Fermi’sgoldenruleappliedtotheγ decayinthequasicontinuumof46Ti M.Guttormsen,1,∗ A.C.Larsen,1 A.Bu¨rger,1 A.Go¨rgen,1 S.Harissopulos,2 M.Kmiecik,3 T.Konstantinopoulos,2 M.Krtic˘ka,4 A.Lagoyannis,2 T.Lo¨nnroth,5 K.Mazurek,3 M.Norrby,5 H.T.Nyhus,1 G.Perdikakis†,2 A. Schiller,6 S. Siem,1 A. Spyrou†,2 N.U.H. Syed,1 H.K. Toft,1 G.M. Tveten,1 and A. Voinov6 1Department of Physics, University of Oslo, N-0316 Oslo, Norway 2InstituteofNuclearPhysics, NCSR”Demokritos”, 153.10AghiaParaskevi, Athens, Greece 3Institute of Nuclear Physics PAN, Krako´w, Poland 4Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic 1 5Department of Physics, A˚bo Akademi University, FIN-20500 A˚bo, Finland 1 6Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA 0 (Dated:January21,2011) 2 Particle-γ coincidencesfromthe46Ti(p,p(cid:48)γ)46Tiinelasticscatteringreactionwith15-MeVprotonsareuti- n lizedtoobtainγ-rayspectraasafunctionofexcitationenergy. Therichdatasetallowsanalysisofthecoinci- a dencedatawithvariousgatesonexcitationenergy.Formanyindependentdatasets,thisenablesasimultaneous J extractionofleveldensityandradiativestrengthfunction(RSF).Theresultsareconsistentwithonecommon 0 leveldensity. ThedataseemtoexhibitauniversalRSFasthededucedRSFsfromdifferentexcitationenergies 2 show only small fluctuations provided that only excitation energies above 3 MeV are taken into account. If transitionstowell-separatedlow-energylevelsareincluded,thededucedRSFmaychangebyafactorof2−3, ] x whichmightbeexpectedbecausetheinvolvedPorter-Thomasfluctuations. e - PACSnumbers:21.10.Ma,25.20.Lj,27.40.+z,25.40.Hs l c u n I. INTRODUCTION tainedfromthestudyofphotonuclearcross-sections[4],and [ thuslimitedonlytoenergiesabovetheparticleseparationen- ergy.Itwasestablishedthatthegiantelectricdipoleresonance 2 Fermi’s golden rule predicts the transition rate from one v state to a set of final states in a quantum system. The the- (GEDR)dominatestheRSFinallnuclei. Theinformationon 9 RSF below particle separation energy is significantly less. It oretical foundation, which has been successfully applied in 0 hasbeenobtainedmainlyfromtheOslomethodand(n,γ)and manydisciplinesofphysics,wasfirstestablishedbyDiracin 4 (γ,γ(cid:48))reactions. 1927 [1] and emphasized by Fermi in his book in 1950 [2]. 3 The Oslo method, which is applicable for excitation ener- . The rule is based on first-order perturbation theory, where 9 gies below the particle separation, is described in detail in the transition matrix element is assumed to be small. In nu- 0 Ref. [5]. In this work, we report on results obtained for clearphysics,thisassumptioniswellfulfilledforβ andγ de- 0 the 46Ti nucleus, which has two protons and four neutrons 1 cay. Thus, wetakethevalidityoftheFermi’sgoldenruleas outside the doubly-magic 40Ca core. The advantages of the : granted, rather than testing this rule. In this work, we study v theγ decaybetweenstatesinthequasi-continuumof46Tiand (p,p(cid:48)) reaction compared to the commonly used (3He,3He(cid:48)) i and (3He,4He) reactions are much higher cross-sections and X apply Fermi’s golden rule to disentangle the γ strength and better particle resolution. This allows us to make a detailed r leveldensity. a studyofγ-decayasafunctionofexcitationenergy. TheOslonuclearphysicsgrouphasdevelopedamethodto It can be discussed if the concept of one unique RSF is determine simultaneously the level density and the radiative validforlightnucleiandinparticularatlowexcitationener- strength function (RSF) from particle-γ coincidences. These gies. ThisquestiontogetherwiththeapplicabilityoftheOslo quantitiesprovideinformationontheaveragepropertiesofex- methodforlightsystemsastitaniumisthemainsubjectofthis citednucleiandareindispensibleinnuclearreactiontheories work. astheyaretheonlyquantitiesneededforcompletedescription In Sec. II the experimental results are described. The nu- oftheγ decayathigherexcitationenergies. clear level density and RSF are extracted in Sec. III, and in Thenuclearleveldensitycanbedeterminedreliablyuptoa Sec.IV,theapplicationofFermi’sgoldenruleandtheBrink fewMeVofexcitationenergyfromthecountingoflow-lying hypothesisisdiscussed. Summaryandconclusionsaregiven discreteknownlevels[3]. Thereisalsoreliablelevel-density inSec.V. informationfromneutronresonancesathigherexcitationen- ergies;however,thisinformationisrestrictedinenergyaswell asspinrange. II. EXPERIMENTALRESULTS ThemostrichexperimentalinformationontheRSFwasob- TheexperimentwasconductedattheOsloCyclotronLabo- ratory(OCL)witha15-MeVprotonbeambombardingaself- supporting target of 46Ti with thickness of 1.8 mg/cm2. The †Currentaddress:NationalSuperconductingCyclotronLaboratory,Michigan targetwasenrichedto86%46Tiwith48Ti(11%)asthemain StateUniversity,EastLansing,MI48824-1321,USA. ∗Electronicaddress:[email protected] impurity. Thissmalladmixtureof48Tiisnotexpectedtoplay 2 · 103 ) V V 2500 (a) Singles 46Ti 2+ 0+ (ke10000 9.3 ke 12500000 4+ E i 110044 3 s / 8000 nt 1000 0+ u o C 500 6000 110033 0 · 103 1400 (b) Coincidences 2+ 4000 V 1200 e k 3 1000 110022 9. s / 3 680000 2000 ount 400 4+ C 0+ 200 0 2000 4000 6000 8000 10000 0 4 6 8 10 12 14 E (keV) g Proton energy E (MeV) FIG. 2: (Color online) The particle-γ coincidence matrix for 46Ti. FIG.1:(Coloronline)Singles(a)andcoincidence(b)protonspectra recordedwith15-MeVprotonson46Ti. The γ-ray spectra have been unfolded with the NaI response func- tions. a major role. This is supported by the fact that at low exci- informationontheleveldensityandRSFcanbeextractedsi- tationenergieswheretheleveldensityissmall,wecouldnot multaneously. identifyanyimportantcontributionsof48Tiintotheγ-spectra. An iterative subtraction technique has been developed to Inaddition,bothtitaniumsareexpectedtobehavesimilarly. separate out the first-generation (primary) γ-transitions from Particle-γ coincidencesweremeasuredwitheightSi∆E− the total cascade [8]. The subtraction technique is based on E particle telescopes and the CACTUS multidetector sys- theassumptionthatthedecaypatternisthesamewhetherthe tem [6]. The Si detectors were placed in forward direction, levels were initiated directly by the nuclear reaction or by γ 45◦ relativetothebeamaxis. Thefront(∆E)andend(E)de- decay from higher-lying states. This assumption is automat- tectorshadathicknessof140µmand1500µm,respectively. icallyfulfilledwhenstateshavethesamerelativeprobability TheCACTUSarrayconsistsof28collimated5”×5”NaI(Tl) to be populated by the two processes, since γ-branching ra- γ detectorswithatotalefficiencyof15.2%atE =1.33MeV. tios are properties of the levels themselves. If the excitation γ Thesingles-protonspectrumandprotonsincoincidencewith binscontainmanylevels,itislikelytofindthesameγ-energy γ-raysareshowninFig.1. distributionfromthissetoflevelsindependentofthetypeof In total, 110 million coincidence events were collected in population. However, the assumption is more problematic if oneweekwithabeamcurrentof1.5nA.Usingreactionkine- the decayinvolves only a few(but not one) levelswithin the matics,themeasuredprotonenergywastransformedintoex- energybin. citation energy of the residual nucleus. In this way, a set of Fermi’sgoldenrulepredictsthatthedecayprobabilitymay γ-rayspectraisassignedtoaspecificinitialexcitationenergy be factorized into the transition matrix element between the E in 46Ti. Furthermore, the γ-ray spectra are corrected for initialandfinalstates,andthedensityatthefinalstate[2]: i theknownresponsefunctionsoftheCACTUSarrayfollowing 2π theproceduredescribedinRef.[7].Theunfoldedcoincidence λi→f = |(cid:104)f|H(cid:48)|i(cid:105)|2ρf. (1) h¯ matrix(E,E )of46TiisshowninFig.2. i γ Thecoincidencematrixdisplaysverticallinesthatrepresent Realizing that the first generation γ-ray spectra P(Ei,Eγ) yrast transitions from the last steps in the γ-cascades. How- are proportional to the decay probability from Ei → Ef = ever, there are also clear diagonal lines where the γ energy Ei−Eγ,i.e.λi→f,wemaywritetheequivalentexpressionof matchesthedirectdecaytothegroundstate(E =E )andto Eq.(1)as: i γ the first and second excited states at 889 keV (2+) and 2010 P(E,E )∝T ρ , (2) keV (4+), respectively. These γ-rays are primary transitions i γ i→f f in the γ-cascades. By studying the energy distribution of all where T is the γ-ray transmission coefficient, and ρ = i→f f primary γ-rays originating from various excitation energies, ρ(E −E )istheleveldensityattheexcitationenergyE af- i γ f 3 tertheprimaryγ-rayemission.Thisexpressiondoesnotallow Todemonstratehowwelltheprocedureworks,wecompare ustoextractsimultaneouslyT andρ fromtheexperimen- inFig.3forsomeinitialexcitationenergiesE theexperimen- i→f i tal P(E,E ) matrix. To do that, either one of the factorial talfirst-generationspectraPwiththeonesobtainedbymulti- i γ functionsmustbeknown, orsomerestrictionshavetobein- plying the extracted T and ρ functions. The agreement be- troduced. According to the Brink hypothesis [9], the γ-ray tween calculated and experimental first-generation spectra is transmission coefficient is independent of excitation energy; excellentfordecayfromhigherexcitations;howeverthereare onlythetransitionalenergyE playsarole. Thus,wereplace locallystrongdeviationswherethecalculatedspectrafallout- γ T withT(E ),giving sideoftheexperimentalerrorbarsforpopulationsoflowerex- i→f γ citationsenergies,asseenintheE =5.6and6.4MeVgates. P(E,E )∝T(E )ρ , (3) i i γ γ f ThesedeviationscouldbetheconsequenceofPorter-Thomas which permits a simultaneous extraction of the two multi- fluctuations [11], which will be further discussed in Sec. IV. plicativefunctions. WethenfitaboutN2/2datapointsofthe The general good agreement holds also for all the other 40 Pmatrixwith2N freeparameters. Aleast χ2 fitisthenpos- spectra (not shown) included in the global fit with the same sible,sinceitismanymoredatapointsthanfitparameters;in T(E )andρ(E)functions. γ thepresentcasewehave150freeparameterstofit2240data The experimental statistical errors are very small as seen points. in Fig. 3. Thus, the deviations are due to other sources of At low excitation energy, the γ decay is highly dependent errors. For example for E =6.4 MeV, the T ·ρ prediction i ontheindividualinitialandfinalstate;therefore,wehaveex- overestimatesaroundE =3MeVandunderestimatesaround γ cluded γ-ray spectra originating from excitation energy bins E =5.5 MeV with several standard deviations. Thus, there γ belowEi=5.5MeV. areindicationsthatacommonT andρ functionthatsimulta- ItiswellknownthattheBrinkhypothesisisviolatedwhen neouslyfitstheP(E,E )matrix,couldnotbefound.Thesys- i γ hightemperaturesand/orspinsareinvolved,seeRef.[10]and tematicerrorsbehindthesedeviationscouldbeduetoseveral referencestherein. However,inthepresentOsloexperiment, factorsasexperimentalshortcomings,assumptionsbehindthe thetemperaturereachedislow(T ∼1.5MeV)andisassumed Oslo method, the Brink hypothesis [9] and, most probable, toberatherconstant. Thedependencyonspinisofminorim- Porter-Thomasfluctuations. Keepingallthesepossibilitiesin portance.Themeasuredratiosoftheγfeedingintotheground mind,theresultsofFig.3areverygratifying. band indicate a low spin window of I ∼0−6h¯. At excita- There exist infinitely many T and ρ functions making tionenergyE∼8MeVtheratiosare57:100:9forthe2+,4+ identicalfitstothedata[5]astheexamplesshowninFig.3. and6+ states,andatE ∼10MeVtheyare55:100:10,which Thesefunctionscanbegeneratedbythetransformations areequalwithintheerrorbarsforextractingtheseratios. Of course,atlowexcitationenergythespindistributionfluctuates ρ˜(Ei−Eγ) = Aexp[α(Ei−Eγ)]ρ(Ei−Eγ), (4) due to a few levels (and spins) present within each 118 keV T˜(E ) = Bexp(αE )T(E ). (5) γ γ γ excitationbin. Inprinciple,theBrinkhypothesisassumedinexpression(3) Inthefollowing,wewilltrytodeterminetheparametersA,α, could bias the analysis, so that the Oslo method in the next andB. Thisinformationisnotavailablefromourexperiment turn validates the Brink hypothesis. This issue will be ad- andhastobedeterminedfromotherexperimentalresults. dressed in Sec. IV, where we find one common level density First, the level density at high excitation energy is nor- (according to Fermi’s golden rule), which in turn results in malized to the level density at the neutron separation energy oneuniversalRSFinthequasi-continuumof46Ti. ρ(S ). This data point is calculated from neutron resonance n spacingsD (see,e.g.,Ref.[12])withaspindistributiongiven 0 by[13] III. LEVELDENSITYANDRADIATIVESTRENGTH FUNCTION g(E,I)(cid:39) 2I+1exp(cid:2)−(I+1/2)2/2σ2(cid:3), (6) 2σ2 In our first investigations, we rely on the Brink hypothe- whereE isexcitationenergyandIisspin. sis from the expression (3) and factorize the first-generation Thereexistsnoneutronresonancedatafor46Ti. Wethere- γ-matrix P(E,E ) into one transmission coefficient T(E ) i γ γ foreestimateρ(S )fromtheparameterizationsofvonEgidy n andoneleveldensityρ(E). Sincethedecaybetweenstatesat andBucurescu[14]usingtheback-shiftedFermigas(BSFG) lowexcitationenergycannotbetreatedwithinastatisticalap- model,whichreads proach,acutofthematrixwithE >1.8MeVand5.5MeV γ √ <Ei <10.0 MeV was used to exclude clear non-statistical exp(2 aU) decay routes1. The least χ2 fitting of the two multiplicative ρBSFG(E)=η √ , (7) 12 2a1/4U5/4σ functionsfollowstheiterativeprocedureofRef.[5]. whereaistheleveldensityparameter,U =E−E1isthein- trinsic excitation energy, and E1 is the back-shift energy pa- rameter. Thespincut-offparameterσ isgivenby[14] 1ThelowerexcitationcutconcernsonlytheinitialexcitationenergyEi;one √ stillneedsγ-spectraoriginatingfromexcitationregionsdowntotheground σ2=0.0146A5/31+ 1+4aU, (8) stateinordertosubtracthigher-ordergenerationsofγ-rays. 2a 4 0.1 V e k E = 5.6 MeV V E = 6.4 MeV V E = 7.2 MeV 8 0.08 i ke i ke i y / 11 0.06 y / 118 y / 118 bilit 0.04 abilit abilit Proba 0.02 Prob Prob 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 V 0.1 Eg (MeV) Eg (MeV) Eg (MeV) e V V k E = 8.0 MeVe E = 8.9 MeV e E = 9.7 MeV y / 118 00..0068 i y / 118 k i y / 118 k i abilit 0.04 babilit babilit b o o Pro 0.02 Pr Pr 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 Eg (MeV) Eg (MeV) Eg (MeV) FIG.3:(Coloronline)Comparisonofexperimentalfirst-generationspectra(squares)andtheonesobtainedfrommultiplyingtheextractedT andρfunctions(redline).TheinitialexcitationenergybinsEiare118keVbroad.Theerrorbarsrepresenttheexperimentalstatisticalerrors. Abeingthenuclearmassnumber. [18] is shown in Fig. 5 for comparison (see triangle point at Figure 4 shows the extracted total level densities for tita- 15.5MeV). niumisotopeswithknownresonancespacingsD0atSn(filled Oneshouldstressthattheleveldensityfoundfromtheex- triangles). The resonance spacings for (cid:96)=0 neutrons only perimentisbasedonthespinandparitylevelspopulatedinthe givetheleveldensitiesforoneortwospinsandonlyonepar- (p,p(cid:48))reaction.Thus,thenormalizationtothetotallevelden- ity.Inordertoextracttheleveldensityforallspinandparities, sity described above, rests on the assumption that the struc- weuseEq.(6)andassumeequallymanypositiveandnegative tureoftheleveldensityremainsapproximatelythesameifall paritystatesatSn. Thisissupportedbycombinatorialquasi- spinsandparitiesareincluded. Thisassumptionisreasonable particle models [15–17], where the numbers of positive and fulfilled according to Ref. [16], where the level density for negativeparitystatesatSnarepredictedtobethesame. spinwindowsof2−6h¯ and0−30h¯ havebeencalculatedfor The points connected with lines are based on the semi- 46Ti within a combinatorial quasiparticle model [17]. From empirical estimate of von Egidy and Bucurescu [14] with a these estimates, our measurement includes 70−80% of the common scaling of η =0.5 in order to match qualitatively totalleveldensityandtheleveldensityfinestructuresforthe theexperimentalρ(S )points. Theestimatedvaluefor46Tiis twospinwindowsareverysimilar. n ρ =(4650±1000)MeV−1 atSn=13.189MeV(seeFig.4). The measured level density describes nicely the known The error bar chosen reflects roughly the general deviation leveldensityuptoaround4MeVofexcitationenergy.Theex- betweentheglobalestimatesandthepointsderivedfromneu- perimentalresolutionofρ isabout0.3MeVatlowexcitation tronresonancedata. energy,asseenforthe2+ stateat889keV.Ataround3MeV, Now the scaling (A) and slope (α) parameters of the level weseeanabruptincreaseinleveldensityduetothebreaking density can be determined as shown in Fig. 5. The normal- of proton and/or neutron pairs coupled in time-reversed or- izationoftheleveldensityisfittedtotheknownleveldensity bitals(Cooperpairs[19]).Thisresultsin∼10timesmorelev- around 3.5 MeV of excitation energy, and to the extrapola- els,makingitdifficulttodeterminetheleveldensityathigher tionfromρ(Sn)usingtheBSFGmodelwithparameterssum- excitationenergieswithconventionalspectroscopicmethods. marized in Table I. By choosing other ρ(Sn) values (within ItremainstodeterminethescalingparameterBofthetrans- the assumed uncertainty of ±1000 MeV−1), the logarithmi- mission coefficient T(E ). Here we use the radiative width γ cal slope of the ρ and T will change accordingly, as the α- (cid:104)Γ (cid:105) at S assuming that the γ-decay is dominated by dipole γ n parameter of Eqs. (4, 5) has to be adjusted. The ρ curve is transitions. ForinitialspinI andparityπ, thewidthisgiven wellfixedat∼3.5MeVandwillrotatearoundthispointwith by[20] different choices of α. Level densities in the 14−19 MeV excitation region of 46Ti have been measured from Ericson 1 (cid:90) Sn flthuectvuaalutieosnsre,psoereteRdebf.y[t1h8e]vaanrdioruesfeerxepnecreims ethnetarelignr.ouHposwdeivffeerr, (cid:104)Γγ(cid:105)= 2πρ(Sn,I,π)∑If 0 dEγBT(Eγ) within a factor of ten. The measurement of the Ohio group ×ρ(S −E ,I ), (9) n γ f 5 Calculated level density Present experiment Level density from neutron res. data 104 Known levels Back-shifted Fermi gas Estimated level density From neutron res. data From Ericson fluctuation data 1) 104 1) -V -V Me Me103 (Sn E) ( y at 47Ti 45Ti 48Ti 46Ti r (y nsit 103 49Ti nsit102 de 50Ti de el el ev 51Ti ev L L 10 52Ti 53Ti 102 1 6 7 8 9 10 11 12 13 14 0 2 4 6 8 10 12 14 Neutron separation energy S (MeV) Excitation energy E (MeV) n FIG.4:Deducedtotalρ(Sn)fromneutronresonancespacings(trian- FIG.5:Normalizationofthenuclearleveldensity(filledsquares)of gles).Thedatapointfor46Ti(square)isestimatedbyextrapolations 46Ti. Atlowexcitationenergies, thedataarenormalized(between fromtheBSFGmodelwithglobalparameterizationofvonEgidyand thearrows)toknowndiscretelevels(solidline).Athigherexcitation Bucurescu[14](cirleswithlinestoguidetheeye). energies,thedataarenormalizedtotheBSFGleveldensity(dashed line)goingthroughthepointρ(Sn)(opensquare),whichisestimated from the systematics of Fig. 4. For comparison a data point [18] obtainedfromEricsonfluctuationsareshown(blacktriangle). wherethesummationandintegrationrunoverallfinallevels withspinI thatareaccessiblebyγ radiationwithenergyE f γ andmultipolarityE1orM1. Furtherdetailsonthenormaliza- tionprocedurearefoundinRefs.[5,21]. ties in the value of ρ at Sn will change the slope of the RSF, Sincethereexistsnoneutronresonancedata,weagainhave and thus also the degree of low-energy enhancement. How- to rely on systematics from other isotopes. From Fig. 6, we ever,thelinesofFig.7showthattheenhancementisnotvery estimate an average γ-width of (cid:104)Γγ(cid:105)=(1200±500) meV at sensitivetoreasonablechoicesofthevalueρ(Sn). S . The large uncertainty in (cid:104)Γ (cid:105) gives an absolute normal- Such or similar enhancement has been seen in several n γ izationofT(E )andtheRSFwithinabout±50%. However, lightnucleiwithmassA<100, seeRef.[24]andreferences γ thisuncertaintydoesnotinfluencetheenergydependence. therein. Thereisstillnotheoreticalexplanationforthisvery The deduced RSF for dipole radiation can be calculated interestingphenomenon. fromthenormalizedtransmissioncoefficientT(E )by[22] γ 1 T(Eγ) TABLE I: Parameters used for the extraction of level density and f(Eγ)= 2π E3 . (10) radiativestrengthfunctionin46Ti. γ ThenormalizedRSFisshowninFig.7. Forcomparison,the Sn a E1 σ ρ(Sn) (cid:104)Γγ(Sn)(cid:105) (MeV) (MeV−1) (MeV) (MeV−1) (meV) GEDR data from Ref. [23] are also shown, which have been translatedfromphotoneutroncrosssectionσ toRSFby[22] 13.189 4.7 -1.0 4.0 4650(1000) 1200(500) 1 σ(Eγ) f(E )= . (11) γ 3π2h¯2c2 Eγ Unfortunately, there is a large energy gap between our data IV. FERMI’SGOLDENRULEANDBRINKHYPOTHESIS ending at a E =10 MeV and the GEDR data that start at γ 14MeV. According to Fermi’s golden rule, it is possible to factor- Our data on the RSF display a minimum near 4−6 MeV ize out the level density from the γ-decay probability. Since and some structures at lower γ-ray energies. The uncertain- theleveldensityisauniquepropertyofthenucleus,thesame 6 Neutron resonance data Present experiment 3500 High r (Sn) Estimated Low r (Sn) (g ,abs) resonance data 3000 3) -V e M meV) 2500 49Ti 47Ti on (10-7 ( 2000 48Ti 46Ti cti æ g 51Ti 50Ti un GÆ 1500 h f t g n 1000 e r t s e 10-8 500 v ti a 0 di 6 7 8 9 10 11 12 13 14 Ra Neutron separation energy S (MeV) n FIG.6: Experimentalaverageγ-width(cid:104)Γγ(cid:105)fromneutronresonance 0 2 4 6 8 10 12 14 16 18 20 data(triangles)[22].Onlyaroughestimatefor46Ticanbeachieved g -ray energy E (MeV) g (square). FIG.7: (Coloronline)Experimentalradiativestrengthfunctionfor 46Ti (squares). The RSFs assuming high (5650 MeV−1) and low extractedleveldensityisexpectedfromthedecayprobability (3650MeV−1)leveldensityatSn arealsoshown. Forcomparison deduced at different excitation energy regions within the ex- theGEDRdatafromthe(γ,abs)reaction[23]areshown(triangles). perimental restrictions, in particular the energy resolution of CACTUS. In order to see if the Oslo method gives a unique level density, we have divided the data set into three statis- finedby tically independent initial excitation-energy regions, namely Ei=5.5−7.0MeV,7.0−8.5MeVand8.5−10.0MeV,and (cid:82)EidE T(E )ρ(E −E ) applied the same methodology as described in Sec. III. The N (E)= 0 γ γ i γ . (13) results shown in Fig. 8 are very satisfactory. The different i (cid:82)0EidEγP(Ei,Eγ) datasetsgiveapproximatelythesameleveldensity. Thus,the The degree of correctness of the approximation (12) is typi- disentanglementofleveldensityandtransmissioncoefficient callyillustratedbythefitsinFig.3. fromγ-particlecoincidencesseemstoworkverywellaccord- Inthefollowing,wewillinvestigatethedependencyofthe ingtoEq.(2). deduced RSF on initial and final excitation energy. If the Thefactthatwemeasureapproximatelythesamelevelden- Brinkhypothesisisvalid,thereexiststhesameRSFforallex- sity function for primary γ-ray spectra taken at different ex- citationenergiesinthisnucleus. Wewillcallittheuniversal citation regions indicates that the RSF depends only on γ- RSF.InrealitythePorter-Thomasfluctuationsinvolvedinflu- ray energy and not on excitation energy. This seems to in- encetheRSFobtainedfromdifferentexcitationregions. We dicate the validity of Brink hypothesis, which will be tested willusethetermdeducedRSFinthefollowingforthequan- morethoroughlyinthefollowing. Inprinciple,thetestcould tityobtainedfromexperimentaldata. ThededucedRSFsare be performed by dividing the data set into even more initial expected to fluctuate around the universal RSF and the fluc- excitation-energy regions. However, the statistics of the ex- tuations are expected to be stronger if the number of transi- periment does not permit such an approach, and a different tionsusedinthedeterminationofthededucedRSFissmaller. approachhasbeenused. Thus, the deduced RSFs extracted from data sets involving By accepting the level density obtained with the global fit initialandfinalregionsofhighleveldensityshouldbemuch ofallrelevantdata(seelowestcurveinFig.8),wemayfurther closer to the universal RSF than the RSFs deduced from re- investigatethetransmissioncoefficientindetail,andthusthe gionsoflowleveldensity. validityoftheBrinkhypothesis. Wefirstadoptthesolutions T andρ fromSec.IIIandwrite Since there exists only one unique level density, we con- structthecounterparttoEq.(12)inthecasethatthetransmis- N (E)P(E,E )≈T(E )ρ(E −E ). (12) sioncoefficientdependsontheinitialexcitationenergy: i i γ γ i γ Thenormalizationfactorforeachinitialexcitationbinisde- N (cid:48)(E)P(E,E )≈T(E ,E)ρ(E −E ), (14) i i γ γ i i γ 7 -3)eV10-8 FPi/tr r · T Ei = 5.5-7.0 MeV M 104 SF ( R 5.5-7.0 MeV 10-9 7.0-8.5 MeV 1) x27 8.5-10.0 MeV 0 2 4 6E = 7.0-88.5 MeV10 -MeV103 x9 5.5-10.0 MeV -3)eV10-8 i ( M ry F ( sit x3 RS n102 e 10-9 d x1 el 0 2 4 6E = 8.5-810.0 Me1V0 ev 3) i L 10 -MeV10-8 F ( S R 10-9 1 0 2 4 6 8 10 E = 5.5-10.0 MeV 3) i 0 2 4 6 8 10 -eV10-8 Excitation energy E (MeV) M F ( S R FIG. 8: Level density extracted from statistically independent data 10-9 sets, taken from various initial excitation energy bins Ei (the three 0 2 4 6 8 10 upper curves). The lower curve is the result for the whole energy Eg (MeV) regionandisidenticaltotheoneofFig.5. FIG.9:(Coloronline)Gamma-raystrengthfunctionsextractedfrom various initial excitation bins Ei. The data points of the three upper deduced RSFs are from statistically independent data sets. whereN (cid:48) isdeterminedanalogouslytoEq.(13). Weexpect The data points in the lower panel are identical with the RSF of thatT(E,E )fluctuatesontheaveragearoundT(E ).Thus, Fig.7. TheRSFsdisplayedasredlines,areevaluatedfromthera- i γ γ itisreasonabletoexpectthatN (cid:48)≈N ,whichgivesatrans- tio P(Ei,Eγ)/ρ(Ef) (see text). The resemblance between the two methods confirms that the level density is common for the various missioncoefficientof: excitationregions,inaccordancewithFermi’sgoldenrule. P(E,E ) T(E,E )≈N (E) i γ . (15) i γ i ρ(E −E ) i γ Similarly,thetransmissioncoefficientasafunctionofthefinal (15). Sincetheapproximation(16)isasimpletransformation excitationenergyE =E −E isgivenby f i γ usingE =E −E ,wemayalsoinvestigatethedependencies f i γ oftheRSFonfinalexcitationenergyE . P(E +E ,E ) f T(Ef,Eγ)≈N (Ef+Eγ) fρ(E γ) γ . (16) In Figs. 10 and 11, the RSFs f(Ei,Eγ) and f(Ef,Eγ) are f shown for eight excitation regions. For all these deduced Thevalidityoftheapproximations(14)and(15)isdemon- RSFs, we use one common level density in the evaluation strated in Fig. 9 by comparing the deduced RSF from this of the approximations (15) and (16). The data points of the approximation (lines) with the independent fits of T and ρ experimental P matrix cover only a certain region in Ei and (datapoints). TheRSFsdeterminedforthewholeenergyre- Eγ,makingrestrictionsonthededucedRSFs. Thus, f(Ei,Eγ) gion 5.5−10 MeV are very similar, especially for low Eγ, is limited to 5.5 MeV <Ei <Sn and 1.8 MeV <Eγ <Ei. as shown in the lower panels. Also the similarity in the de- The limits for f(Ef,Eγ) are 0 < Ef < Sn−1.8 MeV and tailed structures of the two methods is recognized, although 1.8MeV<Eγ <Sn−Ef. Foraconsistencycheck, wehave some differences are present. The deviations are largest for testedthattheaverageRSFforallEf energiesequalstheone thehighγ-energypartoftheRSFspopulatingthelowest0+, forallEienergies(notshownhere). 2+, and 4+ states, where large Porter-Thomas fluctuations Figure 10 shows that the deduced RSF changes as a func- are expected (these fluctuations are not included in the error tionofE,whenlowexcitationenergyispopulatedaftertheγ- i bars). However,theoverallgoodresemblanceencouragesus emission. Thelower,leftpanel,wheretwoconsecutiveRSFs to study the detailed evolution of the RSFs as a function of are plotted together, illustrates this. Here, the bumps seen at initial excitation energies using the approximations (14) and high γ-ray energies are the artifacts of the decay to specific 8 E = 5.4-5.9 MeV E = 6.0-6.5 MeV i i 10-8 10-8 0 2 4 6 8 10 0 2 4 6 8 10 E = 6.6-7.1 MeEgV (MeV) E = 7.2-7.7 MeEgV (MeV) i i 10-8 10-8 0 2 4 6 8 10 0 2 4 6 8 10 -3)V Ei = 7.8-8.3 MeEgV (MeV) Ei = 8.4-8.9 MeEgV (MeV) e F (M 10-8 10-8 S R 0 2 4 6 8 10 0 2 4 6 8 10 Ei = 9.0-9.4 MEge (VMeV) Ei = 9.6-10.0 MEge (MVeV) 10-8 10-8 0 2 4 6 8 10 0 2 4 6 8 10 Two last RSFsEg (MeV) All RSFs Eg (MeV) 10-8 10-8 0 2 4 6 8 10 0 2 4 6 8 10 Eg (MeV) Eg (MeV) FIG. 10: (Color online) Deduced RSFs from various initial excitation bins Ei. The RSFs are evaluated from the ratio P(Ei,Eγ)/ρ(Ef) as describedinthetext. isolated levels below 3 MeV of excitation. This is also the andthechangesbetweenthevariousdeducedRSFsarelarge reason why apparently the fluctuations are typically a factor duetoPorter-Thomasfluctuations. of 2−3 in the panel where all deduced RSFs are plotted to- InordertoshowthesimilarityofthededucedRSFsinthe gether (lower, right panel). In the plot of all deduced RSFs, case of strongly suppressed Porter-Thomas fluctuations, we we see a minimum at about 4−6 MeV and some interest- havecomparedthetwouppermostexcitationenergygatesE i ingstructuresatlowγ-rayenergies. Thesestructuresandthe and E in the lower, left panels of Figs. 10 and 11, respec- f minimumareindependentoftheuncertaintyinthelog-slope tively. The deduced RSFs are here extracted for γ decay be- oftheleveldensity,asshowninFig.7. tween states in quasi-continuum, except for the data points Thevarious f(Ef,Eγ)plotsinFig.11aredifficulttocom- with Eγ >7 MeV in Fig. 10 where the final excitation en- pare due to different limits appearing at both low and high ergyis<3MeV.ThededucedRSFsextractedfromthequasi- γ-energies for the various E regions. For example, the first continuumregionbehavesimilartothededucedRSFfromthe f three spectra do not reveal the region of low γ-energy en- all-overfitdisplayedinFig.7. hancement because Eγ > 5.5MeV−Ef > 3.7 MeV. These The good agreement between the deduced RSFs at higher spectrarepresentthedecaytothe0+,2+and4+groundband energies is consistent with the expectation of suppressed states,respectively,wheretheexperimentalenergyresolution Porter-Thomas fluctuations due to more initial and final lev- makessomeoverlapbetweenthesestates. Ingeneralthevar- elsintheevaluationoftheγ strength. Theseresultsstrongly ious spectra show strong fluctuations in the deduced RSFs indicatethattheconceptofanRSF,whichisindependenton when the γ emission ends up at low excitation energy, typi- excitationenergy,isvalidalreadyatrelativelylowexcitation cally Ef <3 MeV. The panel with all deduced RSFs plotted energies in 46Ti. At the same time, the results give us con- together (lower, right panel) shows approximately the same fidence that Oslo method works reasonably. The differences scatteringofdatapointsasinFig.10. indeducedRSFsfromlowerenergiesindicatethatthePorter- It is thus clear that the experimentally deduced RSFs for Thomasfluctuationsaresopoorlysuppressedthatitisdifficult which states below 3 MeV of excitation energy are involved topredicttheshapeoftheuniversalRSF.Thisisnotverysur- in the γ decay are very different. Figure 5 shows that this prising and the differences in the deduced RSFs seem to be excitationregioncoincideswitharegionoffewandwellsep- consistentwiththeexpectedfluctuations. aratedlow-lyinglevelswithspecificstructures. Thebumpsin In order to display the small differences in the deduced thededucedRSFsarespecifictothelowenergylevelscheme, RSFs obtained from regions ofhigher level density, we have 9 E = 0.0-0.6 MeV E = 0.6-1.2 MeV f f 10-8 10-8 0 2 4 6 8 10 0 2 4 6 8 10 E = 1.2-1.8 MEeg V(MeV) E = 1.8-2.4 MeEgV (MeV) f f 10-8 10-8 0 2 4 6 8 10 0 2 4 6 8 10 -3)V Ef = 2.4-3.0 MEeg V(MeV) Ef = 3.0-3.6 MeEgV (MeV) e F (M 10-8 10-8 S R 0 2 4 6 8 10 0 2 4 6 8 10 Ef = 3.6-4.2 MEge (VMeV) Ef = 4.2-4.8 MeEgV (MeV) 10-8 10-8 0 2 4 6 8 10 0 2 4 6 8 10 Two last RSFsEg (MeV) All RSFs Eg (MeV) 10-8 10-8 0 2 4 6 8 10 0 2 4 6 8 10 Eg (MeV) Eg (MeV) FIG. 11: (Color online) Deduced RSFs populating various final excitation bins E . The RSFs are evaluated from the ratio P(E + f f Eγ,Eγ)/ρ(Ef) as described in the text. It should be noted that there are no final states at Ef =1.2−1.8 MeV, however the experimental resolution(seeFig.5)isresponsibleforincludingthe2+and4+groundbandstatesinthisgate. taken the four highest gates shown in Fig. 10 and only con- difficulttodeterminesincetheexperimentalstatisticalerrors sideredγ energiesupto5.1MeV.Thus,thesestatisticallyin- (seeerrorbars)arealsoofthesameorder. dependentRSFsareevaluatedinquasi-continuumwithinitial andfinalexcitationenergiesofroughlyE =8−10MeVand i E =3−7 MeV, respectively. The deduced RSFs are pre- f V. CONCLUSIONS sentedintheupperpanelofFig.12. Forthisdatasetweevaluatedtherelativedeviationsby The level density and radiative strength function for 46Ti fij−(cid:104)fi(cid:105) have been determined using the Oslo method. Similar level r = , (17) ij (cid:104)f(cid:105) densityfunctionshavebeenextractedfromstatisticallyinde- i pendentdatasetscoveringdifferentexcitationenergies. This where the index i represents the γ energy and j is the initial gives confidence to the Oslo method, since the disentangle- excitation energy. The average strength at each γ energy is mentoftheleveldensitybyFermi’sgoldenrulepredictsone estimatedfromthefourindividualRFSs andonlyoneuniqueleveldensity,independentofthedataset. 1 ThededucedRSFdisplaysanenhancementatlowγ-rayen- (cid:104)f(cid:105)= ∑f . (18) i ij n ergywhereweseeabumparound3MeVandanotherstruc- j j tureatenergiesnear2MeV.Asimilarenhancementhasbeen InthelowerpanelofFig.12therijvaluesareplottedshowing seen in several other light mass nuclei and is still not ac- therelativefluctuationsfromthemeanvalueateachγ energy. countedforbypresenttheories. The average ratio for all data points (ni =28 and nj =4) is AmethodtostudytheevolutionofthededucedRSFsasa takenas functionofinitialandfinalenergyregionshasbeendescribed. 1 The deduced RSFs are found to display strong variations for r= ∑|r |, (19) nn ij different initial and final excitation energies if transitions to i j ij thelowestexcitationsareinvolved. Thereasonfortheviolent givingr∼6%. ThedifferencesinthededucedRSFscaneas- fluctuationsofafactorof2−3isthatonlyafewisolatedlev- ily be interpreted as remnants of the Porter-Thomas fluctua- els are present at low excitation energies with E <3 MeV. f tions. However, a quantitative estimate of the fluctuations is The differences in the RSFs obtained from a few number of 10 · 10-9 transitions,thatcanbeexplainedasaconsequenceofPorter- 16 Thomas fluctuations of individual intensities, show that this E = 7.8-8.3 MeV Ei = 8.4-8.9 MeV (a) energyregioncannotbeusedfordeterminationoftheuniver- 14 i E = 9.0-9.4 MeV salRSF.Eventhough,thededucedRSFsbasedonarestricted i E = 9.6-10.0 MeV 3) 12 i numberoftransitionsstillindicatethatthedecayisgoverned -V byauniversalRSF. e 10 M 9 -0 8 1 ( F 6 However, the present work shows that it is possible to get S R 4 morepreciseexperimentalinformationontheuniversalRSF. By imposing restrictions on the initial and final excitation 2 energies, the RSFs for the decay between states in quasi- 0 continuumcanbeextracted(i.e.forEf >∼3MeV).Theresults from this selected data set show that the decay is consistent ) 20 Eg (MeV) (b) withanRSFwhichisidependentofexcitationenergywithin % ( lessthan∼6%alreadyattheserelativelylowexcitations. F S 10 R n e i 0 Insummary, theobservationofalmostidenticallevelden- c n e -10 sities and RSFs extracted from different data sets in quasi- r e continuum, indicates that the Oslo method works well. Pro- f Dif -20 videdthatweusedatafromthequasi-continuum,auniversal RSF in the light mass region of the 46Ti nucleus can be ex- tracted. 2 2.5 3 3.5 4 4.5 5 Acknowledgments 2 2.5 3 E (3M.5eV) 4 4.5 5 g FIG.12: (Coloronline)(a)Radiativestrengthfunctionsforγ transi- tionsbetweenstatesinquasi-continuum. Datafromthefourhighest excitationenergygatesofFigs.10havebeenchosen. (b)Ratiosof TheauthorswishtothankE.A.OlsenandJ.Wikneforex- thedeviationfromtheaverageRSFateachγenergy,seetext. cellentexperimentalconditions. Thisworkwassupportedby theResearchCouncilofNorway(NFR). [1] P.A.M.Dirac,Proc.R.Soc.LondonA114,243-265(1927). Phys.Rev.C79,024316(2009). [2] E. Fermi, Nuclear Physics (University of Chicago Press, [13] A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 Chicago,1950). (1965). [3] DataextractedusingtheNNDCOn-LineDataServicefromthe [14] T. von Egidy and D. Bucurescu, Phys. Rev. C 72, 044311 ENSDFdatabase.[http://www.nndcnbnl.gov./ensdf/] (2005);Phys.Rev.C73,049901(E)(2006). [4] S.S.DietrichandB.L.Berman,At.DataNucl.DataTables38, [15] S. Goriely, S. Hilaire, and A.J. Koning,, Phys. Rev. C 78, 199(1988). 064307(2008). [5] A.Schiller,L.Bergholt,M.Guttormsen,E.Melby,J.Rekstad, [16] Kristine Wikan, Master thesis in Physics, De- S.Siem,Nucl.Instrum.MethodsPhys.Res.A447,498(2000). partment of Physics, University of Oslo, 2010, [6] M.Guttormsen,A.Atac,G.Løvhøiden,S.Messelt,T.Ramsøy, http://www.duo.uio.no/publ/fysikk/2010/105030/Master.pdf J.Rekstad,T.F.Thorsteinsen,T.S.Tveter,andZ.Zelazny,Phys. [17] N.U.H.Syed,A.C.Larsen,A.u¨rger,M.Guttormsen,S.Haris- Scr.T32,54(1990). sopulos, M. Kmiecik, T. Konstantinopoulos, M. Krtic˘ka, A. [7] M.Guttormsen, T.S.Tveter, L.Bergholt, F.Ingebretsen, and Lagoyannis, T.Lo¨nnroth, K.Mazurek4, M.Norby, H.T.Ny- J. Rekstad, Nucl. Instrum. Methods Phys. Res. A 374, 371 hus, G.Perdikakis, S.Siem, andA.Spyrou, Phys.Rev.C80, (1996). 044309(2009). [8] M. Guttormsen, T. Ramsøy, and J. Rekstad, Nucl. Instrum. [18] Merico Salas-Bacci, Steven M. Grimes, Thomas N. Massey, MethodsPhys.Res.A255,518(1987). Yannis Parpottas, Raymond T. Wheller, and James E. Olden- [9] D.M.Brink,Ph.D.thesis,OxfordUniversity,1955. dick,Phys.Rev.C70,024311(2004). [10] A. Schiller and M. Thoennessen, At. Data Nucl. Data Tables [19] J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 93,549(2007). 1175(1957). [11] C.E.PorterandR.G.Thomas,Phys.Rev.104,483(1956). [20] J.KopeckyandM.Uhl,Phys.Rev.C411941(1990). [12] N.U.H. Syed, M. Guttormsen, F. Ingebretsen, A. C. Larsen, [21] A.Voinov, M.Guttormsen, E.Melby, J.Rekstad, A.Schiller, T. Lo¨nnroth, J. Rekstad, A. Schiller, S. Siem, and A. Voinov, andS.Siem,Phys.Rev.C63,044313(2001).