ebook img

Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey PDF

7.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey KaiLawonnandBernhardPreim 5 1 0 2 n a AbstractThispaperprovidesatutorialandsurveyforaspecifickindofillustrative J visualization technique: feature lines. We examine different feature line methods. 5 Forthis,weprovidethedifferentialgeometrybehindtheseconceptsandadaptthis 1 mathematicalfieldtothediscretedifferentialgeometry.Alldiscretedifferentialge- ] ometry terms are explained for triangulated surface meshes. These utilities serve R asbasisforthefeaturelinemethods.Weprovidethereaderwithallknowledgeto G re-implement every feature line method. Furthermore, we summarize the methods . and suggest a guideline for which kind of surface which feature line algorithm is s c bestsuited.Ourworkismotivatedby,butnotrestrictedto,medicalandbiological [ surfacemodels. 1 v 5 0 1 Introduction 6 3 0 Theapplicationofillustrativevisualizationhasincreasedinrecentyears.Theprinci- . plegoalbehindtheconceptofillustrativevisualizationisameaningful,expressive, 1 andsimplifieddepictionofaproblem,asceneorasituation.Asanexample,running 0 5 peoplearerepresentedrunningstickmans,whichcanbeseenintheOlympicgames, 1 andotherobjectsbecomesimplifiedlinedrawings,seeFigure1.Morecomplexex- v: amplescanbefoundinmedicalatlases.Mostanatomicalstructuresarepaintedand i illustratedwithpencilsandpens.Gray’sanatomyisoneofthefamoustextbooksfor X medical teaching. Most other textbooks in this area orient to depict anatomy with r artdrawing,too. a KaiLawonn Otto-von-GuerickeUniversityMagdeburg,FacultyofComputerScience,DepartmentofSimula- tionandGraphicse-mail:[email protected] BernhardPreim Otto-von-GuerickeUniversityMagdeburg,FacultyofComputerScience,DepartmentofSimula- tionandGraphicse-mail:[email protected] 1 2 KaiLawonnandBernhardPreim Other than simplified representa- tion, illustrative visualization is not restricted to these fields. Illustrative techniques are essential for focus- and-context visualizations. Consider a (a) (b) (c) (d) scene with anatomical structures and one specific (important) structure. The Fig. 1 Visual abstraction of the four Olympic specific structure may be strongly re- disciplines: archery, basketball, football and handball in the style of the pictograms of the latedtothesurroundingobjects.There- OlympicGames2012inLondon. fore, hiding the other objects is not a viableoption.Incontrast,depictingall structuresleadstovisualclutterandopticaldistractionofthemostimportantstruc- tures. Focus-and-context visualization is characterized by a few local regions that aredisplayedindetailandwithemphasistechniques,suchasasaturatedcolor.Sur- roundingcontextualobjectsaredisplayedinalessprominentmannertoavoiddis- tractionfromfocalregions.Medicalexamplesarevesselswithinteriorbloodflow, livers with inner structures including vascular trees and possible tumors, proteins withsurfacerepresentationandinteriorribbonvisualization.Focus-and-contextvi- sualizationisnotrestrictedtomedicaldata.Anexampleisthevehiclebodyandthe interiordevices.Theuserorengineerneedstheopportunitytoillustratealldevices inthesamecontext. Therearenumerousmethodsfordifferentillustrationtechniques.Thissurveyis focusedonaspecificillustrativevisualizationcategory:featurelines.Featurelines areaspecialgroupoflinedrawingtechniques.Anotherclassoflinedrawingmeth- ods is hatching. Hatching tries to convey the shape by drawing a bunch of lines. Here,thespatialimpressionofthesurfaceisevenmoreimproved.Severalmethods existtohatchthesurfacemesh,see[15,20,28,37,51,53].Incontrast,featurelines try to generate lines at salient regions only. Not only for illustrative visualization, featurelinescanalsobeusedforrigidregistrationsofanatomicalsurfaces[44]or forimageanddataanalysisinmedicalapplications[12].Thegoalofthissurveyis toconveythereadertothedifferentfeaturelinemethodsandofferatutorialwithall theknowledgetobeabletoimplementeachofthemethods. Organization. We first give an overview of the mathematical background. In Section 2, we in- troducethenecessaryfundamentalsofdifferentialgeometry.Afterwards,weadapt thesefundamentalstotriangulatedsurfacemeshesinSection3.Section4discusses generalaspectsandrequirementsforfeaturelines.Next,wepresentdifferentfeature linemethodsinSection5andcomparetheminSection6.Finally,Section7holds theconclusionofthissurvey. FeatureLinesforIllustratingMedicalSurfaceModels 3 Fig.2 Thebasicelementsfordifferentialgeometry.Aparametricsurfaceisgivenandthepartial derivativescreatethetangentspace. 2 DifferentialGeometryBackground Thissectionpresentsthefundamentalsofdifferentialgeometryforfeaturelinegen- eration, which will be crucial for the further sections. We present the basic terms andproperties.Thissectionisinspiredbydifferentialgeometrybooks[5,6,26]. 2.1 BasicPrerequisites Asurface f: I⊂R2→R3iscalledaparametricsurfaceif f isanimmersion.Anim- mersionmeansthatallpartialderivatives ∂f areinjectiveateachpoint.Thefurther ∂xi calculationsaremostlybasedonthetangentspaceofasurface.Thetangentspace T f of f isdefinedasthelinearcombinationofthepartialderivativesof f: p T f (cid:66)span(cid:110)∂f (cid:12)(cid:12)(cid:12) , ∂f (cid:12)(cid:12)(cid:12) (cid:111). p ∂x1(cid:12)x=u ∂x2(cid:12)x=u Here,spanisthespaceofalllinearcombinations.Formally:span{v ,v }(cid:66){αv + 1 2 1 βv |α,β∈R}.Withthetangentspace,wecandefineanormalizednormalvectorn. 2 The(normalized)normalvectorn(u)atp= f(u)isdefinedsuchthatforallelements v∈T f theequation(cid:104)v,n(u)(cid:105)=0holds,where(cid:104).,.(cid:105)denotesthecanonicalEuclidean p dotproduct.Therefore,n(u)isdefinedas: (cid:12) (cid:12) ∂f (cid:12)(cid:12) × ∂f (cid:12)(cid:12) n(u)= (cid:13)(cid:13)(cid:13)∂∂∂xxf11(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)xx==uu×∂∂∂xxf22(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)xx==uu(cid:13)(cid:13)(cid:13). 4 KaiLawonnandBernhardPreim ThismapisalsocalledtheGaussmap.Figure2depictsthedomainofaparametric surfaceaswellasthetangentspaceT f andthenormaln. p 2.2 Curvature Thecurvatureisafundamentalpropertytoidentifysalientregionsofasurfacethat shouldbeconveyedbyfeaturelines.Colloquiallyspoken,itisameasureofhowfar the surface bends at a certain point. If we consider ourselves to stand on a sphere ataspecificpoint,itdoesnotmatterinwhichdirectionwego,thebendingwillbe the same. If we imagine we stand on a plane at a specific point, we can go in any direction,therewillbenobending.Withoutknowinganymeasureofthecurvature, we can state that a plane has zero curvature and that a sphere with a small radius hasahighercurvaturethanaspherewithahigherradius.Thisisduetothefactthat a sphere with an increasing radius becomes locally more a plane. Intuitively, the curvaturedependsalsoonthedirectioninwhichwedecidetogo.Onacylinder,we haveabendinginonedirectionbutnotintheother.Paintingthetraceofawalkon thesurfaceandviewitin3Dspace,wecouldtreatthisasa3Dcurve.Thedefinition ofthecurvatureofacurvemaybeadaptedtothecurvatureofasurface.Theadaption ofthisconceptsisexplainedinthefollowing.Letc: I⊂R→R3bea3Dparametric curvewith(cid:107)dc(cid:107)=1.Thepropertyofconstantlengthofthederivativeiscalledarc dt lengthornaturalparametrization.Onecanshowthatsuchaparametrizationexists for each continuous, differentiable curve that is an immersion. So, if we want to measure the size of bending, we can use the norm of the second derivative of the curve.Therefore,the(absolute)curvatureκ(t)atatimepointtisdefinedas: (cid:13) (cid:13) κ(t)=(cid:13)(cid:13)c(cid:48)(cid:48)(t)(cid:13)(cid:13). To determine the curvature on a cer- tain point of the surface in a specific direction, we can employ a curve and calculate its curvature. This approach is imperfect because curves that lie in a plane can have non-vanishing curva- ture,e.g.,acircle,whereasweclaimed tohavezerocurvatureonaplanarsur- face.Therefore,wehavetodistinguish which part of the second derivative of the curve contributes to the tangent spaceandwhichcontributestothenor- mal part of the surface. Decomposing Fig. 3 The curve’s second derivative is decom- posedintothetangentialandnormalpart. the second derivative of the curve into tangential and normal part of the sur- faceyields: FeatureLinesforIllustratingMedicalSurfaceModels 5 c(cid:48)(cid:48)(t)=proj c(cid:48)(cid:48)(t)+(cid:104)c(cid:48)(cid:48)(t),n(cid:105)n, (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)T(cid:32)pf(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:125) (cid:124) (cid:123)(cid:122) (cid:125) normalpart tangentialpart wherec(t)=pandproj xmeanstheprojectionofthepointxontothespaceE,see E Figure3.Thecurvatureκ (p)ofthesurfaceatpalongthecurvecisdefinedasthe c coefficientofthenormalpart: κ (p)=(cid:104)c(cid:48)(cid:48)(t),n(cid:105). (1) c Hence, we know that c(cid:48)(t)∈T f and (cid:104)c(cid:48)(t),n(cid:105)=0. Deriving the last equation p yields: d (cid:104)c(cid:48)(t),n(cid:105)=0 dt d ∂n (cid:104)c(cid:48)(t),n(cid:105)=(cid:104)c(cid:48)(cid:48)(t),n(cid:105)+(cid:104)c(cid:48)(t), (cid:105). dt ∂t Weobtain ∂n (cid:104)c(cid:48)(cid:48)(t),n(cid:105)=−(cid:104)c(cid:48)(t), (cid:105). ∂t CombiningthisequationwithEquation1yields ∂n κc(cid:48)(t)(p)=−(cid:104)c(cid:48)(t), (cid:105). (2) ∂t Thus, the curvature of a surface at a specific point in a certain direction can be calculated by a theorem by Meusnier. We call the vectors v,w at p the maximal/ minimal principle curvature directions of the maximal and minimal curvature, if κv(p)≥κv(cid:48)(p), κw(p)≤κv(cid:48)(p) for all directions v(cid:48) ∈Tpf. If such a minimum and maximumexists,thenvandwareperpendicular,seeSection2.5foraproof.Ifwe wanttodeterminethecurvatureindirectionu,wefirstneedtonormalizeu,v,wand canthendetermineκ (p)by: u κ (p)=(cid:104)u,v(cid:105)2κ (p)+(cid:104)u,w(cid:105)2κ (p). (3) u v w The coefficients of the curvature are the decomposition of the principle curvature directionswiththevectoru. 2.3 CovariantDerivative The essence of the feature line generation is the analysis of local variations in a specificdirection,i.e.,thecovariantderivative.Therefore,thecovariantderivativeis acrucialconceptforfeaturelinemethods.Weconsiderascalarfieldonaparametric surfaceϕ: f(I)→R.Onecanimaginethisscalarfieldasaheatorpressure(aswell as a curvature) distribution. The directional derivative of ϕ in direction v can be 6 KaiLawonnandBernhardPreim Fig.4 Given:ascalarfieldinthedomain.Determiningthegradientandusingitascoefficientfor thebasistangentvectorsleadstothewrongresult(grey).Balancingthedistortionwiththeinverse ofthemetrictensoryieldsthecorrectgradientonthesurface(black). writtenasD ϕandisdefinedby: v ϕ(x+hv)−ϕ(x) D ϕ(x)=lim . v h→0 h Ifϕisdifferentiableatx,thedirectionalderivativecanbesimplified: D ϕ(x)=(cid:104)∇ϕ(x),v(cid:105), v where ∇ denotes the gradient. The gradient is an operator applied to a scalar field and results in a vector field. When we want to extend the definition of the deriva- tive to an arbitrary surface, we first need to define the gradient of surfaces. In the following,wemakeuseofthecovariantderivative.Thestandarddirectionalderiva- tiveresultsinavectorwhichliessomewhereinthe3Dspace,whereasthecovariant derivativeisrestrictedtostayinthetangentspaceofthesurface.Thegradientisa two-dimensionalvector.Actually,weneedathree-dimensionalvectorinthetangent spaceofthesurface.Here,weemploythegradientanduseitascoefficientsofthe tangentialbasis.Unfortunately,thisleadstowrongresultsbecauseofthedistortions ofthebasisofthetangentspace,seeFigure4.Thebasisisnotnecessarilyanorthog- onalnormalizedbasisasinthedomainspaceandcanthereforeleadtodistortions ofthegradientonthesurface. One way to calculate this vector is to use the plain scalar field ϕ: R3→R. Af- terwards,weareabletoattainthegradientinthree-dimensionalspaceandprojectit onthetangentspace.However,wewanttousethegradientofϕ: R2→Rinthedo- mainofaparametricsurfaceandcompensatethelengthdistortionsuchthatwecan useitascoordinateswiththebasisinthetangentspace.Oneimportantfactiswhen multiplyingthegradientwiththei-thbasisvector,oneobtainsthepartialderivative ofϕwithx.Hence,weknowthatthethree-dimensionalgradient∇ϕliesinthetan- i gentspace.Therefore,itcanberepresentedasalinearcombinationof ∂f , ∂f with coefficientsα,β: ∂x1 ∂x2 FeatureLinesforIllustratingMedicalSurfaceModels 7 ∂f ∂f ∇ϕ=α· +β· . ∂x ∂x 1 2 Multiplyingbothsideswiththebasisvectorsandusingtherelation ∂ϕ =(cid:104)∇ϕ, ∂f (cid:105), ∂xi ∂xi weobtainanequationsystem: ∂∂∂xϕϕ1 = αα··(cid:104)(cid:104)∂∂∂xff1,,∂∂∂xff1(cid:105)(cid:105)++ββ··(cid:104)(cid:104)∂∂∂xff1,,∂∂∂xff2(cid:105)(cid:105) = (cid:104)(cid:104)∂∂∂xff1,,∂∂∂xff1(cid:105)(cid:105)(cid:104)(cid:104)∂∂∂xff1,,∂∂∂xff2(cid:105)(cid:105)(cid:32)αβ(cid:33). ∂x2 ∂x1 ∂x2 ∂x2 ∂x2 (cid:124)(cid:32)(cid:32)∂(cid:32)(cid:32)(cid:32)x(cid:32)(cid:32)(cid:32)1(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)∂(cid:32)(cid:32)(cid:32)x(cid:32)(cid:32)2(cid:32)(cid:32)(cid:123)(cid:122)(cid:32)∂(cid:32)(cid:32)(cid:32)x(cid:32)(cid:32)2(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)∂(cid:32)(cid:32)(cid:32)x(cid:32)(cid:32)(cid:32)2(cid:32)(cid:32)(cid:32)(cid:125) g(cid:66) The matrix g is called the metric tensor. This tensor describes the length and area distortionfromR2tothesurface.Thelastequationyieldsthecoefficientsα,βwhen multipliedwiththeinverseofg: (cid:32) (cid:33) ∂ϕ αβ =g−1∂∂xϕ1. ∂x2 Thisleadstoageneralexpressionofthegradientforascalarfieldϕ: Rn→R: (cid:88)n (cid:32) ∂ϕ(cid:33) ∂ ∇ϕ= gij , (4) ∂x ∂x i,j=1 j i where gij is the i,j-th matrix entry from the inverse of g and ∂ means the basis. ∂xi Now, we are able to determine the covariant derivative of a scalar field by first determiningitsgradientandafterwardsusingthedotproduct: D ϕ=(cid:104)∇ϕ,w(cid:105). w 2.4 Laplace-BeltramiOperator TheLaplace-Beltramioperatorisneededforaspecificfeaturelinemethodandwill therefore be introduced. The Laplace operator is defined as a composition of the gradient andthedivergence.Wheninterpretingthevectorfieldasaflowfield,the divergenceisameasureofhowmuchmoreflowleavesaspecificregionthanflow enters.IntheEuclideanspace,thedivergencedivΦofavectorfieldΦ: Rn→Rnis thesumofthepartialderivativesofthecomponentsΦ: i (cid:88)n ∂ divΦ= Φ. i ∂x i=1 i ThecomputationofthedivergenceforavectorfieldΦ: Rn→RninEuclideanspace is straightforward. However, for computing the divergence to an arbitrary surface wehavetobeawareofthelengthandareadistortions.Withoutgivingaderivation 8 KaiLawonnandBernhardPreim of the divergence, the components Φ of the vector field have to be weighted by (cid:112)i the square root of the determinant |g| of the metric tensor g before taking the derivative.Thesquarerootofthedeterminantofgdescribesthedistortionchange fromtheEuclideanspacetothesurface.Formally,thedivergenceofavectorfield Φ: Rn→Rnwithagivenmetrictensorgisgivenby: 1 (cid:88)n ∂ (cid:32)(cid:112) (cid:33) divΦ= (cid:112) |g|Φi . (5) |g| i=1 ∂xi Given the definition of the gradient and the divergence, we can compose both op- erators to obtain the Laplace-Beltrami operator ∆ϕ of a scalar field ϕ: Rn →R on surfaces: 1 (cid:88)n ∂ (cid:32)(cid:112) ∂ϕ(cid:33) ∆ϕ=div∇ϕ= (cid:112) |g|gij . (6) |g|i,j=1∂xi ∂xj 2.5 ShapeOperator In Section 2.2, we noticed that the curvature of a parametric surface at a specific pointpinacertaindirectioncanbedeterminedbyEquation2: ∂n κc(cid:48)(t)(p)=−(cid:104)c(cid:48)(t), (cid:105). ∂t Actually, this means that the curvature in the direction c(cid:48)(t) is a measure of how muchthenormalchangesinthisdirection,too.Givenisv∈T f withp= f(u)and p |v|=1.Then,wedeterminethecoefficientsα,βofvwiththebasis ∂f , ∂f : ∂x1 ∂x2 (cid:32)αβ(cid:33)=g−1(cid:104)(cid:104)vv,,∂∂∂xff1(cid:105)(cid:105). ∂x2 Weuse(α,β)todeterminethederivativeofnalongvbyusingthetwo-dimensional (cid:16) (cid:17) curvec˜(t)=u+t α andcalculate: β d D n(cid:66) n(c˜(t)). v dt WedefineS(v)(cid:66)−D n.ThislinearoperatoriscalledShapeOperator(alsoWein- v garten Map or Second Fundamental Tensor). One can see that S(∂f )= ∂n holds. ∂xi ∂xi Notethatthisoperatorcandirectlyoperateonthe3Dspacewithathree-dimensional vectorinthetangentspace,aswellasthe2Dspacewiththecoefficientsofthebasis. Therefore,itcanberepresentedbyamatrixS.RecallEquation2,wesubstitutec(cid:48) withvand ∂n bySv: ∂t FeatureLinesforIllustratingMedicalSurfaceModels 9 κ (p)=(cid:104)v,Sv(cid:105). v We want to show that the principle curvature directions are the eigenvectors of S. Assumingv ,v ∈R2arethenormalizedeigenvectorswiththeeigenvaluesλ ≥λ . 1 2 1 2 Every normalized vector w can be written as a linear combination of v ,v : w= 1 2 αv +βv with(cid:107)w(cid:107)=(cid:107)αv +βv (cid:107)=α2+β2+2αβ(cid:104)v ,v (cid:105)=1.Therefore,weobtain: 1 2 1 2 1 2 1 κ (p)=(cid:104)w,Sw(cid:105)= [(α2−β2)(λ −λ )+λ +λ ]. (7) w 1 2 1 2 2 OnecanseefromEquation7thatκ (p)reachesamaximumifβ=0,α=1,anda w minimumisreachedifα=0,β=1.Iftheeigenvalues(curvatures)arenotequal,we canshowthattheprinciplecurvaturedirectionsareperpendicular.Forthis,weneed toshowthatS isaself-adjointoperator.Thus,theequation(cid:104)Sv,w(cid:105)=(cid:104)v,Sw(cid:105)holds. Weshowthisbyusingtheproperty(cid:104)n, ∂f (cid:105)=0andderivethiswithx : ∂xi j ∂n ∂f ∂2f (cid:104) , (cid:105)+(cid:104)n, (cid:105)=0. ∂x ∂x ∂x∂x j i i j WedemonstratethatS isaself-adjointoperatorwiththebasis ∂f : ∂xi ∂f ∂f ∂n ∂f ∂2f ∂n ∂f ∂f ∂f (cid:104)S( ), (cid:105)=(cid:104)− , (cid:105)=(cid:104)n, (cid:105)=(cid:104)− , (cid:105)=(cid:104)S( ), (cid:105). ∂x ∂x ∂x ∂x ∂x∂x ∂x ∂x ∂x ∂x i j i j i j j i j i Now,weshowthattheeigenvectors(principlecurvaturedirections)areperpendic- ulariftheeigenvalues(curvatures)aredifferent: λ (cid:104)v ,v (cid:105)=(cid:104)Sv ,v (cid:105)=(cid:104)v ,Sv (cid:105)=λ (cid:104)v ,v (cid:105). 1 1 2 1 2 1 2 2 1 2 Theequationisonlytrueifv ,v areperpendicular(andλ (cid:44)λ holds). 1 2 1 2 3 DiscreteDifferentialGeometry Thissectionadaptsthecontinuousdifferentialgeometrytodiscretedifferentialge- ometry,theareaofpolygonalmeshesthatapproximatecontinuousgeometries.The following notation is used in the remainder of this paper. Let M ⊂R3 be a trian- gulatedsurfacemesh.Themeshconsistsofverticesi∈V withassociatedpositions p ∈R3,edgesE={(i,j)|i,j∈V},andtrianglesT={(i,j,k)|(i,j),(j,k),(k,i)∈E}.We i writen asthenormalizednormalvectoratvertexi.Ifnothingelseismentioned,we i refertonormalvectorsatvertices.Furthermore,N(i)denotestheneighborsofi.So, forevery j∈N(i),(i,j)∈Eholds.Furthermore,ifweuseatriangleforcalculation, wealwaysusethisnotation:givenatriangle(cid:52)=(i,j,k)withverticesp,p ,p ,and i j k theedgesaredefinedase =p −p ,e =p −p ,e =p −p. 1 i j 2 j k 3 k i 10 KaiLawonnandBernhardPreim (a) Pointsin2D (b) Points on a surface mesh Fig.5 TheVoronoidiagramofdifferentsettings.In(a)aVoronoidiagramofasetofpointsis determined.In(b)theVoronoiareaiscalculated.Ifoneofthetrianglesisobtuse,thearealeaves thetriangle. 3.1 VoronoiArea WeneedtointroducethetermVoronoiarea,asitisimportantforthedetermination of the curvature. So, given are points in a 2D space. Every point is spread out in equal speed. If two fronts collide, they stop to spread out further at this region. After all fronts stopped, every point lies in a region that is surrounded by a front. ThisregioniscalledaVoronoiregion.Formally,givendistinctpointsx ∈R2 inthe i plane,theVoronoiregionforthepointx isdefinedasthesetofpointsV(x )with k k V(x )={x∈R2 : (cid:107)x−x (cid:107)≤(cid:107)x−x (cid:107), j(cid:44)k}. k k j SeeFigure5(a)foranexampleofaVoronoidiagram.ToobtaintheVoronoiareaofa vertexonasurfacemesh,theVoronoiareaofeachincidenttriangleisaccumulated. The Voronoi area calculation is based on the method by Meyer et al. [31]. In case ofanon-obtusetriangle,theVoronoiareaatp isdeterminedbytheperpendicular i bisector of the edges incident to p. The point of intersection, the midpoint of the i incident edges and the point itself define the endpoints of the Voronoi area. The triangleareaoftheVoronoiregionequals: 1(cid:16) (cid:17) A (p)= (cid:107)e (cid:107)2·cot(e ,e )+(cid:107)e (cid:107)2·cot(e ,e ) . (cid:52) i 1 2 3 3 1 2 8 Incaseofanobtusetriangle,theVoronoiareaisequalhalfofthetriangleareaifthe angleatp isobtuse.Otherwiseitisaquarterofthetrianglearea,seeFigure5(b). i 3.2 DiscreteCurvature The calculation of the curvatures as well as the principle curvature directions are important for a number of feature line techniques. Several approaches exist to ap-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.