FEM simulations of an Acoustic Radiation Force Impulse applied to a Soft Tissue with a Tumor Inclusion Lars Edvard Dæhli Mechanical Engineering Submission date: June 2013 Supervisor: Leif Rune Hellevik, KT Norwegian University of Science and Technology Department of Structural Engineering Institutt for konstruksjonsteknikk TILGJENGELIGHET Fakultet for ingeniørvitenskap og teknologi Åpen NTNU- Norges teknisk- naturvitenskapelige universitet MASTEROPPGAVE 2013 FAGOMRÅDE: DATO: ANTALL SIDER: 164 Beregningsmekanikk 10.06.2013 17+90+57 TITTEL: FEM-simuleringer av en svulst i et bløtt vev utsatt for bølgeindusert impulslast UTFØRT AV: Lars Edvard Bryhni Dæhli SAMMENDRAG: De elastiske egenskapene til bløtt vev kan estimeres ved å indusere lokale forskyvninger og skjærbølger. Vi har laget en plan tøynings FEM-modell for å simulere en stiv elastisk svulst inne i et bløtt vev. Det bløte vevet er påført en bølgeindusert impulslast. Vi har brukt et vev- etterlignende materiale for å representere de viskoelastiske materialegenskapene til bløtt vev, og kalibrert en Maxwell-modell ut i fra eksperimentelle data. Bølgelasten som genereres av en fokusert ultralydprobe ble beregnet i en ultralydsimulering. En gaussisk funksjon ble tilpasset lastfordelingen fra simuleringen og implementert i FEM-modellen som en impulslast. Fra FEM-simuleringene kunne vi se at den påførte impulslasten induserte lokale aksielle forskyvninger i fokalpunktet, som videre dannet en skjærbølge som forflyttet seg vekk fra fokalpunktet. Basert på den tidsavhengige forskyvningen i fokalpunktet og skjærbølgepropagasjonen gjennom det heterogene vevet, så har vi undersøkt tre forskjellige metoder for å estimere den elastiske stivheten: (i) ved å bruke skjærbølgehastigheten; (ii) ved å betrakte skjærbølgerefleksjonene fra svulsten; (iii) ved å måle tiden det tar før vi oppnår maksimal forskyvning i fokalpunktet. Skjærbølgehastigheten ble eksakt gjengitt i det bløte vevet, men skjærbølgehastigheten i svulsten var avhengig av størrelsen og formen til svulsten, noe som resulterte i upålitelige estimater av stivheten til svulsten. Skjærbølgerefleksjonene fra svulsten var kompliserte, og refleksjonsfaktoren var avhengig av formen til svulsten. Vi må vite stivheten til det bløte vevet på forhånd, for å kunne bestemme stivheten til svulsten. Ved å måle tiden før maksimal forskyvning inntraff, så vi at denne tiden var relatert til stivheten. Vesentlige problemer ved denne metoden er at den var avhengig av varigheten på impulslasten, at den bare kan brukes for en perfekt Gaussisk ultralydbølge og at det kan være vanskelig å observere når maksimalforskyvningen inntreffer, på grunn av begrensede målefrekvenser på ultralydproben. FAGLÆRER: Professor Leif Rune Hellevik VEILEDER(E): Professor Leif Rune Hellevik, Førsteamanuensis Victorien Prot, Post.doc Abigail Swillens (Universitetet i Gent) UTFØRT VED: Institutt for konstruksjonsteknikk Department of Structural Engineering Faculty of Engineering Science and Technology NTNU - Norwegian University of Science and Technology MASTER THESIS 2013 for Lars Edvard Bryhni Dæhli FEM simulations of an Acoustic Radiation Force Impulse applied to a Soft Tissue with a Tumor Inclusion FEM-simuleringer av en svulst i et bløtt vev utsatt for bølgeindusert impulslast Softtissuesconsistmainlyofwaterandtheremainingpartismadeupofcellularstructures. The material properties of soft tissues are consequently quite similar to those of water, in terms of mass density and volume elasticity. Water does not have any resistance to shear deformations, but the cellular structure gives the soft tissue shear stiffness. Tumors have higher stiffness than the surrounding soft tissue and they can be felt by manual palpation of the tissue. However, this is not possible for tumors that are small in size or located deep within the tissue. Due to the relatively low shear stiffness, ultrasound induced shear waves travel at a much lower speed than the ultrasound compression waves. The shear wave speed is therefore easier to measure than the compression wave speed. Modern ultrasound techniques takes advantage of this and measures the shear wave speed in the tissue to determine the elastic stiffness. In this thesis the relation between measurements and material properties should be assessed by means of FEM simulations. Suggested content for the thesis are: (cid:136) A study of relevant theory, such as ultrasound and wave propagation. (cid:136) Finite element simulations of wave propagation in a soft tissue. The thesis should be organized according to existing guidelines. Supervisors: Prof. Leif Rune Hellevik (NTNU), Ass.Prof. Victorien Emile Prot (NTNU), Post.Doc. Abigail Swillens (UGhent) The thesis should be delivered at the Department of Structural Engineering within the 10th of June. Leif Rune Hellevik Main supervisor Abstract Theelasticstiffnesspropertiesofsofttissuescanbeestimatedbytheuseoflocallyinduced displacementsandshearwaves. Inthiswork,wehavemadeatwo-dimensionalplanestrain finiteelementmodeltosimulateasofttissuewithastifferelasticinclusion. Thesofttissue was subjected to an acoustic radiation force impulse. The elastic inclusion represents a potential tumor within the healthy tissue. We have used a tissue-mimicking gel-agar phantom to represent the viscoelastic material properties of soft tissue and calibrated a three-element Maxwell model based on stress relaxation data from an experiment carried outonthegel-agarphantom. ThecalibratedMaxwellmodelwasverifiedinafiniteelement simulationofthestressrelaxationtest. Theacousticradiationforcegeneratedbyafocused linear array transducer was determined from an ultrasound pressure field simulation. A three-element Gaussian function was fitted to the resulting acoustic radiation force field and implemented as a body force in the finite element model. From the finite element analyses of the soft tissue with an inclusion, we found that the applied body force induced a local axial displacement in the focal region, which gave rise to a shear wave propagating away from the region of excitation. Based on the time dependent axial displacement profile in the focal region and the shear wave propagation through the heterogeneous tissue, we have examined three different ways of estimating the elastic stiffness: (i) using the shear wave speeds; (ii) using shear wave reflection factor values; (iii) using the time to peak displacement in the focal region. We found that the shear wave speed was accurately (<0.15 % deviance) represented in the soft tissue and could be used to estimate the elastic stiffness in this region. However, the shear wave speed in the tumor was dependent upon the size and shape of the tumor, which resulted in unreliable stiffness estimates. The shear wave reflections from the tumor were rather complex and the reflection factor was highly dependent upon the shape of the tumor. Also,wemustknowtheelasticstiffnessvalueofthehealthytissueinadvance,since the shear wave reflection only provides information about the relative stiffness difference between the healthy tissue and the tumor. Thus, this method may be used to locate an inclusion, but cannot be used to quantify the stiffness of neither the surrounding tissue nor the inclusion. The time to peak displacement was inversely related to the stiffness and independent of the load magnitude, which is favorable for medical imaging application. However, the time to peak displacement was dependent upon the impulse time of the appliedloadandcanonlybedirectlyrelatedtotheelasticstiffnessforaperfectlyGaussian ultrasound beam. Also, limitations of the pulse repetition frequency can make it difficult to detect the peak displacement. The results in this thesis indicate that stiffness estimation methods based on shear wave speed measurements are most reliable. Preface This work is conducted as my master thesis concluding my M.Sc degree in Mechanical Engineering at Norwegian University of Science and Technology (NTNU). The thesis was written in the period between 14th of January and 10th of June 2013 at the Department of Structural Engineering. Cancer, referred to as malignant tumors, is the cause of about 13 % of all human deaths worldwide [1]. If these malignant tumors are detected at an early stage, the number of deaths may be reduced. Today, different imaging techniques have been developed in order to detect tumors within healthy tissue. In regard to this, the Finite Element Method (FEM) may be used to examine the reliability of such imaging techniques. I was intrigued by this application of FEM and decided to dedicate my master thesis to this topic. Acknowledgments First, I would like to thank my main supervisor Professor Leif Rune Hellevik at the DepartmentofStructuralEngineeringforhisvaluableguidancethroughoutthesemester. I wouldalsoliketothankco-supervisorAssociateProfessorVictorienEmileProtforsharing his thoughts and knowledge. I would like to express my appreciation to co-supervisor Post-Doctoral Researcher Abigail Swillens at Ghent University for answering an enormous amount of questions and showing interest in my work. Also, I would like to thank Annette Caenan for providing experimental data. In addition, I think it is in order to thank my peers Arne, Erik, Johan and Knut for all the fruitful discussions and the great atmosphere in the office. Lastly, thanks to my partner in crime, Caroline, for letting me spend most of the time at the university writing this thesis. 3
Description: