ebook img

Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations PDF

0.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

Femtoscopyof pp collisionsat√s=0.9and7 TeV atthe LHC withtwo-pionBose-Einstein correlations (ALICE) K.Aamodt,1A.AbrahantesQuintana,2D.Adamova´,3A.M.Adare,4M.M.Aggarwal,5G.AglieriRinella,6 A.G.Agocs,7 S.AguilarSalazar,8 Z.Ahammed,9N.Ahmad,10A.AhmadMasoodi,10S.U.Ahn,11,a A.Akindinov,12D.Aleksandrov,13 B.Alessandro,14R.AlfaroMolina,8A.Alici,15,b A.Alkin,16E.Almara´zAvin˜a,8T.Alt,17 V.Altini,18,c S.Altinpinar,19 I.Altsybeev,20C.Andrei,21A.Andronic,19V.Anguelov,22,d C.Anson,23 T.Anticˇic´,24 F.Antinori,25P.Antonioli,26 1 L.Aphecetche,27H.Appelsha¨user,28N.Arbor,29S.Arcelli,15 A.Arend,28N.Armesto,30R.Arnaldi,14 T.Aronsson,4 1 I.C.Arsene,19A.Asryan,20A.Augustinus,6R.Averbeck,19T.C.Awes,31 J.A¨ysto¨,32M.D.Azmi,10M.Bach,17A.Badala`,33 0 Y.W.Baek,11,a S.Bagnasco,14 R.Bailhache,28R.Bala,34,e R.BaldiniFerroli,35 A.Baldisseri,36 A.Baldit,37 J.Ba´n,38 2 R.Barbera,39F.Barile,18 G.G.Barnafo¨ldi,7L.S.Barnby,40V.Barret,37 J.Bartke,41 M.Basile,15 N.Bastid,37 B.Bathen,42 n G.Batigne,27 B.Batyunya,43C.Baumann,28I.G.Bearden,44H.Beck,28 I.Belikov,45 F.Bellini,15 R.Bellwied,46,f a J E.Belmont-Moreno,8 S.Beole,34I.Berceanu,21A.Bercuci,21E.Berdermann,19Y.Berdnikov,47L.Betev,6 A.Bhasin,48 A.K.Bhati,5 L.Bianchi,34 N.Bianchi,49 C.Bianchin,25 J.Bielcˇ´ık,50 J.Bielcˇ´ıkova´,3 A.Bilandzic,51 E.Biolcati,6,g 9 1 A.Blanc,37 F.Blanco,52 F.Blanco,53 D.Blau,13 C.Blume,28 M.Boccioli,6 N.Bock,23 A.Bogdanov,54H.Bøggild,44 M.Bogolyubsky,55L.Boldizsa´r,7 M.Bombara,56C.Bombonati,25J.Book,28H.Borel,36 C.Bortolin,25,h S.Bose,57 x] F.Bossu´,6,g M.Botje,51 S.Bo¨ttger,22 B.Boyer,58P.Braun-Munzinger,19 L.Bravina,59 M.Bregant,60,i T.Breitner,22 e M.Broz,61R.Brun,6E.Bruna,4G.E.Bruno,18D.Budnikov,62H.Buesching,28O.Busch,63 Z.Buthelezi,64D.Caffarri,25 p- X.Cai,65 H.Caines,4 E.CalvoVillar,66 P.Camerini,60 V.CanoaRoman,6,j G.CaraRomeo,26F.Carena,6 W.Carena,6 e F.Carminati,6 A.CasanovaD´ıaz,49 M.Caselle,6 J.CastilloCastellanos,36 V.Catanescu,21C.Cavicchioli,6 P.Cerello,14 h B.Chang,32 S.Chapeland,6J.L.Charvet,36 S.Chattopadhyay,57S.Chattopadhyay,9M.Cherney,67C.Cheshkov,68 [ B.Cheynis,68E.Chiavassa,14 V.ChibanteBarroso,6D.D.Chinellato,69P.Chochula,6M.Chojnacki,70P.Christakoglou,70 1 C.H.Christensen,44P.Christiansen,71T.Chujo,72C.Cicalo,73 L.Cifarelli,15 F.Cindolo,26J.Cleymans,64F.Coccetti,35 v J.-P.Coffin,45 S.Coli,14 G.ConesaBalbastre,49,k Z.ConesadelValle,27,l P.Constantin,63G.Contin,60J.G.Contreras,74 5 T.M.Cormier,46Y.CorralesMorales,34I.Corte´sMaldonado,75P.Cortese,76M.R.Cosentino,69F.Costa,6 M.E.Cotallo,52 6 6 E.Crescio,74 P.Crochet,37E.Cuautle,77 L.Cunqueiro,49G.DErasmo,18A.Dainese,78,m H.H.Dalsgaard,44A.Danu,79 3 D.Das,57 I.Das,57 A.Dash,80 S.Dash,14 S.De,9 A.DeAzevedoMoregula,49G.O.V.deBarros,81 A.DeCaro,82 1. G.deCataldo,83 J.deCuveland,17A.DeFalco,84D.DeGruttola,82N.DeMarco,14S.DePasquale,82R.DeRemigis,14 0 R.deRooij,70 H.Delagrange,27Y.DelgadoMercado,66G.Dellacasa,76,n A.Deloff,85 V.Demanov,62E.De´nes,7 1 A.Deppman,81D.DiBari,18 C.DiGiglio,18 S.DiLiberto,86 A.DiMauro,6 P.DiNezza,49 T.Dietel,42 R.Divia`,6 1 Ø.Djuvsland,1A.Dobrin,46,o T.Dobrowolski,85I.Dom´ınguez,77B.Do¨nigus,19O.Dordic,59O.Driga,27A.K.Dubey,9 : v L.Ducroux,68P.Dupieux,37A.K.DuttaMajumdar,57M.R.DuttaMajumdar,9D.Elia,83 D.Emschermann,42H.Engel,22 i X H.A.Erdal,87 B.Espagnon,58M.Estienne,27 S.Esumi,72 D.Evans,40 S.Evrard,6G.Eyyubova,59C.W.Fabjan,6,p r D.Fabris,88 J.Faivre,29D.Falchieri,15A.Fantoni,49M.Fasel,19 R.Fearick,64A.Fedunov,43D.Fehlker,1V.Fekete,61 a D.Felea,79 G.Feofilov,20 A.Ferna´ndezTe´llez,75 A.Ferretti,34 R.Ferretti,76,c M.A.S.Figueredo,81S.Filchagin,62 R.Fini,83 D.Finogeev,89F.M.Fionda,18E.M.Fiore,18 M.Floris,6 S.Foertsch,64P.Foka,19S.Fokin,13E.Fragiacomo,90 M.Fragkiadakis,91U.Frankenfeld,19U.Fuchs,6F.Furano,6C.Furget,29M.FuscoGirard,82J.J.Gaardhøje,44S.Gadrat,29 M.Gagliardi,34A.Gago,66M.Gallio,34P.Ganoti,91,q C.Garabatos,19R.Gemme,76J.Gerhard,17M.Germain,27C.Geuna,36 A.Gheata,6 M.Gheata,6 B.Ghidini,18P.Ghosh,9M.R.Girard,92G.Giraudo,14P.Giubellino,34,r E.Gladysz-Dziadus,41 P.Gla¨ssel,63 R.Gomez,93L.H.Gonza´lez-Trueba,8P.Gonza´lez-Zamora,52H.Gonza´lezSantos,75S.Gorbunov,17S.Gotovac,94 V.Grabski,8L.K.Graczykowski,92R.Grajcarek,63A.Grelli,70 A.Grigoras,6C.Grigoras,6V.Grigoriev,54A.Grigoryan,95 S.Grigoryan,43B.Grinyov,16N.Grion,90P.Gros,71J.F.Grosse-Oetringhaus,6 J.-Y.Grossiord,68R.Grosso,88F.Guber,89 R.Guernane,29C.GuerraGutierrez,66B.Guerzoni,15K.Gulbrandsen,44H.Gulkanyan,95T.Gunji,96A.Gupta,48R.Gupta,48 H.Gutbrod,19Ø.Haaland,1 C.Hadjidakis,58 M.Haiduc,79 H.Hamagaki,96G.Hamar,7 J.W.Harris,4 M.Hartig,28 D.Hasch,49D.Hasegan,79D.Hatzifotiadou,26A.Hayrapetyan,95,c M.Heide,42M.Heinz,4H.Helstrup,87A.Herghelegiu,21 C.Herna´ndez,19G.HerreraCorral,74N.Herrmann,63K.F.Hetland,87B.Hicks,4 P.T.Hille,4 B.Hippolyte,45T.Horaguchi,72 Y.Hori,96P.Hristov,6I.Hˇrivna´cˇova´,58M.Huang,1S.Huber,19T.J.Humanic,23D.S.Hwang,97R.Ichou,27R.Ilkaev,62 I.Ilkiv,85M.Inaba,72E.Incani,84G.M.Innocenti,34P.G.Innocenti,6M.Ippolitov,13M.Irfan,10C.Ivan,19A.Ivanov,20 M.Ivanov,19V.Ivanov,47A.Jachołkowski,6P.M.Jacobs,98 L.Jancurova´,43S.Jangal,45 M.A.Janik,92 R.Janik,61 S.P.Jayarathna,53,s S.Jena,99 L.Jirden,6 G.T.Jones,40 P.G.Jones,40 P.Jovanovic´,40H.Jung,11W.Jung,11A.Jusko,40 S.Kalcher,17P.Kalinˇa´k,38 M.Kalisky,42T.Kalliokoski,32A.Kalweit,100 R.Kamermans,70,n K.Kanaki,1E.Kang,11 J.H.Kang,101V.Kaplin,54O.Karavichev,89T.Karavicheva,89E.Karpechev,89A.Kazantsev,13U.Kebschull,22R.Keidel,102 2 M.M.Khan,10A.Khanzadeev,47Y.Kharlov,55B.Kileng,87D.J.Kim,32 D.S.Kim,11 D.W.Kim,11H.N.Kim,11J.H.Kim,97 J.S.Kim,11 M.Kim,11 M.Kim,101 S.Kim,97 S.H.Kim,11 S.Kirsch,6,t I.Kisel,22,u S.Kiselev,12 A.Kisiel,6 J.L.Klay,103 J.Klein,63 C.Klein-Bo¨sing,42 M.Kliemant,28 A.Klovning,1A.Kluge,6 M.L.Knichel,19 K.Koch,63 M.K.Ko¨hler,19 R.Kolevatov,59A.Kolojvari,20 V.Kondratiev,20N.Kondratyeva,54A.Konevskih,89E.Kornas´,41 C.KottachchiKankanamgeDon,46R.Kour,40 M.Kowalski,41 S.Kox,29 G.KoyithattaMeethaleveedu,99K.Kozlov,13 J.Kral,32 I.Kra´lik,38 F.Kramer,28I.Kraus,100,v T.Krawutschke,63,w M.Kretz,17 M.Krivda,40,x D.Krumbhorn,63 M.Krus,50 E.Kryshen,47M.Krzewicki,51Y.Kucheriaev,13C.Kuhn,45P.G.Kuijer,51 P.Kurashvili,85A.Kurepin,89 A.B.Kurepin,89A.Kuryakin,62S.Kushpil,3V.Kushpil,3M.J.Kweon,63Y.Kwon,101P.LaRocca,39P.Ladro´ndeGuevara,52,y V.Lafage,58 C.Lara,22 D.T.Larsen,1 C.Lazzeroni,40Y.LeBornec,58 R.Lea,60 K.S.Lee,11 S.C.Lee,11 F.Lefe`vre,27 J.Lehnert,28 L.Leistam,6 M.Lenhardt,27 V.Lenti,83 I.Leo´nMonzo´n,93 H.Leo´nVargas,28P.Le´vai,7 X.Li,104 R.Lietava,40 S.Lindal,59 V.Lindenstruth,22,u C.Lippmann,6,v M.A.Lisa,23 L.Liu,1 V.R.Loggins,46V.Loginov,54 S.Lohn,6D.Lohner,63C.Loizides,98X.Lopez,37M.Lo´pezNoriega,58E.Lo´pezTorres,2 G.Løvhøiden,59X.-G.Lu,63 P.Luettig,28M.Lunardon,25G.Luparello,34L.Luquin,27C.Luzzi,6 K.Ma,65 R.Ma,4 D.M.Madagodahettige-Don,53 A.Maevskaya,89M.Mager,6D.P.Mahapatra,80A.Maire,45 M.Malaev,47I.MaldonadoCervantes,77L.Malinina,43,z D.Mal’Kevich,12P.Malzacher,19A.Mamonov,62L.Manceau,37L.Mangotra,48V.Manko,13F.Manso,37V.Manzari,83 Y.Mao,65,aa J.Maresˇ,105G.V.Margagliotti,60A.Margotti,26A.Mar´ın,19I.Martashvili,106P.Martinengo,6M.I.Mart´ınez,75 A.Mart´ınezDavalos,8 G.Mart´ınezGarc´ıa,27 Y.Martynov,16A.Mas,27 S.Masciocchi,19 M.Masera,34 A.Masoni,73 L.Massacrier,68 M.Mastromarco,83A.Mastroserio,6 Z.L.Matthews,40 A.Matyja,41,i D.Mayani,77G.Mazza,14 M.A.Mazzoni,86F.Meddi,107A.Menchaca-Rocha,8 P.MendezLorenzo,6J.MercadoPe´rez,63 P.Mereu,14Y.Miake,72 J.Midori,108L.Milano,34 J.Milosevic,59,bb A.Mischke,70 D.Mis´kowiec,19,r C.Mitu,79 J.Mlynarz,46B.Mohanty,9 L.Molnar,6L.Montan˜oZetina,74M.Monteno,14E.Montes,52M.Morando,25D.A.MoreiraDeGodoy,81S.Moretto,25 A.Morsch,6V.Muccifora,49E.Mudnic,94H.Mu¨ller,6S.Muhuri,9M.G.Munhoz,81J.Munoz,75L.Musa,6A.Musso,14 B.K.Nandi,99R.Nania,26E.Nappi,83C.Nattrass,106 F.Navach,18S.Navin,40T.K.Nayak,9S.Nazarenko,62G.Nazarov,62 A.Nedosekin,12F.Nendaz,68 J.Newby,109M.Nicassio,18 B.S.Nielsen,44 S.Nikolaev,13 V.Nikolic,24 S.Nikulin,13 V.Nikulin,47B.S.Nilsen,67 M.S.Nilsson,59 F.Noferini,26G.Nooren,70N.Novitzky,32A.Nyanin,13 A.Nyatha,99 C.Nygaard,44J.Nystrand,1H.Obayashi,108A.Ochirov,20H.Oeschler,100S.K.Oh,11 J.Oleniacz,92C.Oppedisano,14 A.OrtizVelasquez,77G.Ortona,6,g A.Oskarsson,71 P.Ostrowski,92 I.Otterlund,71J.Otwinowski,19G.Øvrebekk,1 K.Oyama,63K.Ozawa,96 Y.Pachmayer,63M.Pachr,50F.Padilla,34 P.Pagano,6,cc G.Paic´,77 F.Painke,17C.Pajares,30 S.Pal,36 S.K.Pal,9 A.Palaha,40A.Palmeri,33G.S.Pappalardo,33W.J.Park,19V.Paticchio,83A.Pavlinov,46T.Pawlak,92 T.Peitzmann,70 D.Peresunko,13C.E.Pe´rezLara,51 D.Perini,6 D.Perrino,18W.Peryt,92 A.Pesci,26 V.Peskov,6,dd Y.Pestov,110A.J.Peters,6 V.Petra´cˇek,50 M.Petris,21 P.Petrov,40 M.Petrovici,21 C.Petta,39 S.Piano,90 A.Piccotti,14 M.Pikna,61P.Pillot,27 O.Pinazza,6L.Pinsky,53N.Pitz,28 F.Piuz,6D.B.Piyarathna,46,ee R.Platt,40 M.Płoskon´,98J.Pluta,92 T.Pocheptsov,43,ff S.Pochybova,7P.L.M.Podesta-Lerma,93M.G.Poghosyan,34K.Pola´k,105B.Polichtchouk,55A.Pop,21 V.Posp´ısˇil,50 B.Potukuchi,48S.K.Prasad,46,gg R.Preghenella,35F.Prino,14C.A.Pruneau,46I.Pshenichnov,89G.Puddu,84 A.Pulvirenti,39,c V.Punin,62M.Putisˇ,56 J.Putschke,4 E.Quercigh,6H.Qvigstad,59A.Rachevski,90A.Rademakers,6 O.Rademakers,6S.Radomski,63T.S.Ra¨iha¨,32 J.Rak,32 A.Rakotozafindrabe,36L.Ramello,76 A.Ram´ırezReyes,74 M.Rammler,42R.Raniwala,111 S.Raniwala,111 S.S.Ra¨sa¨nen,32 K.F.Read,106 J.S.Real,29 K.Redlich,85R.Renfordt,28 A.R.Reolon,49A.Reshetin,89F.Rettig,17 J.-P.Revol,6K.Reygers,63H.Ricaud,100L.Riccati,14R.A.Ricci,78M.Richter,1,hh P.Riedler,6 W.Riegler,6 F.Riggi,39 A.Rivetti,14 M.Rodr´ıguezCahuantzi,75D.Rohr,17 D.Ro¨hrich,1 R.Romita,19 F.Ronchetti,49P.Rosinsky´,6P.Rosnet,37S.Rossegger,6A.Rossi,25 F.Roukoutakis,91S.Rousseau,58C.Roy,27,l P.Roy,57 A.J.RubioMontero,52R.Rui,60 I.Rusanov,6 E.Ryabinkin,13A.Rybicki,41 S.Sadovsky,55K.Sˇafarˇ´ık,6 R.Sahoo,25 P.K.Sahu,80P.Saiz,6 S.Sakai,98 D.Sakata,72C.A.Salgado,30T.Samanta,9 S.Sambyal,48V.Samsonov,47L.Sˇa´ndor,38 A.Sandoval,8M.Sano,72S.Sano,96R.Santo,42R.Santoro,83J.Sarkamo,32P.Saturnini,37E.Scapparone,26F.Scarlassara,25 R.P.Scharenberg,112C.Schiaua,21 R.Schicker,63 C.Schmidt,19 H.R.Schmidt,19 S.Schreiner,6S.Schuchmann,28 J.Schukraft,6Y.Schutz,27,cK.Schwarz,19K.Schweda,63G.Scioli,15E.Scomparin,14P.A.Scott,40R.Scott,106G.Segato,25 S.Senyukov,76J.Seo,11 S.Serci,84 E.Serradilla,52 A.Sevcenco,79 G.Shabratova,43R.Shahoyan,6 N.Sharma,5 S.Sharma,48K.Shigaki,108M.Shimomura,72K.Shtejer,2 Y.Sibiriak,13M.Siciliano,34 E.Sicking,6T.Siemiarczuk,85 A.Silenzi,15 D.Silvermyr,31G.Simonetti,6,ii R.Singaraju,9R.Singh,48B.C.Sinha,9 T.Sinha,57 B.Sitar,61 M.Sitta,76 T.B.Skaali,59 K.Skjerdal,1 R.Smakal,50 N.Smirnov,4R.Snellings,51,jj C.Søgaard,44A.Soloviev,55R.Soltz,109 H.Son,97 M.Song,101C.Soos,6 F.Soramel,25M.Spyropoulou-Stassinaki,91B.K.Srivastava,112J.Stachel,63 I.Stan,79 G.Stefanek,85G.Stefanini,6 T.Steinbeck,22,u E.Stenlund,71G.Steyn,64D.Stocco,27 R.Stock,28 M.Stolpovskiy,55 P.Strmen,61A.A.P.Suaide,81M.A.SubietaVa´squez,34T.Sugitate,108C.Suire,58M.Sˇumbera,3T.Susa,24D.Swoboda,6 T.J.M.Symons,98A.SzantodeToledo,81 I.Szarka,61 A.Szostak,1 C.Tagridis,91 J.Takahashi,69J.D.TapiaTakaki,58 3 A.Tauro,6 M.Tavlet,6 G.TejedaMun˜oz,75A.Telesca,6 C.Terrevoli,18J.Tha¨der,19D.Thomas,70 J.H.Thomas,19 R.Tieulent,68 A.R.Timmins,46,f D.Tlusty,50 A.Toia,6 H.Torii,108 L.Toscano,6 F.Tosello,14 T.Traczyk,92 D.Truesdale,23W.H.Trzaska,32 A.Tumkin,62R.Turrisi,88 A.J.Turvey,67T.S.Tveter,59 J.Ulery,28 K.Ullaland,1 A.Uras,84 J.Urba´n,56 G.M.Urciuoli,86 G.L.Usai,84 A.Vacchi,90 M.Vala,43,x L.ValenciaPalomo,58S.Vallero,63 N.vanderKolk,51M.vanLeeuwen,70P.VandeVyvre,6L.Vannucci,78A.Vargas,75R.Varma,99M.Vasileiou,91A.Vasiliev,13 V.Vechernin,20M.Venaruzzo,60E.Vercellin,34S.Vergara,75R.Vernet,113M.Verweij,70 L.Vickovic,94G.Viesti,25 O.Vikhlyantsev,62Z.Vilakazi,64O.VillalobosBaillie,40 A.Vinogradov,13L.Vinogradov,20Y.Vinogradov,62T.Virgili,82 Y.P.Viyogi,9 A.Vodopyanov,43K.Voloshin,12S.Voloshin,46 G.Volpe,18 B.vonHaller,6 D.Vranic,19J.Vrla´kova´,56 B.Vulpescu,37B.Wagner,1 V.Wagner,50R.Wan,45,kk D.Wang,65 Y.Wang,63 Y.Wang,65 K.Watanabe,72 J.P.Wessels,42 U.Westerhoff,42J.Wiechula,63J.Wikne,59 M.Wilde,42 A.Wilk,42 G.Wilk,85 M.C.S.Williams,26 B.Windelband,63 H.Yang,36S.Yasnopolskiy,13J.Yi,114 Z.Yin,65 H.Yokoyama,72I.-K.Yoo,114X.Yuan,65I.Yushmanov,13E.Zabrodin,59 C.Zampolli,6S.Zaporozhets,43A.Zarochentsev,20P.Za´vada,105H.Zbroszczyk,92P.Zelnicek,22A.Zenin,55I.Zgura,79 M.Zhalov,47X.Zhang,65,a D.Zhou,65X.Zhu,65 A.Zichichi,15,ll G.Zinovjev,16Y.Zoccarato,68andM.Zynovyev16 1Department of Physics and Technology, University of Bergen, Bergen, Norway 2Centrode Aplicaciones Tecnolo´gicas y Desarrollo Nuclear (CEADEN),Havana, Cuba 3NuclearPhysicsInstitute, AcademyofSciencesoftheCzechRepublic, Rˇezˇ uPrahy, CzechRepublic 4Yale University, New Haven, Connecticut, United States 5Physics Department, Panjab University, Chandigarh, India 6European Organization for Nuclear Research (CERN), Geneva, Switzerland 7KFKIResearchInstituteforParticleandNuclearPhysics,HungarianAcademyofSciences,Budapest,Hungary 8Institutode F´ısica, Universidad Nacional Auto´noma de Me´xico, Mexico City, Mexico 9Variable Energy Cyclotron Centre, Kolkata, India 10Department of Physics Aligarh Muslim University, Aligarh, India 11Gangneung-Wonju National University, Gangneung, South Korea 12Institute for Theoretical and Experimental Physics, Moscow, Russia 13Russian Research Centre Kurchatov Institute, Moscow, Russia 14Sezione INFN, Turin, Italy 15Dipartimento di Fisica dell’Universita` and Sezione INFN, Bologna, Italy 16Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine 17FrankfurtInstituteforAdvancedStudies,JohannWolfgangGoethe-Universita¨tFrankfurt,Frankfurt,Germany 18Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy 19Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fu¨r Schwerionenforschung, Darmstadt, Germany 20V. FockInstitute for Physics, St. Petersburg State University, St. Petersburg, Russia 21National Institute for Physics and Nuclear Engineering, Bucharest, Romania 22Kirchhoff-Institut fu¨rPhysik, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg, Germany 23Department of Physics, Ohio State University, Columbus, Ohio, United States 24Rudjer Bosˇkovic´ Institute, Zagreb, Croatia 25Dipartimento di Fisica dell’Universita` and Sezione INFN, Padova, Italy 26Sezione INFN, Bologna, Italy 27SUBATECH,EcoledesMinesdeNantes, Universite´ deNantes, CNRS-IN2P3, Nantes, France 28Institutfu¨rKernphysik, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany 29Laboratoire de PhysiqueSubatomique et deCosmologie (LPSC),Universite´ Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France 30DepartamentodeF´ısicadePart´ıculasandIGFAE,UniversidaddeSantiagodeCompostela,SantiagodeCompostela,Spain 31Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States 32Helsinki Institute of Physics (HIP) and University of Jyva¨skyla¨, Jyva¨skyla¨, Finland 33Sezione INFN, Catania, Italy 34Dipartimento di FisicaSperimentale dell’Universita` and Sezione INFN,Turin, Italy 35CentroFermi–CentroStudieRicercheeMuseoStoricodellaFisica“EnricoFermi”,Rome, Italy 36Commissariat a` l’Energie Atomique, IRFU, Saclay, France 37Laboratoire de Physique Corpusculaire (LPC), Clermont Universite´, Universite´ Blaise Pascal, CNRS–IN2P3, Clermont-Ferrand, France 38Institute of Experimental Physics, Slovak Academy of Sciences, Kosˇice, Slovakia 39Dipartimento di FisicaeAstronomia dell’Universita` and Sezione INFN,Catania, Italy 40School of Physicsand Astronomy, Universityof Birmingham, Birmingham, UnitedKingdom 41TheHenrykNiewodniczanski InstituteofNuclearPhysics,PolishAcademyofSciences, Cracow, Poland 42Institut fu¨rKernphysik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Mu¨nster, Germany 43Joint Institute for Nuclear Research (JINR), Dubna, Russia 44Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 45InstitutPluridisciplinaireHubertCurien(IPHC),Universite´ deStrasbourg, CNRS-IN2P3,Strasbourg, France 4 46Wayne State University, Detroit, Michigan, United States 47Petersburg Nuclear Physics Institute, Gatchina, Russia 48Physics Department, University of Jammu, Jammu, India 49Laboratori Nazionali di Frascati, INFN, Frascati, Italy 50Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic 51Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands 52CentrodeInvestigaciones Energe´ticasMedioambientales yTecnolo´gicas(CIEMAT),Madrid, Spain 53University of Houston, Houston, Texas, United States 54Moscow Engineering Physics Institute, Moscow, Russia 55Institute for High Energy Physics, Protvino, Russia 56Faculty of Science, P.J. Sˇafa´rik University, Kosˇice, Slovakia 57Saha Institute of Nuclear Physics, Kolkata, India 58InstitutdePhysiqueNucle´aired’Orsay(IPNO),Universite´ Paris-Sud, CNRS-IN2P3,Orsay, France 59Department of Physics, University of Oslo, Oslo, Norway 60Dipartimento di Fisica dell’Universita` and Sezione INFN, Trieste, Italy 61Facultyof Mathematics, Physicsand Informatics, ComeniusUniversity, Bratislava, Slovakia 62Russian Federal Nuclear Center (VNIIEF), Sarov, Russia 63Physikalisches Institut, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg, Germany 64PhysicsDepartment, University of Cape Town, iThemba LABS,CapeTown, South Africa 65Hua-Zhong Normal University, Wuhan, China 66Seccio´nF´ısica, DepartamentodeCiencias, PontificiaUniversidad Cato´licadel Peru´, Lima, Peru 67Physics Department, Creighton University, Omaha, Nebraska, United States 68Universite´ de Lyon, Universite´ Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France 69Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil 70Nikhef,NationalInstituteforSubatomicPhysicsandInstituteforSubatomicPhysicsofUtrechtUniversity,Utrecht,Netherlands 71Division of Experimental High Energy Physics, University of Lund, Lund, Sweden 72University of Tsukuba, Tsukuba, Japan 73Sezione INFN, Cagliari, Italy 74CentrodeInvestigacio´nydeEstudiosAvanzados(CINVESTAV),MexicoCityandMe´rida, Mexico 75Beneme´rita Universidad Auto´noma de Puebla, Puebla, Mexico 76DipartimentodiScienzeeTecnologieAvanzatedell’Universita` delPiemonteOrientaleandGruppoCollegatoINFN,Alessandria,Italy 77InstitutodeCienciasNucleares, Universidad NacionalAuto´nomadeMe´xico, MexicoCity, Mexico 78Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy 79Institute of Space Sciences (ISS), Bucharest, Romania 80Institute of Physics, Bhubaneswar, India 81Universidade de Sa˜o Paulo (USP), Sa˜o Paulo, Brazil 82DipartimentodiFisica‘E.R.Caianiello’dell’Universita` andGruppoCollegatoINFN,Salerno, Italy 83Sezione INFN, Bari, Italy 84Dipartimento di Fisica dell’Universita` and Sezione INFN, Cagliari, Italy 85Soltan Institute for Nuclear Studies, Warsaw, Poland 86Sezione INFN, Rome, Italy 87Faculty of Engineering, Bergen University College, Bergen, Norway 88Sezione INFN, Padova, Italy 89Institute for Nuclear Research, Academy of Sciences, Moscow, Russia 90Sezione INFN, Trieste, Italy 91Physics Department, University of Athens, Athens, Greece 92Warsaw University of Technology, Warsaw, Poland 93Universidad Auto´noma de Sinaloa, Culiaca´n, Mexico 94Technical University of Split FESB, Split, Croatia 95Yerevan Physics Institute, Yerevan, Armenia 96University of Tokyo, Tokyo, Japan 97Department of Physics, Sejong University, Seoul, South Korea 98Lawrence Berkeley National Laboratory, Berkeley, California, United States 99Indian Institute of Technology, Mumbai, India 100Institut fu¨r Kernphysik, Technische Universita¨t Darmstadt, Darmstadt, Germany 101Yonsei University, Seoul, South Korea 102Zentrumfu¨rTechnologietransferundTelekommunikation(ZTT),FachhochschuleWorms,Worms,Germany 103California Polytechnic State University, San LuisObispo, California, United States 104China Institute of Atomic Energy, Beijing, China 105Instituteof Physics, Academyof Sciences of the CzechRepublic, Prague, CzechRepublic 106University of Tennessee, Knoxville, Tennessee, United States 107Dipartimento di Fisicadell’Universita` ‘LaSapienza’ and Sezione INFN,Rome, Italy 108Hiroshima University, Hiroshima, Japan 5 109Lawrence Livermore National Laboratory, Livermore, California, United States 110Budker Institute for Nuclear Physics, Novosibirsk, Russia 111Physics Department, University of Rajasthan, Jaipur, India 112Purdue University, West Lafayette, Indiana, United States 113Centre de Calcul de l’IN2P3, Villeurbanne, France 114Pusan National University, Pusan, South Korea (Dated:January20,2011) We report on the high statistics two-pion correlation functions from pp collisions at √s=0.9 TeV and √s=7TeV,measuredbytheALICEexperiment attheLargeHadronCollider. Thecorrelationfunctionsas wellastheextractedsourceradiiscalewitheventmultiplicityandpairmomentum.Whenanalyzedinthesame multiplicityandpairtransversemomentumrange,thecorrelationissimilaratthetwocollisionenergies.Athree- dimensionalfemtoscopicanalysisshowsanincreaseoftheemissionzonewithincreasingeventmultiplicityas well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronouncedasmultiplicityincreases. Thissuggeststhedevelopmentofspace-momentumcorrelations,atleast for collisions producing a high multiplicityof particles. Weconsider thesetrends in thecontext of previous femtoscopicstudies inhigh-energy hadron andheavy-ion collisions, anddiscuss possibleunderlying physics mechanisms. Detailedanalysisofthecorrelationrevealsanexponentialshapeintheoutwardandlongitudinal directions,whilethesidewardremainsaGaussian. Thisisinterpretedasaresultofasignificantcontribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed,andarearguedtobetheconsequenceof“mini-jet”-likestructuresextendingtolowp .Theyarewell T reproducedbytheMonte-Carlogeneratorsandseenalsoinp +p correlations. − PACSnumbers:25.75.-q,25.75.Gz,25.70.Pq I. INTRODUCTION Proton-protoncollisionsat√s=0.9TeVand√s=7TeV havebeenrecordedbyALargeIonColliderExperiment(AL- aAlsoatLaboratoiredePhysiqueCorpusculaire (LPC),ClermontUniver- ICE)at theLargeHadronCollider(LHC) atCERN in2010. site´,Universite´BlaisePascal,CNRS–IN2P3,Clermont-Ferrand,France bNow at Centro Fermi – Centro Studi e Ricerche e Museo Storico della ThesecollisionsprovideauniqueopportunitytoprobeQuan- Fisica “Enrico Fermi”, Rome, Italy; Now at European Organization for tumChromodynamics(QCD)inthenewenergyregime. The NuclearResearch(CERN),Geneva,Switzerland distinguishingfeatureofQCDisthemechanismofcolorcon- cAlso at European Organization for Nuclear Research (CERN), Geneva, finement, the physics of which is not fully understood, due, Switzerland dNow at Physikalisches Institut, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg, Germany; Nowat Frankfurt Institute forAdvanced Studies, JohannWolfgangGoethe-Universita¨tFrankfurt,Frankfurt,Germany eNowatSezioneINFN,Turin,Italy Goethe-Universita¨tFrankfurt,Frankfurt,Germany fNowatUniversityofHouston,Houston,Texas,UnitedStates vNow at Research Division and ExtreMe Matter Institute EMMI, GSI gAlsoatDipartimento diFisicaSperimentale dell’Universita` andSezione Helmholtzzentrumfu¨rSchwerionenforschung,Darmstadt,Germany wAlsoatFachhochschuleKo¨ln,Ko¨ln,Germany INFN,Turin,Italy xAlsoatInstitute ofExperimental Physics, Slovak AcademyofSciences, hAlsoatDipartimentodiFisicadell’Universita´,Udine,Italy Kosˇice,Slovakia iNowatSUBATECH,EcoledesMines deNantes, Universite´ deNantes, yNowatInstitutodeCienciasNucleares,UniversidadNacionalAuto´noma CNRS-IN2P3,Nantes,France deMe´xico,MexicoCity,Mexico jNow at Centro de Investigacio´n y de Estudios Avanzados (CINVES- zAlsoatM.V.LomonosovMoscowStateUniversity,D.V.SkobeltsynInsti- TAV),MexicoCityandMe´rida,Mexico;NowatBeneme´ritaUniversidad tuteofNuclearPhysics,Moscow,Russia Auto´nomadePuebla,Puebla,Mexico aaAlsoatLaboratoiredePhysiqueSubatomiqueetdeCosmologie(LPSC), kNowatLaboratoiredePhysiqueSubatomiqueetdeCosmologie(LPSC), Universite´JosephFourier,CNRS-IN2P3,InstitutPolytechniquedeGreno- Universite´JosephFourier,CNRS-IN2P3,InstitutPolytechniquedeGreno- ble,Grenoble,France ble,Grenoble,France bbAlsoat”Vincˇa”InstituteofNuclearSciences,Belgrade,Serbia lNow at Institut Pluridisciplinaire Hubert Curien (IPHC), Universite´ de ccAlso at Dipartimento di Fisica ‘E.R. Caianiello’ dell’Universita` and Strasbourg,CNRS-IN2P3,Strasbourg,France GruppoCollegatoINFN,Salerno,Italy mNowatSezioneINFN,Padova,Italy ddAlsoatInstitutodeCienciasNucleares,UniversidadNacionalAuto´noma nDeceased deMe´xico,MexicoCity,Mexico oAlsoatDivisionofExperimentalHighEnergyPhysics,UniversityofLund, eeAlsoatUniversityofHouston,Houston,Texas,UnitedStates Lund,Sweden ffAlsoatDepartmentofPhysics,UniversityofOslo,Oslo,Norway pAlsoatUniversityofTechnologyandAustrianAcademyofSciences,Vi- ggAlsoatVariableEnergyCyclotronCentre,Kolkata,India enna,Austria hhNowatDepartmentofPhysics,UniversityofOslo,Oslo,Norway qNow at Oak Ridge National Laboratory, Oak Ridge, Tennessee, United iiAlsoatDipartimentoInterateneodiFisica‘M.Merlin’andSezioneINFN, States Bari,Italy rNow at European Organization for Nuclear Research (CERN), Geneva, jjNowatNikhef,NationalInstituteforSubatomicPhysicsandInstitutefor Switzerland sAlsoatWayneStateUniversity,Detroit,Michigan,UnitedStates SubatomicPhysicsofUtrechtUniversity,Utrecht,Netherlands tAlsoatFrankfurtInstituteforAdvancedStudies,JohannWolfgangGoethe- kkAlsoatHua-ZhongNormalUniversity,Wuhan,China Universita¨tFrankfurt,Frankfurt,Germany llAlso at Centro Fermi – Centro Studi e Ricerche e Museo Storico della uNow at Frankfurt Institute for Advanced Studies, Johann Wolfgang Fisica“EnricoFermi”,Rome,Italy 6 in part, to its theoretical intractability [1]. The confinement theALICEexperimentalsetupanddatatakingconditionsfor mechanismhasaphysicalscaleoftheorderoftheprotonra- thesampleusedinthiswork.InSectionIIIwepresentthecor- diusandisespeciallyimportantatlowmomentum.Thestudy relation measurement and characterize the correlation func- presentedinthisworkaimstomeasurethespace-timeextent tionsthemselves.InSectionIVAweshowthemainresultsof ofthesourceonthisscale. thiswork:thethree-dimensionalradiiextractedfromthedata. Two-pioncorrelationsatlowrelativemomentumwerefirst Wediscussvariousobservedfeaturesandcomparetheresults showntobesensitivetothespatialscaleoftheemittingsource to other experiments. In Section V we show, for complete- in p¯+p collisions by G. Goldhaber, S. Goldhaber, W. Lee ness,theone-dimensionalRinvanalysis. FinallyinSectionVI and A. Pais 50 years ago [2]. Since then, they were stud- we summarize our results. All the numerical values can be iedine++e [3],hadron-andlepton-hadron[4],andheavy obtainedfromtheDurhamReactionDatabase[15]. − ion [5] collisions. Especially in the latter case, two-particle femtoscopyhasbeendevelopedintoaprecisiontooltoprobe thedynamically-generatedgeometrystructureoftheemitting II. ALICEDATATAKING system. In particular, a sharp phase transition between the color-deconfinedandconfinedstateswasprecludedbytheob- In this study we report on the analysis of pp collisions servation of short timescales, and femtoscopic measurement recordedbytheALICEexperimentduringthe2010runofthe ofbulkcollectiveflowprovedthata stronglyself-interacting LHC. Approximately 8 million events, triggered by a mini- systemwascreatedinthecollision[6,7]. mumbiastriggerattheinjectionenergyof√s=0.9TeV,and Femtoscopyinheavy-ioncollisionsisbelievedtobeunder- 100millioneventswithsimilartriggeratthemaximumLHC stoodinsomedetail,seee.g.[5]. Thespatialscalesgrownat- energytodate,√s=7TeV,wereanalyzedinthiswork. urallywiththemultiplicityoftheevent.Stronghydrodynami- TheALICETimeProjectionChamber(TPC)[16]wasused calcollectiveflowinthelongitudinalandtransversedirections to recordchargedparticle tracks as they left ionizationtrails isrevealedbydynamicaldependenciesoffemtoscopicscales. in the Ne CO gas. The ionization drifts up to 2.5 m 2 The main puzzling aspect of the data is the relative energy fromthece−ntralelectrodetotheend-capstobemeasuredon independenceoftheresultsofthemeasurements. 159 padrows, which are grouped into 18 sectors; the posi- To some extent, Bose-Einstein correlations in particle tion at which the track crossed the padrow was determined physics were initially of interest only as a source of sys- withresolutionsof2mmand3mminthedriftandtransverse tematic uncertainty in the determination of the W boson directions, respectively. The momentum resolution is 1% mass [8]. But overviews [3, 4, 9] of femtoscopic measure- for pions with p =0.5 GeV/c. The ALICE Inner Tra∼cking T mentsinhadron-andlepton-inducedcollisionsrevealsystem- System(ITS)wasalsousedfortracking.Itconsistsofsixsili- aticssurprisinglysimilartothosementionedaboveforheavy- conlayers,twoinnermostSiliconPixelDetector(SPD)layers, ioncollisions.Moreover,inthefirstdirectcomparisonoffem- two Silicon Drift Detector (SDD) layers, and two outer Sili- toscopyinheavy-ioncollisionsatRelativisticHeavy-IonCol- conStripDetector(SSD)layers,whichprovideuptosixspace lider (RHIC) and proton collisions in the same apparatus an points for each track. The tracks used in this analysis were essentiallyidenticalmultiplicity-andmomentum-dependence reconstructed using the information from both the TPC and wasreportedinthetwosystems[10]. However,themultiplic- theITS,suchtrackswerealsousedtoreconstructtheprimary itiesatwhichthefemtoscopicmeasurementinppcollisionsat vertexofthecollision.Fordetailsofthisprocedureanditsef- RHICwasmadewerestillsignificantlysmallerthanthosein ficiencysee [17]. The forwardscintillator detectorsVZERO eventhemostperipheralheavy-ioncollisions.Inthisworkwe areplacedalongthebeamlineat+3mand 0.9mfromthe are,forthefirsttime,abletocomparefemtoscopicradiimea- nominalinteractionpoint. Theycoveraregio−n2.8<h <5.1 suredinppandheavy-ioncollisionsatcomparableeventmul- and 3.7<h < 1.7 respectively. They were used in the tiplicities. At these multiplicities the observed correlations mini−mumbiastrig−gerandtheirtimingsignalwasusedtore- maybeinfluencedbyjets[11]whileotherstudiessuggestthat jectthebeam–gasandbeam-halocollisions. asystembehavingcollectivelymaybecreated[12]. Theminimumbiastriggerrequiredasignalineitherofthe In our previous work [13] we reported that a multiplicity twoVZEROcountersoroneofthetwoinnerlayersoftheSil- integrated measurement does not show any pair momentum icon Pixel Detector (SPD). Within this sample, we selected dependenceoftheRinvradiusmeasuredinthePairRestFrame events based on the measured charged-particle multiplicity (PRF).SimilaranalysisfromtheCMScollaboration[14]also within the pseudorapidity range h <1.2. Events were re- | | mentionsthatnomomentumdependencewasobserved.How- quiredtohaveaprimaryvertexwithin1mmofthebeamline, evertheanalysisintwomultiplicityrangessuggestedthatmo- and10 cm of the centerof the 5 m-longTPC. Thisprovides mentumdependencemay changewith multiplicity, although almost uniform acceptance for particles with h <1 for all anystrongconclusionswereprecludedbylimitedstatistics. In eventsinthesample. Itdecreasesfor1.0< h |<| 1.2. Inad- | | thisworkweexplorethisdependencebyusinghighstatistics dition,werequireeventstohaveatleastonechargedparticle dataandmoremultiplicityranges.Itenabledustoperformthe reconstructedwithin h <1.2. | | three-dimensionalanalysis in the LongitudinallyCo-Moving The minimum number of clusters associated to the track System (LCMS), where the pair momentum along the beam in the TPC is 70 (out of the maximum of 159) and 2 in the vanishes. ITS (out of the maximum of 6). The quality of the track is Thepaperisorganizedasfollows:inSectionIIwedescribe determined by the c 2/N value for the Kalman fit to the re- 7 constructedpositionoftheTPCclusters(N is thenumberof TABLE I. Multiplicity selection for the analyzed sample. Uncor- clustersattachedtothetrack);thetrackisrejectedifthevalue is larger than 4.0 (2 degreesof freedomper cluster). Tracks rneucmtebdeNrcohfienv|ehn|ts<a1n.d2,nhudmNbche/rdohfii|dNechn≥ti1ca(slepeiotenxtpfaoirrsthinedeaecfihnirtaionng)e, with h <1.2aretakenfortheanalysis. The p ofaccepted T aregiven. | | particleshasalowerlimitof0.13GeV/c,becausetrackswith lower pT donotcrossenoughpadrowsin theTPC. Theeffi- Bin Nch hdNch/dh i|Nch≥1 No.events×106 No.pairs×106 ciency of particle reconstructionis about 50% at this lowest √s=0.9TeV limitandthenquicklyincreasesandreachesastablevalueof 1 1–11 2.7 3.1 8.8 approximately80%forp >0.2GeV/c.Inordertoreducethe T 2 12–16 7.0 0.685 8.6 numberof secondaryparticlesin our sample, we requirethe 3 17–22 9.7 0.388 9.5 tracktoprojectbackto theprimaryinteractionvertexwithin 0.018+0.035p−T1.01cminthetransverseplaneand0.3cmin 4 23–80 14.6 0.237 12.9 the longitudinaldirection (so-calledDistance of Closest Ap- √s=7TeV proachorDCAselection). 1 1–11 3.2 31.4 48.7 ALICEprovidesanexcellentparticleidentificationcapabil- 2 12–16 7.4 9.2 65.0 ity, throughthe combinationof the measurementof the spe- 3 17–22 10.4 7.4 105.7 cificionization(dE/dx)intheTPCandtheITSandthetiming 4 23–29 13.6 4.8 120.5 signalsintheALICETimeOfFlight(TOF).Inthemomentum 5 30–36 17.1 3.0 116.3 rangecoveredhere(0.13GeV/cto0.7GeV/c)pionsconstitute 6 37–44 20.2 2.0 115.6 themajorityofparticles. We useonlytheTPCmeasurement forParticleIDentification(PID)inthiswork,astheotherde- 7 45–57 24.2 1.3 114.5 tectors offer significant improvementat higher p than used 8 58–149 31.1 0.72 108.8 T here. ThisPIDprocedureresultsinasmallcontaminationof thepionsamplebyelectronsat pT<0.2GeV/candkaonsat |q |<0.16 GeV/c side,long pT >0.65 GeV/c. Allowing other particles into our sample 1.51.5 ALICE pp @ 7 TeV hasonlyaminoreffectofloweringthestrengthofthecorrela- )ut tion(thel parameter),whileitdoesnotaffectthefemtoscopic qo ( radius, so we do not correctfor it explicitly. The amountof C electroncontaminationislessthan5%. 1 1 0 0.5 |q |<0.16 1GeV/c out,long 1.5 N 1-11 k (0.2, 0.3) 1.5 ch T III. CORRELATIONFUNCTIONMEASUREMENT )side NNcchh 3107--3262 kkTT ((00..22,, 00..33)) q Experimentally,thetwo-particlecorrelationfunctionisde- ( C fined as the ratio C(q) = A(q)/B(q), where A(q) is the 1 1 measuredtwo-piondistributionofpairmomentumdifference 0 0.5 |q |<0.16 G1 eV/c iqng=ppa2ir−sopf1p,aarntdicBle(sqf)roimsadsifimfeirleanrtdeivsetrnibtsu[t1io8n].formedbyus- 1.51.5 out,side ) The size of the data sample used for this analysis al- ng o lowed for a highlydifferentialmeasurement. In order to ad- ql ( dress the physics topics mentioned in the introduction, the C 1 analysis was performed simultaneously as a function of the 1 total event multiplicity N and pair transverse momentum 0.00 00..55 1.10 ch q (GeV/c) k = ~p +~p /2. For the multiplicity determination we T T,1 T,2 out,side,long | | counted the tracks reconstructed simultaneously in the ITS and the TPC, plus the tracks reconstructed only in the ITS FIG.1. Projectionsofthe3DCartesianrepresentationsofthecorre- in case the track was outside of the TPC h acceptance. The lation functions onto the qout, qside, and qlong axes for pairs with total number of events accepted after applying the selection 0.2<kT <0.3 GeV/c, for three multiplicity ranges. To project criteria in the √s=7 TeV sample was 60 106 and in the onto one q-component, the others are integrated over the range √s=0.9TeVsampleitwas4.42 106. We×dividedthefull 0 0.16GeV/c. × − multiplicityrangeintoeightandfourrangesforthetwoener- giesrespectivelyinsuchawaythatthelike-chargepionpair multiplicityineachofthemwascomparable.TableIgives(a) lmeainstedo.neWcehagrigveedthpeiodnNicdhe/ndthifiveadl1ueasndinitTsamb.oImfeonrtuthmisdeevteenr-t valuesfor the rangeof raw chargedparticle multiplicity that wasusedtocategorizetheevent,(b)thecorrespondingmean charge particle density dNch/dh as well as (c) number of 1Infactthecorrelationsignalisconstructedfromeventshavingatleasttwo h i eventsand(d)thenumberofidenticalpionpairsineachrange. same-chargepions(apair).Theone-pioneventsdocontributetothemixed The femtoscopicmeasurementrequiresthe eventsto have at background. 8 sample. We denotethisvalueas dN /dh ;itstypical ALICE pp @ 7 TeV uncertainty is 10%. We note thaht fochr theit|hNech≥lo1west multi- 1.15.5 plicity this charged particle density is biased towards higher 00 valueswithrespecttothefullsampleofinelasticevents. C The pair momentum k ranges used in the analysis T were (0.13,0.2), (0.2,0.3), (0.3,0.4), (0.4,0.5), (0.5,0.6), 11 (0.6,0.7)GeV/c. 0.01.10 pp0++.5 pp ++ NNch 117-1-122 1 kkT ((00..22,, 00..33)) p + p + Nch 30-36 kT (0.2, 0.3) ch T A. Correlationfunctionrepresentations 0C2 00 Thecorrelationsaremeasuredasafunctionofpairrelative -0-.01.1 momentumfour-vectorq. Wedealwithpions,sothemasses of the particles are fixed - in this case q reduces to a vec- 0.01.10 0.5 1 tor:~q. Theone-dimensionalanalysisisperformedversusthe magnitude of the invariant momentum difference qinv =|~q|, 2C2 00 in PRF. The large available statistics for this work allowed us to perform a detailed analysis also for the 3D functions. In forming them, we calculate the momentum difference in -0-.01.1 LCMS and decomposethis~qLCMS accordingto the Bertsch– 0.00 00..55 1.10 Pratt [19, 20] “out-side-long” (sometimes indicated by o, s, q (GeV/c) and l subscripts) parametrization. Here, q is parallel to LCMS long the beam, q is parallel to the pair transverse momentum, out FIG.2. MomentsoftheSHdecompositionofthecorrelationfunc- and q is perpendicularto q and q . If one wishes to side long out tions for pairs with 0.2<kT <0.3 GeV/c, for three multiplicity compare the radii measured in LCMS to R one needs to inv ranges. multiplyone of the transverse radiiin LCMS (the one along thepairtransversemomentum)bytheLorentzg correspond- ingtothepairtransversevelocity,andthenaveragethethree analyzedinthiswork. radii.ThereforeanRinvconstantwithmomentumisconsistent The C0 is the angle-averaged component. It captures the 0 withtheradiiinLCMSdecreasingwithmomentum.Figure1 generalshapeof the correlation. The widthof the peaknear showsone-dimensionalprojectionsofthe3-dimensionalcor- q=0isinverselyproportionaltotheoverallfemtoscopicsize relation functionC(qout,qside,qlong) onto the qout, qside, and ofthesystem. TheC0 componentisthecorrelationweighed qlongaxes,forp +pairsfromoneofthemultiplicity/kTranges withthecos2(q ). Ifit2differsfrom0,itsignifiesthatthelongi- fromthe√s=7TeVsample.Thefunctionisnormalizedwith tudinalandtransversesizesoftheemissionregiondiffer.The a factorthatisa resultofthefit(thedetailsoftheprocedure C2 isweighedwithcos2(f ). Ifitdiffersfrom0,itsignalsthat 2 aredescribedinSec.IIID);unitymeansnocorrelation. the outward and sideward sizes differ. The correlationfunc- The 1-dimensional projections, shown in Fig. 1, present tion is normalized to the number of pairs in the background a limited view of the 3-dimensionalstructure of the correla- dividedbythenumberofpairsinthesignal. tionfunction. Itisincreasinglycommontorepresentcorrela- tionfunctionsinaharmonicanalysis[21–23];thisprovidesa more complete representationof the 3-dimensionalstructure B. Measuredcorrelations ofthecorrelation,abetterdiagnosticofnon-femtoscopiccor- relations [22], and a more direct relation to the shape of the In Figs. 1 and 2 we show selected correlations to illus- source [24]. The moments of the Spherical Harmonic (SH) trate how they depend on multiplicity. This is done for k decompositionaregivenby T of (0.2,0.3) GeV/c; the behavior in other k ranges and at T thelowercollisionenergyisqualitativelythesame. Thenar- 1 rowingofthecorrelationpeakwithincreasingmultiplicityis Am(~q) df d(cosq )C(~q,q ,f )Ym(q ,f ). (1) l | | ≡ √4p Z | | l apparent,correspondingtotheincreaseofthesizeoftheemit- tingregion.Thebehaviorofthecorrelationfunctionatlargeq Here,theout-side-longspaceismappedontoEuleranglesin isalsochanging,thelowmultiplicitybaselineisnotflat,goes which q = ~q cosq and q = ~q sinq cosf . For pairs of below1.0aroundq=1 GeV/c and thenrises againatlarger long out | | | | identicalparticlesincolliderexperimentsdonewithsymmet- q,forhighermultiplicitiesthebackgroundbecomesflatterat ricalbeams,includingtheanalysisinthiswork,theoddland largeq.InCartesianrepresentationshowninFig.1,areaswith theimaginaryandoddm componentsforevenl vanish. The no data points (acceptance holes) are seen in q projection out firstthreenon-vanishingmoments, whichcaptureessentially nearq=0.5GeV/candinq above0.6GeV/c. Sinceq long long all of the 3-dimensional structure, are then C0, C0, and C2. isproportionaltothedifferenceoflongitudinalmomenta,its 0 2 2 These are shown in Fig. 2. The components for l 4 rep- valueislimitedduetoh acceptance. Intheout directionthe ≥ resentthefine detailsof the correlationstructureand arenot holeappearsduetoacombinationoflower p cut-offandthe T 9 ALICE pp @ 7 TeV |q |<0.16 GeV/c side,long 1.5 1.15.5 1.5 ALICE pp @ 7 TeV ) 0C0 qout ( C 11 11 0.01.10 pp0++.5 pp ++ NNch 1177--2222 1 kkT ((00..24,, 00..35)) 1.50 |qout,long|<00..51N6 G 1e7V-2/c2 k (01.2, 0.3) p + p + Nch 17-22 kT (0.6, 0.7) 1.5 Nch 17-22 kT (0.4, 0.5) 0C2 00 ch T )side Ncchh 17-22 kTT (0.6, 0.7) q ( C -0-.01.1 11 0.01.10 0.5 1 0 |qout,side|<00..516 GeV/c 1 1.5 1.5 ) 2C2 00 ong ql ( C -0-.01.1 11 0.00 00..55 1.10 0.00 00..55 1.10 q (GeV/c) q (GeV/c) LCMS out,side,long FIG.3. MomentsoftheSHdecompositionofthecorrelationfunc- FIG.4. Projectionsofthe3DCartesianrepresentationsofthecorre- tionsforeventswith17 Nch 22,forthreekTranges. lationfunctionsontotheqout,qside,andqlong axes, foreventswith ≤ ≤ 17 N 22,forthreek ranges.Toprojectontooneq-component, ch T ≤ ≤ theothersareintegratedovertherange0 0.16GeV/c. − selectedk range.Itcanbesimplyunderstoodasfollows:For T theprojectionintheupperpanelofFig.1, wetakethevalue ALICE p + p + of q and q small. The value of q is proportional pp @ 0.9 TeV side long side to the azimuthalangledifference,while q is proportional 1.51.5 pp @ 7 TeV long to polar angle difference. For qside,qlong =0, qout is simply 0C0 p p andk is(p +p )/2,where p isnolongera T,2 T,1 T T,1 T,2 T − 2-vector,butjustascalar.Theparticlesareeitherfullyaligned 11 (both p ’s are positive or both are negative)or back-to-back T (one p is positive, the other negative). When we combine 0.10 N0 .512-16 1 T 0.1 ch k (0.3, 0.4) the lower pT cut-off pT >0.13 GeV/c and the kT selection T | | 0.2 k 0.3, it can be shown that some range of the q valu≤es iTs≤excluded. This range will depend on the k seleocu-t 0C2 00 T tion. ThekT dependenceofthecorrelationfunctionisshownin -0.-10.1 Fotihges.r3maunldtip4l,icfoitrymraunltgiepslicaintyd1a7t l≤owNecrhe≤ne2r2g.yTihseqbueahliatavtiiovreilny 0.01.10 0.5 1 similar (except the lowest multiplicity bin where the behav- ior is more complicated- see the discussion of the extracted 2C2 00 radiiinSec.IIIDfordetails). Wesee astrongchangeofthe correlationwithk , withtwoapparenteffects. Atlowk the T T -0.1 -0.1 correlationappearstobedominatedbythefemtoscopiceffect atq<0.3GeV/c,andisflatatlargerq. Ask grows,thefem- 0.00 00..55 1.10 T q (GeV/c) toscopicpeakbroadens(correspondingtoadecreaseinsizeof LCMS theemittingregion). Inaddition,awidestructure,extending up to 1.0 GeV/c in q for the highest k range, appears. We FIG.5. MomentsoftheSHdecompositionofthecorrelationfunc- T analyzethis structurein furtherdetaillater in this work. We tionsforeventswith12 Nch 16,pairswith0.3<kT<0.4GeV/c. ≤ ≤ alsoseethat,accordingtoexpectations,theacceptanceholes Opensymbolsarefor√s=0.9TeVcollisions, closedsymbolsfor intheoutandlongregionmoveaswechangethek range. √s=7TeVcollisions. T Figure5showstheexampleofthecorrelationfunction,for the same multiplicity/k range, for pp collisions at two col- T lision energies. We note a similarity between the two func- tiplicity ranges. The similarity is not trivial: changing the tions; the same is seen for other k ’s and overlapping mul- multiplicity by 50%, as seen in Fig. 2 or k by 30% as seen T T 10 ALICE p + p + ingthesamemultiplicityandk ranges. TheMCcalculation T Pythia Perugia-0 1.51.5 pp @ 7 TeV doesnotincludethe wave-functionsymmetrizationfor iden- ticalparticles; hence,theabsenceofthefemtoscopicpeakat 00 C lowqisexpected.Intheangle-averagedC0 componentasig- 0 nificant correlation structure is seen, up to 1 GeV/c, with a 11 slope similar to the data outside of the peak at low q. Sim- ilarly, in theC0 componenta weak and wide correlationdip 0.10 N0 .512-16 1 1.5 2 0.1 kc h(0.3, 0.4) isseenaroundq=0.5GeV/c,whichisalsoseeninthedata. T InMC, thecorrelationinC0 disappearsatlowerq,whilefor 2 0C200 the data it extends to much lower q, exactly where the fem- toscopic peak is expectedand seen inC0. Our hypothesisis 0 thatboththelong-rangepeakinC0 andthedipinC0 areofa -0.1 0 2 -0.1 “mini-jet”origin.Theyneedtobetakenintoaccountwhenfit- 0.10 0.5 1 1.5 tingthecorrelationfunctionfromdata,sothatthefemtoscopic 0.1 peakcanbeproperlyextractedandcharacterized. Thecalcu- lations was also carried out with a second Monte-Carlo, the 2C200 PHOJET model[27,28], andgavesimilarresults. Thediffer- encesbetweenthetwomodelsarereflectedinthesystematic -0.1 error. -0.1 0 0.0.55 1.10 1.5 In order to characterize the non-femtoscopic background q (GeV/c) westudyindetailthecorrelationstructureintheMCgenera- LCMS tors,inexactlythesamemultiplicity/k rangesasusedfordata T analysis. Weseetrendsthatareconsistentwiththe“mini-jet” FIG. 6. Moments of the SH decomposition of the correlation functions for events with 12 Nch 16, pairs with 0.3<kT < hypothesis. The correlation is small or non-existent for low 0.4GeV/c.OpensymbolsareP≤YTHI≤AMCsimulations(Perugia-0 pT(firstkTrange)anditgrowsstronglywith pT. InFig.7we tune),closedsymbolsareALICEdatafrom√s=7TeVcollisions. show this structure for selected multiplicity/kT at both ener- gies. Atthehighestk theeffecthasthemagnitudeof0.3at T lowq,comparabletotheheightofthefemtoscopicpeak. The in Fig. 3 hasa strongerinfluence on the correlationfunction appearanceofthesecorrelationsisthemainlimitingfactorin thanchangingthecollisionenergybyanorderofmagnitude. the analysis of the k dependence. We tried to analyze the T Weconcludethatthemainscalingvariablesforthecorrelation correlationsatk higherthan0.7GeV/c butwewere unable T functionareglobaleventmultiplicityandtransversemomen- toobtainameaningfulfemtoscopicresult,becausethe“mini- tumofthepair; thedependenceoncollisionenergyissmall. jet” structure was dominating the correlation. The strength The energy independence of the emission region size is the ofthecorrelationdecreaseswithgrowingmultiplicity(asex- firstimportantphysicsresultofthiswork. Weemphasizethat pected), slower than 1/M, so that it is still significant at the it can be already drawn from the analysis of the correlation highest multiplicity. We studied other tunes of the PYTHIA functionsthemselves,butwewillalsoperformmorequalita- modelandfoundthatthePerugia-0tunereproducesthe“mini- tivechecksanddiscussionswhenwereportthefittedemission jet”correlationstructuresbest,whichiswhyitisourchoice. regionsizesinSectionIV. Its limitation though is a relatively small multiplicity reach, smaller than the one observed in data. As a result the MC calculationforourhighestmultiplicityrangeislessreliable– C. Non-femtoscopiccorrelationstructures thisisreflectedinthesystematicerror. Analyzingtheshapeoftheunderlyingeventcorrelationfor InFig.3wenotedtheappearanceoflong-rangestructures identical particle pairs in MC is important; however, it does inthecorrelationfunctionsforlargek . Ifthesewereoffem- not ensure that the behavior of the correlation at very low q T toscopicorigin,theywouldcorrespondtoanunusuallysmall is reproduced well in MC. We compared the identical parti- emissionregionsizeof0.2fm.Wereportedtheobservationof cleMCanddatainthelargeqregion,wherethefemtoscopic thesestructuresinourpreviousanalysis[13]at√s=0.9TeV, effect is expected to disappear, and found them to be very where they were interpretedas non-femtoscopiccorrelations similar in all multiplicity/k . However, if the “mini-jet” hy- T comingfrom“mini-jet”likestructuresatp <1GeV/c. Here pothesisiscorrect,thesamephenomenoncausessimilarcor- T wefurtheranalyzethishypothesis.InFig.6weshowthecom- relationstoappearfornon-identicalpions. Themagnitudeis parisonofthecorrelationfunctionatmultiplicity12 N expected to be higher than for identical pions, because it is ch ≤ ≤ 16 in an intermediate k range, where the long-range corre- easiertoproduceanoppositely-chargedpairfromafragment- T lations are apparent, to the Monte-Carlo (MC) calculation. ing“mini-jet”thanit is to createan identically-chargedpair, The simulation used the PYTHIA generator [25], Perugia-0 duetolocalchargeconservation. Moreover,thefemtoscopic tune [26] as input and was propagated through the full sim- effectfornon-identicalpionscomesfromtheCoulombinter- ulationoftheALICEdetector[16]. Thenitwasreconstructed actiononly. Itislimitedtoverylowq,below0.1GeV/c. Itis and analyzed in exactly the same way as our real data, us- thereforepossibletotestthelow-qbehaviorofthe“mini-jet”

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.