ebook img

Femtoscopic measurements in $p$+Pb collisions at $\sqrt{s_{_{\text{NN}}}}= 5.02$~TeV with ATLAS at the LHC PDF

0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Femtoscopic measurements in $p$+Pb collisions at $\sqrt{s_{_{\text{NN}}}}= 5.02$~TeV with ATLAS at the LHC

Nuclear Physics A NuclearPhysicsA00(2016)1–4 www.elsevier.com/locate/procedia + Femtoscopic measurements in p Pb collisions at √ = s 5.02 TeV with ATLAS at the LHC NN Markus K. Ko¨hler 6 1 (on behalf of the ATLAS Collaboration)1 0 2 WeizmannInstituteofScience,Israel n a J 1 2 Abstract x] Recent measurements in two-particle correlations in p+Pb collisions suggest collective behavior reminiscent of that e observedinPb+Pb. Femtoscopicmeasurementsmayprovideusefulinsightonthisbehaviorbecausetheyimagethe - spatio-temporalsizeoftheparticleemittingregion.Thisproceedingpresentsidentical-pionHanburyBrownandTwiss l c (HBT)measurementsfromATLASusingone-andthree-dimensionalcorrelationfunctions. Pionsareidentifiedusing u dE/dxmeasuredinthepixeldetector.CorrelationfunctionsandtheresultingHBTradiiareshownasafunctionofpair n momentum(k )andcollisioncentrality. T [ Keywords: ATLAS,p+Pbcollisions,Femtoscopy 1 v 2 1. Introduction 3 6 Longrangetwo-particlecorrelationfunctionsinrelativepseudorapidityandrelativeazimuthalanglein 5 ppand p+PbcollisionsmeasuredattheLHCareconsistentwithapossiblecollectivebehaviour[1,2,3], 0 reminiscenttothatobservedinPb+Pbcollisions,seee.g.[4]. . 1 Femtoscopic measurements in pp and p+Pb collisions [5, 6] allow the investigation of the time evolution 0 ofsmallcollidingsystems. Thisproceedingreportsthefirstmeasurementofthecentralityandmomentum 6 √ dependence of same- and opposite-sign pion pair correlations in p+Pb collisions at s = 5.02 TeV 1 NN : measuredbytheATLASexperiment. v i X 2. Dataanalysis r a Thisanalysisusesadatasamplewithanintegratedluminosityof28.1nb−1ofp+Pbcollisions,measured in2013bytheATLASdetector[7]. ThePbbeamhadanenergyof1.57TeVpernucleonandtheopposing √ p beam had an energy 4 TeV, resulting in a center of mass energy of s = 5.02 TeV. The centrality is NN determinedusingthetotaltransverseenergymeasuredintheforwardcalorimeteronthePb-goingside,see e.g. Ref.[8]formoreinformation. 1AlistofmembersoftheATLASCollaborationandacknowledgementscanbefoundattheendofthisissue. 2 M.K.Ko¨hleretal./NuclearPhysicsA00(2016)1–4 m] 7 m] 7 [fRinv 6 ATLAS Preliminary 70-80% 40-50% [fRinv 6 00..25 << kkT << 00..36 GGeeVV 5 10-20% 0-1% 5 T p+Pb 2013, s = 5.02 TeV NN L = 28 nb-1 4 4 int 3 3 2 2 L = 28 nb-1 1 int 1 p+Pb 2013, sNN = 5.02 TeV ATLAS Preliminary 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 2 2.5 3 3.5 4 k [GeV] <dN /dh >1/3 T ch Fig.1. InvariantradiiRinvasafunctionofkTindifferentcentralitybins(leftpanel)andasafunctionofthecuberootoftheaverage chargedparticlemultiplicity,(cid:104)dNch/dη(cid:105)1/3,intwokTintercepts(rightpanel).Figuresfrom[9]. Reconstructedtracksarerequiredtohaveatransversemomentum p >0.1GeVandtobewithinthepseu- T dorapidity2range|η|<2.5. PionsareidentifiedusingthedE/dxinformationfromthesiliconpixeldetector. Pionpairsarerequiredtohave|∆φ| < π/2andtobewithinthepairrapidityregionof|η | < 1.5. Opposite- k signpairsthathaveaninvariantmassclosethemassesofρ0,K0 andφarerejected. S The two-particle correlation function is defined as C(q) = A(q)/B(q), where q is the relative momentum q = pa − pb, A(q)=dN/dq| is the same-event distribution and B(q)=dN/dq| is the mixed-event same mixed distributioninthesameeventclass. In three dimensions, a longitudinally co-moving frame is chosen, such that pa = −pb. The coordinates z z aredefinedintheBertsch-Prattconvention[10,11], whereq showsinthedirectionofthepairmomen- out tum, q shows in the direction of the beam and q is perpendicular to the q and q . A graphical long side out long visualizationofBertsch-Prattcoordinatesisshowne.g. inRef.[12]. UsingtheBowler-Sinyukow[13,14] parametrization,thecorrelationfunctioncanwrittenas C(q)=(cid:2)(1−λ)+λK(q)C (q)(cid:3)Ω(q), (1) BE where λ, K(q), C (q) and Ω(q) is the correlation strength, a correction factor for final-state interactions, BE theBose-Einsteinenhancementfactorandthecontributionfromnon-femtoscopiccorrelations,respectively. TheBose-EinsteinfactorC (q)inthecorrelationfunctionisfittoanexponentialfunction BE (cid:16) (cid:17) C (q)=1+exp −Rˆqˆ , (2) BE where Rˆ and qˆ are the invariant radius R and the invariant momentum q in the one-dimensional case inv inv and a diagonal matrix with the entries R = diag(R ,R ,R ) and (cid:126)q = (q ,q ,q ) in the three- out long side out long side dimensionalcase,respectively. Thenon-femtoscopiccontributiontothecorrelationfunctionΩ(q)isestimatedbyafittotheopposite-sign pairdistribution Ω(qinv)=N(cid:104)1+λbkgexp(cid:16)−(cid:12)(cid:12)(cid:12)Rbkgqinv(cid:12)(cid:12)(cid:12)αbkg(cid:17)(cid:105), (3) whereN isanarbitrarynormalizationfactor,λ istheexperimentalcorrelationstrength,R isaparam- bkg bkg eterforthewidthandα isashapeparameter. Theoriginofthisbackgroundisidentifiedtobefromhard bkg 2ATLASusesaright-handedcoordinatesystemwithitsoriginatthenominalinteractionpoint(IP)inthecentreofthedetectorand thez-axisalongthebeampipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthey-axispointsupward.Cylindrical coordinates(r,φ)areusedinthetransverseplane,φbeingtheazimuthalanglearoundthez-axis.Thepseudorapidityisdefinedinterms ofthepolarangleθasη=−lntan(θ/2). M.K.Ko¨hleretal./NuclearPhysicsA00(2016)1–4 3 m] 7 m] 7 [fRout 6 ALinTt L=A 2S8 Pnrbe-1liminary 70-80% 40-50% [fRside 6 ATLAS Preliminary 70-80% 40-50% 5 10-20% 0-1% 5 10-20% 0-1% 4 4 3 3 2 2 1 1 Lint = 28 nb-1 p+Pb 2013, s = 5.02 TeV p+Pb 2013, s = 5.02 TeV NN NN 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 k [GeV] k [GeV] T T [fm]Rlong 67 ATLAS Preliminary 70-80% 40-50% RoutRside 11..46 ATLAS Preliminary 70-80% 40-50% 5 10-20% 0-1% 10-20% 0-1% 1.2 4 1 3 2 0.8 1 Lint = 28 nb-1 Lint = 28 nb-1 p+Pb 2013, s = 5.02 TeV 0.6 p+Pb 2013, s = 5.02 TeV NN NN 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 k [GeV] k [GeV] T T Fig.2.TheradiiRout(upperleftpanel),Rside(upperrightpanel)andRlong(lowerleftpanel)asafunctionofkTindifferentcentrality bins.ThelowerrightpanelshowstheratioofRout/RsideasfunctionofkT.Figuresfrom[9]. processes, such as particles from jet fragmentation. A mapping of the parameters λ and R between bkg bkg opposite-sign and same-sign is extracted from Monte Carlo simulations. It should be noted, that all pa- rametersdescribingthebackgroundareconstrainedbythismethod. Systematicuncertaintiesareestimated by taking into account the hard process background description, particle identification, effective Coulomb correctionsizeReff,chargeasymmetry,andtwoparticleeffects. Moredetailsonthedataanalysisprocedure canbefoundinRef.[9]. 3. Resultsandconclusions Figure1showstheinvariantradiiR asafunctionofthepairmomentumk andasafunctionofcube inv T rootoftheaveragechargedparticlemultiplicity(cid:104)dN /dη(cid:105)1/3. Themeasuredradiiareobservedtodecrease ch withincreasingk ,whichisconsistentwithcollectiveexpansion. Thisbehaviorislesssevereforperipheral T collisions. Figure2showstheresultsfortheradiiR ,R andR andtheratioR /R asafunctionofthepair out long side out side momentumk fordifferentcentralities. Theradiishowadecreasingtrendwithincreasingk . Inthemost T T centralevents0−1%, theradiiareaboutafactor2.5largerthaninperipheralcollisions70−80%. The ratio R /R falls significantly below 1, indicating a very rapid and explosive expansion of the fireball. out side Thisbehaviorcanbeexplainedbyacombinationofpre-thermalizedacceleration,astifferequationofstate, andaddingviscouscorrections[15]. In Fig. 3, the product R R R , which scales linearly with the volume, is shown as a function of the out side long 4 M.K.Ko¨hleretal./NuclearPhysicsA00(2016)1–4 3]m 90 3]m 90 R RR [foutlongside 56780000 pLi+ntP =b00 2..22580 <<1n 3bkk,-TT1 <<s N00N.. 36= GG5ee.0VV2 TeV R RR [foutlongside 56780000 GGGlGGaCCubFFe wwr ss(w ==s 00=.. 1201) 40 40 30 30 ATLAS Preliminary 20 20 0.2 < k < 0.3 GeV 10 10 T ATLAS Preliminary p+Pb 2013, s = 5.02 TeV NN 0 0 0 10 20 30 40 50 60 0 5 10 15 20 25 30 <dN /dh > <N > ch part Fig.3.TheproductRoutRsideRlongasafunctionof(cid:104)dNch/dη(cid:105)fortwodifferentkTintervals(leftpanel)andasafunctionof(cid:104)Npart(cid:105)for threedifferentmodelsdescribingtheinitialgeometry.Figuresfrom[9]. average multiplicity (cid:104)dN /dη(cid:105) for two intercepts of the pair momentum in the left panel. The volume is ch linearlyincreasingwithincreasing(cid:104)dN /dη(cid:105),indicatingaconstantsourcedensityatthemomentoffreeze- ch out. Theproductisalsoshownasafunctionof(cid:104)N (cid:105)fortheGlauberModelandfortheGlauber-Gribov part ColorFluctuationmodel(GGCF),includingdifferentvaluesω forthemagnitudeofthecolorfluctuations. σ Theextractionofcentralitydependentvaluesof(cid:104)N (cid:105)isdescribedinRef.[8]. part 4. Acknowledgement ThisworkwassupportedbyU.S.DepartmentofEnergygrantDE-FG02-86ER40281. References [1] CMSCollaboration,JHEP09(2010)091 [2] CMSCollaboration,Phys.Lett.B718(2013)795 [3] ATLASCollaboration,submittedtoPhys.Rev.Lett.,PreprintarXiv:1509.04776[hep-ex] [4] K.Aamodtetal.,ALICECollaboration,Phys.Lett.B696(2011)328 [5] ATLASCollaboration,Eur.Phys.J.C75(2015)466 [6] J.Adametal.,ALICECollaboration,Phys.Rev.C91(2015)034906 [7] ATLASCollaboration,JINST3(2008)S08003 [8] ATLASCollaboration,submittedtoEPJC,PreprintarXiv:1508.00848[hep-ex] [9] ATLASCollaboration,ATLAS-CONF-2015-054(2015), URL:http://cds.cern.ch/record/2055675/ [10] G.F.Bertsch,Nucl.Phys.A498(1989)173 [11] S.Pratt,Phys.Rev.D33(1986)1314 [12] M.Lisa,S.Pratt,R.ScholzandU.Wiedemann,Ann.Rev.Nucl.Part.Sci.55,(2005)357 [13] M.Bowler,Phys.Lett.B270(1991)69 [14] Y.Sinyukow,Phys.Lett.B432(1998)248 [15] S.Pratt,Phys.Rev.Lett.102(2009)232301

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.