchmarkingG0W0forMolecularSystems.JChemTheoryComput11(12):5665-5687 [30] BlaseX,AttaccaliteC(2011)Charge-transferexcitationsinmoleculardonor-acceptorcomplexeswithinthemany-bodyBethe-Salpeterap- proach.ApplPhysLett99(17):171909(1)-171909(3) [31] Lee J-Y, Tsai M-C, Chen P-C, Chen T-T, Chan K-L, Lee C-Y, Lee R-K (2015) Thickness Effects on Light Absorption and Scattering for NanoparticlesintheShapeofHollowSpheres.JPhysChemC119(46):25754-25760 [32] Borysiuk J, Sołtys J, Piechota J (2011) Stacking sequence dependence of graphene layers on SiC (0001) - Experimental and theoretical investigation.JApplPhys109(9):093523(1)-093523(6) [33] NeatonJB,HybertsenMS,LouieSG(2006)RenormalizationofMolecularElectronicLevelsatMetal-MoleculeInterfaces.PhysRevLett 97(21):216405(1)-216405(4) [34] HanazakiIJ(1972)Vapor-phaseelectrondonor-acceptorcomplexesoftetracyanoethyleneandofsulfurdioxide.JPhysChem76(14):1982- 1989 [35] WehrenfennigC,EperonGE,JohnstonMB,SnaithHJ,HerzLM(2014)HighChargeCarrierMobilitiesandLifetimesinOrganoleadTrihalide Perovskites.AdvMater26(10):1584-1589 [36] MariniA,HoganC,Gru¨ningM,VarsanoD(2009)YAMBO:anabinitiotoolforexcitedstatecalculations.CompPhysComm180:1392-1403 10 SUPPLEMENTARYINFORMATION TABLEI:NumericaldatasetforFig. 2: theLUMO-HOMOenergies(ineV)oftheisolatedmoleculeswithvariablenumberof benzeneringsandthreedipolegroups: X=COOH,Y=CH CN,Z=CH CF . 2 2 3 b2X b2X b5X b5Z b5X b5Y b5X b5X b9X b9X 4 8 4 6 8 10 10 14 4 8 4.384 4.099 1.783 1.745 1.770 1.766 1.748 1.677 0.820 0.814 b9Z b9Y b9X b9X b17X b17X b17Z b17X b17Y b17X 10 14 14 22 4 8 18 22 22 38 0.808 0.821 0.810 0.778 0.568 0.568 0.547 0.556 0.544 0.549

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.