Feasibility Studies on a Stand-Alone Hybrid Wind-Diesel System for Fish Farming Applications Marius Holt Master of Energy and Environmental Engineering Submission date: June 2017 Supervisor: Kjetil Uhlen, IEL Norwegian University of Science and Technology Department of Electric Power Engineering Problem Description Most conventional Norwegian offshore fish farms use diesel-fueled aggregates as their source of electrical power. These aggregates are often oversized to cover the peak demand. Thisleadstolowefficiencywhenrunningatlowerloads,andthusyieldsavery high energy cost for the system. Instead of using fossil fueled equipment, it would be desirable to exploit renewable resources available at the fish farming site. The majority ofNorwegianfishfarmingfacilitiesarelocatedalongthewesterncoastline. Atthesame time,thereisagrowingtrendintheindustry,leadingtomorefishfarmssituatedfurther off the shore. Here, the wind conditions are of excellent quality many places, with both steady and high wind speeds. This makes it interesting to investigate a solution where the renewable resources from wind are incorporated with the conventional diesel aggregates, in order to generate power. The purpose of this thesis it to shed some light on the possibilities of implementing such a hybrid system solution. A major part of the thesis comprises descriptions of the system components and the control mechanisms of these. Further, a dynamic sim- ulation model will be implemented in the MATLAB®/Simulink environment. Based on this, some critical scenarios will be investigated for assessing the system’s dynamic performance. The feasibility of this is hoped to encourage further work within this topic. i ii Acknowledgements This thesis concludes my final semester as a M.Sc. student at the Department of Elec- tric Power Engineering at NTNU. The last five years have been a fantastic journey, and I am forever grateful for the experiences I have got from the years both in Trondheim and as an exchange student in New Zealand. First and foremost I sincerely thank my supervisor, Professor Kjetil Uhlen for great counselling and valuable advices throughout the year. Your expertise and availability are highly appreciated. Further, a special thank you is aimed to my external contacts at NVES; Pål Preede Revheim and Thomas Bjørdal. They have provided me with a lot of information, and then some. They also took the time to organise a meeting at Smøla so that I could discuss important details for the thesis directly with relevant partners within the fish farming industry. In addition, I would also like to thank my friend and former M.Sc. student at NTNU, Alexander Gaugstad for helping me out with the simulation model. Your help has saved me a lot of frustration this semester. Lastly, I would like to express gratitude towards my family and friends for your love and support. Completing this degree would not have been possible without you. Trondheim, 09.06.2017 Marius Holt iii iv Abstract This thesis aims to explore feasibility related to implementing a Hybrid Wind-Diesel System for an offshore fish farm. The primary motivation behind this is to exploit the excellent wind resources along the Norwegian coast in order to reduce CO emis- 2 sions related to the operation of diesel generators (DGs). Thus, instead of diesel as the only source of electrical power, the hybrid system will utilise a wind turbine and battery system to reduce the diesel generator’s operating time as much as possible. Additionally, excessive wind energy from the wind turbine could be used to run auxil- iary equipment on the farm, such as oxygen production, washers for lice removal and freshwater production. Asastartingpoint, thethesisprovidesaclearandperspicuousoverviewofconventional offshorefishfarmsandHybridWind-DieselSystemsingeneral. Thisconstitutestheba- sis for building a suitable model from fundamental blocks in the MATLAB®/Simulink environment. The purpose is assessing the system’s dynamic performance when ex- posed to disturbances. Figure 1 displays the system layout schematic. Wind Turbine Back-to-back Three-phase and Generator Converter Transformer VSI IM Main Load PMSG IM Dump Load Diesel Generator Battery M EESG System Motor Clutch Generator Figure 1: Simplified System Layout The hybrid system comprises a Permanent Magnet Synchronous Generator (PMSG) wind turbine, connected to a 400 V AC bus bar through a back-to-back Voltage Source Converter (VSC) and a step-down transformer. The purpose of the turbine VSC is to facilitate variable speed operation of the turbine and also enhance system control. The battery is of Lithium-ion type and incorporates a VSC for AC/DC conversion. The fish farm also contains an Electrically Excited Synchronous generator (EESG) associated with a diesel engine. This can be used for fast active and reactive power support if the wind and battery system fails to cover the load. The main load is a fixed, inductive load together with a variable-speed Induction Motor (IM), and the dump load consists of a variable inductive load and a directly connected IM. Three critical situations have been investigated. These represent some of the most frequent and severe situations that the system will have to endure on a day-to-day basis. Start- up of the directly connected IM proved to be the most critical scenario, due to the high initial reactive power requirement. If sufficient resources of reactive power are not present, this may lead to a permanent voltage collapse. Starting the DG during sudden shortfall of wind indicated redundancy. However, the importance of bringing it online in generator operation and not in motor operation was highlighted. Start and stop of the feed blowers induced little stress on the system, even at low wind speeds. Overall, the system shows promising performance during most of the investigated disturbances. v vi Sammendrag Denne hovedoppgaven har i hensikt å utforske gjennomførbarheten ved et hybrid vind- diesel system for havbasert fiskeoppdrett. Hovedmotivet bak dette er å utnytte de ypperlige vindressursene som finnes langs norskekysten til å redusere CO -utslipp i 2 forbindelse med drift av dieselgeneratorer. I stedet for å ha dieselgenerator som den eneste elektrisitetskilden, vil det hybride systemet nyttiggjøre seg av en vindturbin og et batterisystem for å redusere driftstiden til dieselgeneratoren så mye som mulig. I tillegg kan et potensielt overskudd av vindenergi fra turbinen brukes til å kjøre annet utstyr på flåten, som oksygenproduksjon, lusespylere og ferskvannsproduksjon. Som et naturlig starpunkt gir oppgaven en klar og tydelig oversikt over konvensjonelle havbaserte fiskeoppdrettsanlegg, samt hybride vind-diesel systemer generelt. Dette danner grunnlaget for å bygge en egnet modell ut ifra fundamentale blokker fra Simu- links bibliotek. Målet er å undersøke systemets dynamiske respons når det blir utsatt for forstyrrelser. Figur 1 viser systemutformingen. Wind Turbine Back-to-back Three-phase and Generator Converter Transformer VSI IM Main Load PMSG IM Dump Load Diesel Generator Battery M EESG System Motor Clutch Generator Figure 1: Simplified System Layout Det hybride systemet består av en vindturbin med permanentmagnet-basert synkron- generator. Denne er koblet til en 400 V samleskinne via en back-to-back frekvensom- former og en transformator. Hensikten med turbinens frekvensomformer er å utnytte drift med variabel turbinhastighet i tillegg til å forsterke systemkontrollen. Batteriet er av typen Litium-ion og er utstyrt med en frekvensomformer. Oppdrettsanlegget innebærer også en synkrongenerator, med justerbar feltmagnetisering, koblet til en dieselmotor. Denne kan brukes for rask effektregulering hvis turbinen og batterisys- temet ikke dekke den aktuelle lasten. Hovedlasten består av en konstant, induktiv last sammen med en induksjonsmotor med variable hastighetskontroll. Overskuddslasten er en variabel induktiv last, i parallell med induksjonsmotor direkte koblet til samle- skinnen. Tre kritiske situasjoner har blitt undersøkt. Disse representerer de hyppigste og mest kritiske situasjonene som systemet må tåle i en normal driftssituasjon. Start av den direktekoblede induksjonsmotoren viste seg å være det mest kristiske scenariet, på grunn av motorens høye forbruk av reaktiv effekt under oppstart. Hvis det ikke er tilstrekkelige reserver med reaktiv effekt i systemet, kan dette føre til en permanent spenningskollaps. Oppstart av dieselgeneratoren ved plutselig bortfall av vindkraft fremsto som redundant. Likevel ble det understreket viktigheten av å koble på aggre- gatet i generatordrift. Start og stopp av fôrblåserne viste seg å ha liten innvirkning på systemet. vii viii
Description: