ebook img

Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering PDF

186 Pages·2019·3.986 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering

Studies in Computational Intelligence 816 Laith Mohammad Qasim Abualigah Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering Studies in Computational Intelligence Volume 816 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] The series “Studies in Computational Intelligence” (SCI) publishes new develop- mentsandadvancesinthevariousareasofcomputationalintelligence—quicklyand with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output. The books of this series are submitted to indexing to Web of Science, EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink. More information about this series at http://www.springer.com/series/7092 Laith Mohammad Qasim Abualigah Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering 123 LaithMohammad Qasim Abualigah Universiti Sains Malaysia Penang,Malaysia ISSN 1860-949X ISSN 1860-9503 (electronic) Studies in Computational Intelligence ISBN978-3-030-10673-7 ISBN978-3-030-10674-4 (eBook) https://doi.org/10.1007/978-3-030-10674-4 LibraryofCongressControlNumber:2018965455 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland List of Publications Journal 1. Abualigah,L.M.,Khader,A.T.,Al-Betar,M.A.,Alomari,O.A.:Textfeature selectionwitharobustweightschemeanddynamicdimensionreductiontotext document clustering, (2017). Expert Systems with Applications. Elsevier. (IF:3.928). 2. Abualigah, L. M., Khader, A. T., Hanandeh, E. S., Gandomi, A. H.: A novel hybridization strategy for krill herd algorithm applied to clustering techniques, (2017). Applied Soft Computing. Elsevier. (IF:3.541). 3. Abualigah, L. M., Khader, A. T., Hanandeh, E. S.: A new feature selection method to improve the document clustering using particle swarm optimization algorithm, (2017). Journal of Computational Science. Elsevier. (IF:1.748). 4. Abualigah,L.M.,Khader,A.T.:Unsupervisedtextfeatureselectiontechnique based on hybrid particle swarm optimization algorithm with genetic operators forthetextclustering,(2017).JournalofSupercomputing.Springer.(IF:1.326). 5. Bolaji,A.L.A.,Al-Betar,M.A.,Awadallah,M.A.,Khader,A.T.,Abualigah, L.M.:Acomprehensivereview:KrillHerdalgorithm(KH)anditsapplications, (2016). Applied Soft Computing. Elsevier. (IF:3.541). 6. Abualigah,L.M.,Khader,A.T.,Al-Betar,M.A.,Hanandeh,E.S.,Alyasseri, Z.A.:Ahybridstrategyforkrillherdalgorithmwithharmonysearchalgorithm to improve the data clustering, (2017). Intelligent Decision Technologies. IOS Press. (Accepted). 7. Abualigah,L.M.,Khader,A.T.,Hanandeh,E.S.,Gandomi,A.H.:AHybrid Krill Herd Algorithm and K-mean Algorithm for Text Document Clustering analysis. Engineering Applications of Artificial Intelligence. Elsevier. (Under 3rd revision). (IF: 2.894). 8. Abualigah, L. M., Khader, A. T., Hanandeh, E. S.: Multi-objective modified krill herd algorithm for intelligent text document clustering. Information Systems and Applications. Springer. (Under review). (IF:1.530). 9. Abualigah, L. M., Khader, A. T., Hanandeh, E. S., Rehman, S. U., Shandilya, S. K.: b-HILL CLIMBING TECHNIQUE FOR IMPROVING THE TEXT DOCUMENT CLUSTERING PROBLEM. Current Medical Imaging Reviews. (Under review). (IF:0.308). v vi ListofPublications Chapter 1. Abualigah,L.M.,Khader,A.T.,Hanandeh,E.S.:Anovel weighting scheme applied to improve the text document clustering techniques. Book Series: Studies in Computational Intelligence published by Springer. Book Title: Innovative Computing, Optimization and Its Applications. Springer. 2. Abualigah, L. M., Khader, A. T., Hanandeh, E. S.: Modified Krill Herd AlgorithmforGlobalNumericalOptimizationProblems.BookTitle:Advances in Nature-inspired Computing and Applications. Springer. (Accepted). Conference 1. Abualigah, L. M., Khader, A. T., Al-Betar, M. A., Awadallah, M. A.: A krill herdalgorithmforefficienttextdocumentsclustering.InComputerApplications and Industrial Electronics (ISCAIE), (2016) IEEE Symposium on (pp. 67–72). IEEE. 2. Abualigah, L. M., Khader, A. T., Al-Betar, M. A.: Unsupervised feature selection technique based on genetic algorithm for improving the Text Clustering. In Computer Science and Information Technology (CSIT), (2016) 7th International Conference on (pp. 1–6). IEEE. 3. Abualigah, L. M., Khader, A. T., Al-Betar, M. A.: Unsupervised feature selection technique based on harmony search algorithm for improving the Text Clustering. In Computer Science and Information Technology (CSIT), (2016) 7th International Conference on (pp. 1–6). IEEE. 4. Abualigah,L.M.,Khader,A.T.,Al-Betar,M.A.:Multi-objectives-based text clustering technique using K-mean algorithm. In Computer Science and Information Technology (CSIT), (2016) 7th International Conference on (pp. 1–6). IEEE. 5. Abualigah, L. M., Khader, A. T., Al-Betar, M. A., Hanandeh, E. S.: Unsupervised Text Feature Selection Technique Based on Particle Swarm Optimization Algorithm for Improving the Text Clustering. First EAI International Conference on Computer Science and Engineering (2017). EAI. 6. Abualigah, L. M., Khader, A. T., Al-Betar, M. A., Hanandeh, E. S.: A new hybridization strategy for krill herd algorithm and harmony search algorithm applied to improve the data clustering. First EAI International Conference on Computer Science and Engineering, (2017). EAI. ListofPublications vii 7. Abualigah, L. M., Khader, A. T., Al-Betar, M. A., Alyasseri Z. A., Alomari, O.A.,Hanandeh,E.S.:FeatureSelectionwithb-Hillclimbing Search forText Clustering Application. Second Palestinian International Conference on Information and Communication Technology, (2017). IEEE. 8. Abualigah, L. M., Sawaiez, A. M., Khader, A. T., Rashaideh, H., Al-Betar, M. A.: b-Hill Climbing Technique for the Text Document Clustering. New Trends in Information Technology (NTIT), (2017). IEEE. Acknowledgements BeginningthisPh.D.thesishasbeenalife-changingexperienceformeandIwould not have achieved it without the guidance and support of many people. I must declare many external donations from individuals, who extended a helping hand throughout this study. IamthankfultoAllahSWTforgivingmestrengthtofinishthisstudy.Iamalso grateful to my supervisor, Prof. Dr. Ahamad Tajudin Khader from the School of Computer Sciences at Universiti Sains Malaysia, for his wise counsel, helpful advice, connected support, and supervision throughout the duration of this study. I am also thankful to my co-supervisor, Dr. Mohammed Azmi Al-Betar from the Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, for his assistance. I am also thankful to Dr. Essam Said Hanandeh from the Department of Computer Information System, Zarqa University, for his assistance. My family deserves special thanks. Words cannot express how grateful I am to myfather,mother,andbrothersforallofthesacrificesthattheyhavedoneforme. Finally, I thank all of my friends who encouraged me throughout the duration of this study. ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.7 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Krill Herd Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Krill Herd Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Why the KHA has been Chosen for Solving the TDCP . . . . . . . 11 2.4 Krill Herd Algorithm: Procedures . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 Mathematical Concept of Krill Herd Algorithm . . . . . . . 12 2.4.2 The Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Text Document Clustering Applications. . . . . . . . . . . . . . . . . . . 22 3.4 Variants of the Weighting Schemes . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.1 Cosine Similarity Measure . . . . . . . . . . . . . . . . . . . . . . 26 3.5.2 Euclidean Distance Measure . . . . . . . . . . . . . . . . . . . . . 27 3.6 Text Feature Selection Method . . . . . . . . . . . . . . . . . . . . . . . . . 27 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.