ebook img

Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids PDF

27 Pages·2015·1.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids

RESEARCHARTICLE Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore CarlosH.Z.Martins1,2☯,BeatrizP.Cunha3‡,VeraN.Solferini3‡,JoséR.Trigo1☯* 1 LaboratóriodeEcologiaQuímica,DepartamentodeBiologiaAnimal,InstitutodeBiologia,UNICAMP, CaixaPostal6109,13083–970,Campinas,SãoPaulo,Brazil,2 ProgramadePós-GraduaçãoemBiologia FuncionaleMolecular,InstitutodeBiologia,UNICAMP,CaixaPostal6109,13084–970,Campinas,São Paulo,Brazil,3 DepartamentodeGenéticaeEvolução,InstitutodeBiologia,Unicamp,CaixaPostal6109, 13083–970,Campinas,SãoPaulo,Brazil ☯Theseauthorscontributedequallytothiswork. ‡Theseauthorsalsocontributedequallytothiswork. *[email protected] Abstract OPENACCESS Citation:MartinsCHZ,CunhaBP,SolferiniVN,Trigo Sequestrationofchemicaldefensesfromhostplantsisastrategywidelyusedbyherbivo- JR(2015)FeedingonHostPlantswithDifferent rousinsectstoavoidpredation.LarvaeofthearctiinemothUtetheisaornatrixfeedingon ConcentrationsandStructuresofPyrrolizidine unripeseedsandleavesofmanyspeciesofCrotalaria(Leguminosae)sequesterN-oxides AlkaloidsImpactstheChemical-Defense EffectivenessofaSpecialistHerbivore.PLoSONE ofpyrrolizidinealkaloids(PAs)fromthesehostplants,andtransferthemtoadultsthrough 10(10):e0141480.doi:10.1371/journal.pone.0141480 thepupalstage.PAsconferprotectionagainstpredationonalllifestagesofU.ornatrix. Editor:PeterSchausberger,UniversityofNatural AsU.ornatrixalsousesotherCrotalariaspeciesashostplants,weevaluatedwhetherthe ResourcesandLifeSciences,AUSTRIA PAchemicaldefenseagainstpredationisindependentofhostplantuse.Wefedlarvae Received:March26,2015 fromhatchingtopupationwitheitherleavesorseedsofoneofeightCrotalariaspecies (C.incana,C.juncea,C.micans,C.ochroleuca,C.pallida,C.paulina,C.spectabilis,and Accepted:October8,2015 C.vitellina),andtestedifadultswerepreyeduponorreleasedbytheorb-weavingspider Published:October30,2015 Nephilaclavipes.Wefoundthattheprotectionagainstthespiderwasmoreeffectivein Copyright:©2015Martinsetal.Thisisanopen adultswhoselarvaefedonseeds,whichhadahigherPAconcentrationthanleaves.The accessarticledistributedunderthetermsofthe exceptionswereadultsfromlarvaefedonC.paulina,C.spectabilisandC.vitellinaleaves, CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany whichshowedhighPAconcentrations.WithrespecttothePAprofile,wedescribeforthe medium,providedtheoriginalauthorandsourceare firsttimeinsect-PAsinU.ornatrix.ThesePAs,biosynthesizedfromthenecinebaseretro- credited. necineofplantorigin,ormonocrotaline-andsenecionine-typePAssequesteredfromhost DataAvailabilityStatement:Allrelevantdataare plants,wereequallyactiveinmothchemicaldefense,inadose-dependentmanner.These withinthepaper. resultsarealsopartiallyexplainedbyhostplantphylogeny,sincePAsofthehostplantsdo Funding:Financialsupportwasprovidedby haveaphylogeneticsignal(cladeswithhighandlowPAconcentrationsinleaves)whichis FAPESPtoJRT(11/17708-0)andVNS(12/02526-7), reflectedintheadultdefense. andCNPqtoJRT(306103/2013-3).Thefundershad noroleinstudydesign,datacollectionandanalysis, decisiontopublish,orpreparationofthemanuscript. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 1/27 ChemicalDefenseinaSpecialistHerbivore Introduction Defensesevolvedbyanimalstoavoidpredationareubiquitousinnature,anddifferentdefen- sivestrategieshaveevolvedinresponsetodifferentlifestyles.Themyriaddefensivestrategies includeavoidingdetection,preventingattack,anddeceivingpredators[1].Someherbivorous insectsfeedingonchemicallyprotectedhostplantsareabletoovercometheseplantdefenses bysequesteringplantsecondarycompounds,andusingthemfortheirowndefenseagainst predatorattack[2–4].Sequestrationmayhaveevolvedindependentlyindifferenttaxaofher- bivorousinsects.ItpredominatesinColeopteraandLepidoptera,butalsooccursfrequentlyin theHeteroptera,Hymenoptera,OrthopteraandSternorrhyncha[4].Thesequestereddefensive compoundscompriseavastarrayofnaturalproductsofdifferentbiosyntheticpathways,such ascardenolides,cyanogenicandiridoidglycosides,aristolochicacids,glucosinolatesandpyrro- lizidinealkaloids.Thesesubstancesareeffectiveagainstavarietyofpredators,rangingfrom invertebratesincludingspidersandants,tovertebratesincludingbirdsandmammals[2–5]. Generally,theeffectivenessofchemicaldefensesagainstpredationisdose-and/orstruc- ture-dependent[3].Highconcentrationsofsequesteredcompoundsintheherbivorousprey aremoreeffectiveagainstpredators,andtheireffectivenessisusuallyrelatedtotheconcentra- tionofthesecompoundsinthehostplants.Differentstructuresofthesameclassofcom- poundsmayalsoshowdifferentactivitiesagainstpredation.Forinstance,apalatability spectrumofthemonarchandqueenbutterflies,DanausplexippusandD.gilippus,wasfound tobeassociatedwiththeamountofcardenolidessequesteredfromdifferenthostplants[6,7]. ThispatternhasbeenalsoobservedintheadultsofthenymphalidbutterflyEuphydryaspha- eton,whichacquireddefensiveiridoidglycosidesaslarvaefromtwodifferenthostplants[8,9]; andintheadultsoftheheliconiinebutterflyHeliconiuserato,whoselarvaefeedonfourspecies ofPassiflora[10].Additionally,SilvaandTrigo[11]demonstratedthatpyrrolizidinealkaloids haveapositivedose-dependentactivityintheprotectionofinsectsagainsttheorb-weavingspi- derNephilaclavipes(Nephilidae).Inthesamestudy,theyshowedthatdifferentPAstructures haddifferentantipredationactivities. Amongthedefensivecompoundssequesteredbyherbivorousinsects,theroleofpyrrolizi- dinealkaloids(PAs)hasbeenwelldocumented[12].Thesecompoundsareproducedbyplants inseveralfamilies(e.g.Asteraceae,BoraginaceaeandLeguminosae),andaresequesteredby specialistgrasshoppers,hemipterans,beetles,mothsandbutterflies[5,13,14],wheretheyshow defensiveandsexualcommunicationfunctions[14].PAsinspecializedinsectsarealwayspres- entinN-oxideform[15].ManyarctiinemothsconvertPAssequesteredfromtheirlarvalhost plantsinto“insect-PAs”inwhichtheacidcomponentsofthealkaloidsarereplacedbysmall, branchedaliphatic2-hydroxyacidsofinsectorigin[16].ThesePAsofinsectoriginareprecur- sorsofthemalesexpheromoneinthesemoths[16]. ThearctiinerattleboxmothUtetheisaornatrixisoneofthemost-studiedspecieswith respecttoitsecologicaldependenceonPAs[5,14,17–19].U.ornatrixoccursintheNeotropics andwarmNearcticregions[20],whereitfeedsonmanyspeciesofCrotalarialegumes[21]. ThegenusCrotalariahasaPantropicaldistribution,andsomemembershavecolonizedthe warmerpartsoftheNearcticregion[22].ThelarvaeofU.ornatrixsequesterthesealkaloids, andpassthemtopupaeandadults.Duringmating,malestransferPAstofemales,whichtrans- ferthemtotheeggs.Therefore,alllifestagesofU.ornatrixareprotectedbyPAsagainstpreda- tors[14].Eisner[23]firstdemonstratedthattheunpalatabilityofU.ornatrixadultsisdueto PAsintheirtissues,andthatthealkaloidoriginatesfromthelarvalhostplant,Crotalariapal- lida(formerlyC.mucronata).EisnerfoundthatadultsofU.ornatrixwereprotectedagainst theorb-weavingspiderNephilaclavipes,aswellasfromotherspiders,andbirds.Additional evidenceofthedefensiveroleofPAsinU.ornatrixcamefrombioassays,withPAstopically PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 2/27 ChemicalDefenseinaSpecialistHerbivore appliedonpalatableorganismsorbyofferingdietswithorwithoutPAstoPA-specialist insects,andtestingtheseorganismsagainstvariouspredators[5]. AlthoughitissuggestedthattheunpalatabilityofU.ornatrixmaybecloselyrelatedtothe amountofPAsintheirhost-planttissues,fewstudieshavedemonstratedthisrelationship.Eis- neretal.[14,23–25]testedtheadults,withandwithoutPAs,againstspidersandbirds,butno dose-activitybioassaywascarriedout.Ferroetal.[26]foundthatthedifferencesinadultpalat- abilityincreasedwhentheirlarvaefedonunripeseedsandleavesofC.pallida.Theleaveshad alowerPAcontentthanunripeseeds,andconsequentlythelarvaefedonleavesweremore consumedbyN.clavipesthanthosefedonunripeseeds.Likewise,HristovandConner[27] alsoshowedthatU.ornatrixfedonleavesofC.spectabilisweremorepredatedbythebatEpte- sicusfuscuscomparedtomothsfedonseeds;mothsraisedinadietfreeofPAswerepalatable tothebats. AnimportantissuethatremainsunclearistheroleofPAstructureinthechemicaldefense ofU.ornatrix.Dodifferentstructuresconferdifferentlevelsofdefense?Eisneretal.[23–25] raisedU.ornatrixonitsusaraminePA-containinghostplant(C.pallida)andobservedthatthe mothwasrejectedbythespidersN.clavipesandLycosaceratiola,whilemothsraisedonadiet freeofPAswerepreyedupon.SimilarresultswerefoundforL.ceratiola,whichreleasedU. ornatrixraisedonadietsuppliedwithPAmonocrotaline,themainPAofC.spectabilis[24,25]. IntwootherstudiesonchemicaldefenseofU.ornatrixadults,larvaewerealsoraisedonC.pal- lidaorC.spectabilis,andthereforethePAsinvolvedinthedefensewererespectively,usara- mineandmonocrotaline[26,27].However,larvaeofU.ornatrixcanfeedonmanyCrotalaria species[21,28],withdifferentPAconcentrationsandprofiles[29].ThefindingthatC.pallida andC.spectabilisconferredsimilarlevelsofdefenseinspiteofcontainingdifferentPAsledus tohypothesizethatthestructureisunimportantindeterminingpalatability.Ourpredictions were:(1)adultsfromlarvaethatfedonplantsorplantpartswithhighPAcontentswouldbe betterdefendedthanthosethatfedonplantsorplantpartswithlowPAcontents,and(2)PA structurewouldplaynoroleinthemothchemicaldefenses. Anotherpointthathasnotbeenexaminedinstudiesofchemicaldefensesofherbivores sequesteredfromtheirhostplantsistheroleofhostplantphylogeny.Itwouldbeexpectedthat phylogeneticallyrelatedhostplantsproducesimilarcompoundsavailableforsequestrationby insects.Thereforewecannotconsidereachhostplantspeciesasindependentforcomparative analysis(e.g.[30]).Ifphylogeneticinertiaisstrong,thepotentialadaptationsthatrelatedspe- ciesmayevolvewillbesimilarlyconstrained,withtheeffectthatspeciescannotberegardedas independentofeachother[31].Consequently,itwasnecessarytotakeintoaccountthehost plantphylogeny,inordertocomparethesequesteredchemicaldefensesinanherbivorous insect.Toourknowledge,thisapproachhasneverbeentakeninpublishedstudies.Forexam- ple,evenforthemonarchbutterfly,awell-studiedmodelofsequesteredchemicalcompounds, theconnectionbetweeninsectdefensesandhostplantphylogeneticrelationshipshasnever beenexplored,althoughthephylogenetictrendsrelatedtochemicaldefensesarewellknownin Asclepias[32,33].Therefore,weexploredthequestionofwhetherCrotalariaphylogenydirects anytrendforthechemicaldefensesofU.ornatrix.Wehypothesizedthatmothsthatfedon phylogeneticallyrelatedhostplantswouldshowsimilardefensivepatterns. Toaddressourhypothesisandpredictions,wefedlarvaeonleavesorseedsofeightdifferent CrotalariaspeciesfoundintheNeotropics,whichwerenative,non-nativeorofuncertainori- gin,withdifferentPAconcentrationsandprofiles[29].Theadultsthatemergedfromlarvae fedthedifferentdietswereofferedtothespiderN.clavipesinapredationbioassay.Weana- lyzedthePAconcentrationsandprofilesforU.ornatrixadultsandCrotalariaspecies,andcor- relatedthePAconcentrationsofadultswiththePAcontentsoftheplantpartstheyfedonas larvae.WealsocorrelatedthePAconcentrationandprofilebetweenthemothsandthespider PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 3/27 ChemicalDefenseinaSpecialistHerbivore responseinthepredatorbioassay.Thiscorrelationwillorwillnotsupportourfirstprediction. SincewefounddifferentclassesofPAsinU.ornatrix,wealsobioassayedthethreemostcom- monclassesagainstthespidertotestoursecondprediction.Finally,wemappedthePAprofiles andconcentrationsinCrotalariaspecies,thePAconcentrationsinthemoth,andthedefensive responseofN.clavipesagainstanindependentphylogenetichypothesisfortheeightCrotalaria species,inordertotestourlasthypothesis. MaterialsandMethods StudySystem TherattleboxmothUtetheisaornatrix(Erebidae:Arctiinae)isprimarilyNeotropicaland extendstowarmerareasoftheNearcticregion[20].U.ornatrix,togetherwithfivespeciesthat occuronlyintheGalapagosIslands,aretheextantUtetheisaspeciesintheNeotropics[34,35]. TheadultsaregenerallyfoundflyingnearpatchesofCrotalariainpastures,theedgeofwoods androadsides,wherethelarvaecanbefoundfeedingonbothleavesorseedsinsidetheunripe podsofCrotalaria[21,26,28]. Crotalaria(Leguminosae:Papilionoideae:Crotalarieae)isaPantropicalgenusofweeds, comprisingapproximately702species[22,36].IntheNeotropics,particularlyinBrazil,31 nativeand11non-nativespecieshavebeenrecorded[37].CrotalariaspeciesarerichinPAs [34],whicharefoundinhigherconcentrationsinseedsthaninleaves[26].InadditiontoPAs, Crotalariaspecieshaveotherdefensivetraitsagainstherbivoresincludingantifeedingdeter- rentssuchaslectins[38],non-proteinaminoacids[39]andproteaseinhibitors[40].Theyalso haveextrafloralnectaries(EFNs)thatattractpredatoryantsandwasps[26,41–43].Weused eightspeciesofCrotalaria,includingthreenatives,threenon-natives,andtwowithuncertain origins(Table1),thathavebeenplantedinanopenareaneartheAnimalBiologyDepartment, InstituteofBiologyattheStateUniversityofCampinas,Campinas,SãoPaulo,Brazil(22° 49'15.38"S,047°04'8.87"W).Innaturalenvironments,wehaveobservedU.ornatrixusingC. incana,C.micans,C.spectabilis,C.pallidaandC.vitellineashostplants.Fortheotherthree species,wehavenoinformationabouttheirnaturalusebyU.ornatrix. Theneotropicalorb-weavingspiderNephilaclavipes(Nephilidae)isapredatorthatbuilds itswebinforestclearingsandcorridors,whichareflightpathsforinsects[44].Thisspider preysongrasshoppers,bees,wasps,moths,andbutterflies,butisabletodiscriminatePA- containinginsects,releasingthemunharmed[5](Fig1).Intheedgesofwoods,thisspiderco- occurswithU.ornatrix. ThepermitforresearchwithwildanimalswasprovidedbyIBAMA-ICMBio(Ministériodo MeioAmbiente,Brazil). RearingUtetheisaornatrixLarvae WeobtainedlarvaeofU.ornatrixfromadultscollectedontheFazendaSantaMariana,Campi- nas,SãoPaulo,Brazil(22°47’02.91”S,47°00’36.03”W),wherethehostplantC.pallidaisabun- dant.Webroughttheadultstothelaboratory,sexedthemfollowingTravassos[45],and allowedthemtomate(20malesand10femalespercage)inapapercage(ca.3.2L)following Cogni[28].Wesuppliedfoodinavialcontaining5.0%aqueoushoney.After3–4days,the adultsstartedtoovipositonthepaper-cagesurfaces.Theeggsweremixedtorandomizethe parentalorigin.Aftereclosion,werearedthefirstinstarsonleavesorunripeseedsofoneofthe eightspeciesofCrotalaria.WealsorearedagroupoffirstinstarsonaPA-freediet,following Cognietal.[46].Foreachtreatment(dietsofleavesorunripeseedsofeachspeciesofCrota- laria),werearedca.20individualsinaplasticcontainer(6cmhigh,20cmdiameter)until pupation.Forsometreatments,dependingontheavailabilityofseedsandleaves,wehad2or PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 4/27 ChemicalDefenseinaSpecialistHerbivore Table1. SpeciesofCrotalariausedtofeedlarvaeofUtetheisaornatrixforNephilaclavipesbioassayandPAanalysis. Species Section Nativerange C.incanaL. Chrysocalycinae Pantropical(uncertainorigin)2 C.junceaL. Calycinae India,Asia2 C.micansLink Chrysocalycinae Neotropics1,2 C.ochroleucaG.Don Hedriocarpae TropicalAfrica2 C.pallidaAiton Hedriocarpae Pantropical(uncertainorigin)2 C.paulinaSchrank Calycinae Neotropics1,2 C.spectabilisRoth Crotalaria Asia2 C.vitellinaKerGawler Chrysocalycinae Neotropics1 1Flores[38] 2Polhill[22] doi:10.1371/journal.pone.0141480.t001 3containers,giving40–60individualspertreatment.Thelarvaewerefedadlibitum.We inspectedthecontainersdaily,removingfecesanddeadindividuals,andreplacingtheleavesor seedswithnewones.Wemovedthepupaetoanothercontainerwiththesamedimensions untiladultemergence,sincethelarvaecancannibalizepupae[47].Wecarriedoutthesame procedureforpupaefromthePA-freediet.Wemovednewlyemergedadultstopapercages, separatingthembytreatmentandsex,untilthespider-predationbioassays.Wekeptboththe papercageswithadultsandtheplasticcontainerswithlarvaeandhostplants,orpupae,at roomtemperature. PredationBioassaywithLivingMoths WecarriedoutthebioassayswithNephilaclavipesinasmallpatchofwoodsinCampinas(22° 48'21.26"S,47°4'43.12"W)fromMarchtoMayin2012and2013,whenthespiderswereabun- dant.Weconducedallbioassaysbetween09:00and16:00hs.Weusedonlyadultfemalespi- dersthatrespondedimmediatelywhenanypreywastossedintotheirweb.Wedidnotuse spidersthatwereinthecourseoffeedingonapreyinsect,butwedidnotcontrolforsatiation beforeeachbioassay.Weusedaround80spidersforthebioassays.Sincethenumberofspiders wasalimitingfactor,sometimeswerepeatedthebioassayswiththesamespider,buteachindi- vidualwasusedonlyonceperweek.Webioassayed481adultmoths,testingaround20individ- ualsforeachsex,hostplantandplantpart.Wemadeasmallcutinthemoth'shindwings beforeplacingitontheweb,topreventthemothfromflyingawayifreleasedbythespider.We placedthemothontheweb,andrecordedifitwaseatenorreleased.Weconsideredthespider responsetobepredationwhenitbit,wrappedandkilledthemoth.Whenthespidercutthe webaroundthemothaftertouchingitandfreeditunharmed,werecordedtheresponseasa release.WedidnotrecordtherejectionbehaviordescribedbyVasconcellos-NetoandLewin- sohn[48](thepreywasinitiallysuckedandthenfreed),sincethepreywasremovedfromthe webbeforethisstage.Ifthespiderreleasedthemoth,weofferedapalatablefreeze-killedmeal- wormTenebriomolitor(Coleoptera:Tenebrionidae)asacontrol.Werecordedthetrialasa rejectiononlyifthespiderfedonthemealworm.Ifthespiderkilledtheexperimentalmoth,we didnotusethecontrol.Whenpredationwasrecorded,weimmediatelyremovedthemoth fromthewebandplaceditina1.5-mLEppendorftubefilledwithMeOHforfurtherPAanaly- sis.Allmothswererecoveredintact;eventhepartsbittenbythespiderhadnovisiblesignsof damage.WealsopreservedthereleasedmothsinMeOHasabove.Weanalyzed310individu- als;171werenotusedforPAanalysis,sincetheywerelostafterthespiderbioassay. PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 5/27 ChemicalDefenseinaSpecialistHerbivore Fig1.FemaleofNephilaclavipeshandlinganadultmaleofUtetheisaornatrix.Notethatthespidertouchesthemothwithherpedipalps,probably evaluatingthecontentofdefensivepyrrolizidinealkaloids. doi:10.1371/journal.pone.0141480.g001 PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 6/27 ChemicalDefenseinaSpecialistHerbivore PyrrolizidineAlkaloids:Extraction,Quantification,Characterizationand Isolation ToquantifythePAs,weextractedthefreeze-driedsamplesofunripeseeds,leavesofhostplants oradultmothsthreetimeswithEtOH(10xvolume:weight).WecentrifugedtheEtOHextract at10,416rcffor10min,andrecoveredtheEtOHlayer.WecompletedtheEtOHlayerto20 mLandtookanaliquot(0.1or1.0mL)tocarryoutthecolorimetricanalysisaccordingto Trigoetal.[49,50].Weusedmonocrotalineforthereferencecurve.ThetotalPAconcentration wasgiveninμgofPAs/mgofdryweight. ForPAcharacterizationbygaschromatography-massspectrometry(GC-MS),weextracted theplantorinsectsamplesusingtheacid-baseproceduresdescribedbyTrigoetal.[49,50]. TheGC-MSanalysiswascarriedoutinelectronimpactmodeaccordingtoFloresetal.[29]. Theretentionindicesandmassfragmentationpatternswerecomparedwithpublisheddescrip- tions(seeTable2,andreferences[29,51,52]). ForPAcharacterizationbyliquidchromatography-massspectrometrythesampleswere extractedinEtOHasabove.TheEtOHlayerwasevaporatedinarotaevaporatorat40°C,recov- eredwith1.5mL2%aqueousaceticacidandcleaned3timeswiththesamevolumeofhexane. Theacidsolutionwasaddedtoaclean2-mLvial,capped,andstoredat-20°CuntilLC-MS analysis.WeusedanAgilent1260InfinityQuaternaryLC,equippedwithanEclipsePlusC-18 column,4.6x250mm,5μm,andaguardcolumnwiththesamephase,coupledwithanAgi- lent6130singlequadrupoleinelectrosprayionizationmode.Thecolumnwaskeptat40°C, andtheinjectionvolumewas5to50μl.ThePAwasseparatedusingalineargradientcontain- ingaqueous20mMammoniumacetateandMeOHatflowrate0.5mL/min.Thegradient startedat95%ammoniumacetate:5%MeOH(3min),MeOHwasraisedto100%in25min, andkeptat100%for3min.Themassspectrometerwasruninpositivemode,scanningthe productionsfrom100–500amu(seeTable2). ForthepredationbioassayswithpurePAsinN-oxideform,weisolatedmonocrotaline fromC.spectabilis,integerriminefromSeneciobrasiliensis(Asteraceae:Senecioneae)andthe putativemixtureinsectPAscreatonotineB:iso-creatonotineB(Fig2)fromadultsofU.orna- trixthatfedaslarvaeonleavesandunripeseedsofC.vitellina.WeextractedPAsusingthe acid-baseprocedureasdescribedabove,andisolatedthemusinganadsorptioncolumnchro- matograph(40cmlength,2.5cmdiameter),usingSilicaGel70–325meshasthestationary phase,andagradientfromCHCl toCHCl :MeOH:Et N85:14:1asthemobilephase.Wefol- 3 3 3 lowedthePAsin10-mLfractionsbysilica-gelthin-layerchromatographywithCHCl :MeOH: 3 NH OH85:14:1aseluentandDragendorff'sreagentfordetection.WeN-oxidizedthePAsand 4 purifiedthemusingtheproceduredescribedbyCraigandPuroshothaman[53]. PredationBioassaywithPurePyrrolizidineAlkaloids WefoundthatadultsofU.ornatrixgenerallycontainedPAN-oxidesofmonocrotalineand integerriminetypes,andthespecificmixtureofinsectPAscreatonotineB:iso-creatonotineB (seeResults).WecarriedoutpredationbioassayswithN.clavipestodetermineifPAN-oxides withdifferentstructureshadsimilaractivityagainstthespider.Thebioassayswerecarriedout inthesameareawherewecarriedoutthepredationbioassaywithlivingmoths. Wetreatedpalatablefreeze-killedlarvaeofthemealwormT.molitor(hereafterbaits)with 3.0μg/mgdryweightofeachalkaloid,whichwereobtainedasdescribedabove.Thisconcen- trationwasdeterminedbycalculatingthelogisticregressionoftheN.clavipesresponseinrela- tiontoPAconcentrationinadultsofU.ornatrixfedaslarvaeononeoftheeightdifferenthost plants(seeStatisticalanalyses),whereat3.0μg/mgtheprobabilityofreleasebythespiderwas 87%.ToevaluatewhetherthePAconcentrationalsoplayedanyroleinthechemicalprotection PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 7/27 ChemicalDefenseinaSpecialistHerbivore Table2. MassfragmentationpatternofpyrrolizidinealkaloidsfoundinCrotalariaspeciesandinadultsofUtetheisaornatrixfedonthesehost plants. Theanalyseswerecarriedoutbygaschromatography-massspectrometry(GC-MS)inelectronimpactmodeandliquidchromatography-massspec- trometry(LC-MS)inelectrosprayionizationmode. Pyrrolizidinealkaloids RIa Rtb DiagnosticionsforGC-MSc,m/z(%) Diagnosticionsfor Referencefor LC-MSd,m/z(%) GC-MSe Retronecine 1487 6.085 [M+]155(23),111(60),94(17),80(100) [2M+H]+343(9),[M [29]1 +H]+172(100) 9-(2’-Hydroxy)-ethanoylretronecine- 1795 nd [M+]227(2),183(6),138(62),120(6),93 nd [29]1 like (100),80(40) 9-(2-Hydroxy-3-methylpentanoyl)- 1831 nd [M]+255(2),142(6),125(10),124(100),96 nd [52]1 trachelanthamidine (4),83(20),82(12) CreatonotineB-like 1840 nd [M]+255(3),211(7),138(99),124(13),120 nd [51]2 (11),94(40),93(100),80(25) 7-Senecioylretronecine-like 1861 nd [M]+237(5),137(29),136(18),94(25),93 nd [29]1 (10),80(100) 9-Senecioylretronecine-like 1890 nd [M]+237(3),193(9),154(15),138(27),137 nd [29]1 (28),136(20),94(24),93(100),80(20) Iso-creatonotineB 2024 22.075 [M]+269(3),251(10),138(40),124(17), [M+Na]+308(11),[M [51]1 120(26),111(61),106(51),94(26),80 +H]+286(100) (100) 7-Octanoylretronecine-like 2031 nd [M]+281(50),220(19),154(8),136(22), nd [29]1 124(22),111(69),106(47),94(24),80 (100) CreatonotineB 2048 22.969 [M]+269(<1),251(1),225(5),138(100),93 [M+Na+]308(6),[M [51]1 (88),80(18) +H]+286(100) 9-Octanoylretronecine-like 2052 nd [M]+281(5),236(6),138(62),120(26),106 nd [29]2 (13),94(47),93(100),80(44) 1,2-DihydrocreatonotineB 2064 nd [M]+271(4),210(12),171(20),140(25), nd [52]1 139(11),114(10),96(34),95(70),82(100) 9-(5’-Hydroxy)- 2082 24.162 [M]+283(1),224(4),155(24),138(65),93 [M+Na]+322(14),[M [29]1 heptanoylretronecine-like (100),80(19) +H]+300(100) Crispatine-like 2175 22.598 [M]+309(2),222(7),136(88),120(83),119 [M+Na]+348(11),[M [29]3 (100),93(62),80(29) +H]+326(100) Unknownmonocrotaline-type 2243 24.936 [M]+323(3),236(4),208(10),136(97),120 [M+Na]+362(9),[M [29]3 (87),119(100),93(54),80(27) +H]+340(100) Incanine-like 2315 27.280 [M]+337(6),264(11),250(5),222(8),136 [M+Na+]376(15),[M [29]1 (100),120(76),119(79),93(49),80(27) +H+]354(100) Monocrotaline 2336 18.610 [M+]325(1),254(3),236(46),136(52),120 [M+Na]+364(6),[M [29]1 (100),93(38),80(19) +H]+342(100) Senecionine/Integerrimine 2339/ 26.789/ [M]+335(6),291(12),248(12),220(21), [M+Na)+]374(13),[M [29]1 2410 25.111 136(97),120(100),93(83),80(34) +H]+352(100) Trichodesmine-like 2341/ 25.326 [M]+353(6),264(100),136(31),120(35), [M+Na]+392(17),[M [29]1 2348 93(44),80(14) +H]+370(100) Unknownmonocrotaline-type 2346 26.050 [M]+337(2),222(5),136(58),120(89),119 [M+Na]+376(20),[M [29]3 (100),93(40),80(18) +H]+354(100) Unknownmonocrotaline-type 2346 nd [M]+353(2),264(45),136(75),120(100), nd [29]2 93(70),80(25) Senecionine-like 2376 nd [M]+337(6),222(18),136(75),120(100), nd [29]2 93(67),80(32),55(47) Methylmonocrotaline-like 2384 nd [M]+339(1),250(58),136(53),120(100), nd [29]1 93(39),80(20) Senecionine-like 2386 nd [M]+321(13),247(7),136(98),120(100), nd [29]1 93(76),80(37) Trichodesmine-like 2418 23.415 [M]+353(2),264(60),136(47),120(100), [M+Na]+392(13),370 [29]1 93(35),80(18) [M+H]+370(100) (Continued) PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 8/27 ChemicalDefenseinaSpecialistHerbivore Table2. (Continued) Pyrrolizidinealkaloids RIa Rtb DiagnosticionsforGC-MSc,m/z(%) Diagnosticionsfor Referencefor LC-MSd,m/z(%) GC-MSe Incanine-like 2430 nd [M]+337(5),264(27),222(20),136(62), nd [29]1 120(100),93(65),80(27) Trichodesmine-like 2437 nd [M]+353(2),264(83),222(8),136(58),120 nd [29]1 (100),93(34),80(18) Senecionine-like 2540 nd [M]+337(1),155(12),138(71),136(28),93 nd [29]2 (100),80(19),55(27) Senecionine-like 2551 nd [M]+351(31),220(10),136(43),120(100), nd [29]2 119(90),93(75),80(33) PlatyphorineC-like 2556 25.260 [M]+383(2),281(13),267(11),252(100), [M+Na]+422(19),[M [52]1 138(24),136(27),120(51),93(51),80(18) +H]+400(100) Unknownseco-PA 2615 nd [M]+365(20),321(15),276(22),238(100), nd [29]1 168(70),122(38),110(32),94(31),83(46) Retrorsine/Usaramine 2621/ 22.989/ [M]+351(7),246(5),136(100),120(99), [M+Na]+390(7),[M [29]1 2647 22.731 119(84),93(80),80(35) +H]+368(100) Senecionine-like 2675 nd [M]+351(3),224(8),143(100),136(65), nd [29]2 120(86),119(67),93(51),80(20) Senecionine-like 2684 nd [M]+351(2),143(24),136(51),120(100), nd [29]2 119(91),93(79),80(23) Unknownseco-PA 2728 nd [M]+381(25),338(55),320(63),250(58), nd [29]1 238(77),168(100),150(32),122(52),110 (44) Unknownseco-PA 2815 nd [M]+379(43),334(26),238(22),168(74), nd [29]1 151(29),139(57),122(100),110(62),94 (57) Unknownseco-PA 2866 nd [M]+421(31),376(22),168(77),150(79), nd [29]1 139(67),122(100),110(64),94(45),43 (96) Unknownseco-PA 2907 nd [M]+437(34),250(79),226(41),197(78), nd [29]1 183(78),168(44),122(100),110(52),94 (52) a.RetentionindexinGC-MSanalyses. b.Retentiontime(min)inLC-MSanalyses.SomecompoundsdetectedbyGC-MSwerenotdetected(nd)byLC-MS. c.infreebaseform. d.inN-oxideform. e.CharacterizationofPAsbymassspectrausing:1Massspectramatchingwithliterature,2.Interpretationofthemassspectrumfromliterature, 3Erroneouslydescribedin29asunknownsenecionine-type. doi:10.1371/journal.pone.0141480.t002 againstthespider,wealsobioassayedthesePAN-oxidesinaone-tenthconcentration.Addi- tionally,weconductedbioassayswith5.0μg/mgN-oxidefortheinsectPA.Allbioassayswere conductedusing10baitsforeachPAconcentration.ThePAsweredilutedinMeOHand appliedtopicallywitha10-μLsyringeonthesurfaceofthebait,whichwaskilledbyfreezing. WeusedaMeOH-treatedbaitasacontroltodeterminewhethertoacceptthetrial,as describedabovefortheN.clavipespredationbioassaywithlivingmoths. HostPlantPhylogeneticHypothesisandCharacterMapping WemappedthecharactersofPAsinvolvedinthechemicaldefensesofU.ornatrixinaninde- pendentphylogenetichypothesisfortheeightCrotalariaspecies.Thisproceduremayreveal theevolutionarytrendsofmappedcharacters[54].Wedidthisonlyforthosethatwerefedon leaves,asallindividualsfedonseedswerewellprotectedagainstthespider,regardlessofthe PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 9/27 ChemicalDefenseinaSpecialistHerbivore Fig2.Somepyrrolizidinealkaloidsfoundinthisstudy.ThealkaloidsaredrawnintheirN-oxideform.Formorestructures,see,e.g.,Floresetal.[29]. doi:10.1371/journal.pone.0141480.g002 hostplant.AsPAcharactersweusedPAconcentration(high>3.0μg/mgandlow<1.0μg/ mg)andPAtype(monocrotaline,senecionine,senkerkineorinsectPA)inalleightCrotalaria speciesandU.ornatrix,andtheresponseofthepredatorN.clavipesinrelationtoU.ornatrix (percentageofrelease). WeconstructedaphylogenetichypothesisbasedonITSsequencesretrievedfromGenBank forsevenCrotalariaspeciesandfortheout-groupBolusiaamboensis[36].TotalgenomicDNA ofC.vitellina(unavailableinGenBank)wasextractedfromfreshleaves,collectedinthegarden ofUNICAMP,usingthetwo-foldhexadecyltrimethylammoniumbromide(CTAB)method [55].ThenuclearribosomalITSregion(ca.700bp)wasamplifiedasdescribedbyleRouxetal. [36],usingtheprimersITS17SEandITS26SE[56,57].PCRproductswerepurifiedwitha GFXPCRDNAandGelBandPurificationKit(GEHealthcare)andsequencedattheCenterof PLOSONE|DOI:10.1371/journal.pone.0141480 October30,2015 10/27

Description:
of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer [36], using the primers ITS 17SE and ITS 26SE [56,57]. PCR products were purified with a Numbers in each node indicate Bayesian posterior probabilities. The scale below the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.