ebook img

Fear of Missing Out as a Predictor of Problematic Social Media Use and Phubbing Behavior among PDF

18 Pages·2017·0.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fear of Missing Out as a Predictor of Problematic Social Media Use and Phubbing Behavior among

International Journal of Environmental Research and Public Health Article Fear of Missing Out as a Predictor of Problematic Social Media Use and Phubbing Behavior among Flemish Adolescents VittoriaFranchina1,*,MariekVandenAbeele2,*,AntoniusJ.vanRooij3,4 ,GianlucaLoCoco1 andLievenDeMarez3 1 DepartmentofPsychologyandEducationalSciences,UniversityofPalermo,90133Palermo,Italy; [email protected] 2 TilburgSchoolofHumanitiesandDigitalSciences,TilburgUniversity,5037ABTilburg,TheNetherlands 3 imec-mict-UGent,DepartmentofCommunicationSciences,GhentUniversity,9000Ghent,Belgium; [email protected](A.J.v.R.);[email protected](L.D.M.) 4 DepartmentofYouth&RiskyBehavior,TrimbosInstitute,3521VSUtrecht,TheNetherlands * Correspondence:[email protected](V.F.); [email protected](M.V.A.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:6September2018;Accepted:24September2018;Published:22October2018 Abstract: Fear-of-missing-out(FOMO)referstofeelingsofanxietythatarisefromtherealizationthat youmaybemissingoutonrewardingexperiencesthatothersarehaving. FOMOcanbeidentifiedas anintra-personaltraitthatdrivespeopletostayuptodateofwhatotherpeoplearedoing,among othersonsocialmediaplatforms. Drawingfromthefindingsofalarge-scalesurveystudyamong 2663 Flemish teenagers, this study explores the relationships between FOMO, social media use, problematicsocialmediause(PSMU)andphubbingbehavior. Inlinewithourexpectations,FOMO wasapositivepredictorofbothhowfrequentlyteenagersuseseveralsocialmediaplatformsandof howmanyplatformstheyactivelyuse. FOMOwasastrongerpredictoroftheuseofsocialmedia platformsthataremoreprivate(e.g.,Facebook,Snapchat)thanplatformsthataremorepublicin nature(e.g.,Twitter,Youtube). FOMOpredictedphubbingbehaviorbothdirectlyandindirectlyvia itsrelationshipwithPSMU.ThesefindingssupportextantresearchthatpointstowardsFOMOasa factorexplainingteenagers’socialmediause. Keywords: fear of missing out (FOMO); social media; problematic social media use (PSMU); phubbing;teenagers;adolescents;addiction 1. Introduction Behavioraladdictionresearchersarguethatthepsychologicalprocessesthatexplainproblematic behaviorrequiregreaterattention[1–5]. Understandingunderlyingprocessesisparticularlyrelevant whenexaminingproblematicformsof(digital)mediause. Digitaldevices,suchasmobilephones, canbeusedandmisusedinavarietyofdifferentways. Itislikelythatthewayinwhichproblemuse manifestsitselfdependsontheparticularunderlyingpsychologicalmechanism[6,7]. One psychological process that may underlie problematic digital media use is the Fear-Of-Missing-Out (FOMO). FOMO refers to the “pervasive apprehension that others might be havingrewardingexperiencesfromwhichoneisabsent”[8]. PersonswhohaveagreaterFOMOare assumedtohaveagreaterdesiretostaycontinuallyup-to-dateofwhatothersaredoing,forexample viatheuseofsocialmedia. AccordingtoPrzybylskietal.[8],FOMOoriginatesfrompsychological deficits in people’s competence and relatedness needs [9]. One way of satisfying these needs, Int.J.Environ.Res.PublicHealth2018,15,2319;doi:10.3390/ijerph15102319 www.mdpi.com/journal/ijerph Int.J.Environ.Res.PublicHealth2018,15,2319 2of18 theauthorsclaim,isthroughtheuseofsocialmediaapplications,becausethedynamicnatureofsocial mediaapplicationsprovidesuserswithaconsistentstreamofsocialandinformationalrewards[10]. The purpose of the current study is to contribute to the extant body of research on FOMO in relationtosocialmediause. Thestudyhasfouraims. First,itinvestigateswhetherteenagerswith higherlevelsofFOMOhavemoresocialmediaaccounts(i.e.,thebreadthofsocialmediause)and whether they access these accounts more frequently (i.e., the depth of social media use [11]) than teenagerswithlowerlevelsofFOMO.Second,assumingthatteenagerswithhigherlevelsofFOMO aremostlymotivatedtocheckuponpeopleintheirpersonalsocialnetworks,weexaminewhether FOMOisastrongerpredictoroftheuseofplatformsthatconnectteenagerstotheirofflinenetworks (e.g.,Facebook,Snapchat)thanoftheuseofplatformsthatconnecttoalargelyunknownaudience (e.g.,Youtube,Twitter). Third,thestudyexaminesifteenagerswithgreaterFOMOreporthigherlevels ofproblematicsocialmediause(PSMU)and,four,aremorelikelytoreportoneparticularformof problematicsocialmediause,whichistheuseofsocialmediaduringconversationswithco-present others(cf. “phubbing”). Theseresearchaimsareaddressedwithdatafromalarge-scalecross-sectional surveythatwasadministeredto2663Flemishadolescents. 2. TheoreticalFramework People have always had a tendency to think about what others are thinking and doing [12]. Inthe1970and1980scholarsalreadyidentifiedthatsomepeopledevelopedanxietiesaroundmissing out,contemplatingontherewardingexperiencesthatothersmightbehaving(e.g.,inthecontextof romanticrelationships)[13]. FOMOisthusnotanentirelynewconcept. FOMOcanbeunderstoodassuchananxietyaroundmissingoutonrewardingexperiencesthat results from people’s desire for interpersonal attachments [12]. This desire, which is grounded in people’sneedtobelong,isaninnateandfundamentalmotivationwhichhumanshave[14]. People gratifythisneedbyseekingbelongingnesstosocialgroups. Socialgroupsnowadaysexistinboth physicalandvirtualshapesandpeoplehaveaccesstotheirsocialgroupsinbothways,onlineand offline.Socialmedia,whichcanbedefinedas“Internet-basedapplicationsthatbuildontheideological andtechnologicalfoundationsofWeb2.0,andthatallowthecreationandexchangeofUserGenerated Content”[15,16],offeraplacewhereuserscankeepintouchwiththeirsocialcircles. Socialnetwork sites(SNS)suchasFacebookorInstagram,forexample,offerusersanonlineconnectiontopersonsin theirpersonalnetworks,facilitatingthepracticeofkeepingintouch. Nowadays the digital world is considered an extension of the Self [17,18]. In addition to the personal mind and physical body, the Self can be thought to include people, places, physical possessions,aswellasaffiliationgroupstowhichapersonfeelsattached[19]. Socialmediaplatforms areapartofthis: theyarethedigitalportalstoaffiliationgroups. Incontemporarysocietywethus managetheaffiliationnetworkbothofflineandonline;virtualgroupsareasrealandimportantas thephysicalones. Notbeingabletoconnectwiththoseaffiliationgroupsonsocialmediamaycause feelingsofbeingoutoftouchwith“real”life[17]. Afterall,losingormissingapersononeisattached to,canbringfeelingsoflossandgrievingasmuchasifapartoftheSelfwasdamaged[19]. ThefearofbeingsociallyexcludedplaysaroleinexperiencingaFOMO[12]. Socialexclusion produces a loss of belongingness, and therefore causes anxiety. Thus, when people cannot access their social media accounts, they might feel anxiety because of a fear that they are being socially excluded[12]. Socialexclusionalsoelicitsfeelingsofworthlessness[12]. Thesefeelingsleadpeopletotheactof comparingthemselvestoothersonsocialmedia[20]withthepurposeofdecidingupontheirown personalvalue[21]. Socialnetworksofferaplacewhereconsumers,particularlyyounggenerations, cancontinuouslykeepupwithwhatpeersaredoingandcheckingonwhattheyaremissingouton (e.g.,socialevents,lifeexperiences,lifeopportunities,andsoonandsoforth). FOMOcanthusdrive socialmediause,ascheckinguponotherpeoplemayleadtoatemporaryreliefofone’sanxiety. Int.J.Environ.Res.PublicHealth2018,15,2319 3of18 2.1. FOMOandtheUseofDifferentSocialMediaPlatforms Usersmayusedifferentmediatogratifydifferentneeds[22–24]. Thiscanexplaindifferencesin thepopularityofcertainsocialmediaplatforms. InJanuary2015,theGlobalWebIndexsummary showedthatthemostpopularsocialmediaplatformwasthesocialnetworksiteFacebook,immediately followedbyYouTube,TwitterandInstagram. ThesameyearInstagram’spopularityoutperformed Twitter. According to some, this is because pictures are more effective than words in achieving self-presentationalobjectives,whicharecentralmotivationsforsocialmediause[25]. Giventhateach socialmediaplatformischaracterizedbyitsownfeaturesandaffordances,itisrelevanttodifferentiate betweensocialmediaplatformsinresearchonsocialmediause: Differentplatformsmayconnectusers todifferentpersonsandnetworks,andgiveaccesstodifferentformsofinformationofwhichusers maywishtostayup-to-date. CurrentresearchfindingsrevealthatFOMOisapredictoroftheuseofSNSwithwhichusers connecttopeopleintheirpersonalnetworks,suchasInstagram[25]andFacebook[26]. Instagram use,forexample,isfoundtobemotivatedbythedesiretokeepintouchwithothers[25]andto“to keepupwithorgainknowledgeaboutwhatothers(i.e.,friends,familyandstrangers)aredoing”[27]. FOMOhasalsobeenfoundtopredictFacebookuse[28,29]andInstagramuse[30,31]. Theabovestudy findingsthusindicatethatFOMOpredictstheuseofatleastthesesocialnetworksites,butpotentially alsotheuseofothersocialmediaplatforms. Withrespecttosocialmediause,adifferencecanbemadebetweenthe”depth”andthe“breadth” ofone’suse, wherethedepthofusereferstoaspectssuchasthefrequencyanddurationofsocial media use, and the breadth of use refers to the variety of social media platforms that are actively used. Forteensinparticular,notonlyfrequentuse,butalsotheuseofabroadvarietyofsocialmedia platformsmayservethepurposeofrelievinganxietieswithregardtonotknowingwhatothersare thinkinganddoing,asthedifferencesintherelationalaffordancesofdifferentplatforms[32]mean thattheymaygiveaccesstoatleastpartiallydifferentnetworksandcontents. Hence,forthecurrent studyweexpectthatnotonlythedepth,operationalizedasthefrequencyofsocialmediause,but alsothebreadth,operationalizedasthenumberofactivesocialmediaplatformsteenagersuse,are predictedbyFOMO: Hypothesis1. TeenswhoexperiencegreaterFOMO,usesocialmediamorefrequently(Hypothesis1a;i.e., thedepthofsocialmediause),andusemoredifferentsocialmediaaccounts(Hypothesis1b;i.e.,thebreadthof socialmediause). 2.2. FOMOandtheUseofMorePrivateversusMorePublicSocialMediaPlatforms Asmentionedabove,theuseofdifferentsocialmediaplatformsmaygratifydifferentunderlying needs. For example, a recent study shows that users significantly differ in the gratifications they derivefromusingFacebook,Instagram,TwitterandSnapchat[33]. Oneaffordanceinwhichplatforms maydifferisintheextenttowhichcontentisrestrictedtoa(sub-)setofcontacts, orfullypublic— inotherwords,whethercontentissharedwithamostlyknownversusamostlyunknownaudience. OnplatformssuchasFacebook,InstagramorSnapchat,people’sonlinesocialnetworkusuallyoverlaps withtheirofflineaffiliationgroup(e.g.,Facebook/Snapchatcontactsneedtoknoweachother’snames orphonenumberstoseeeachother’spostsandprofiles). PlatformssuchasTwitterorYoutube,on theotherhand,usuallymakecontentaccessibletoawideraudienceofmainlyunknownindividuals, andresembleabroadcastingplatformratherthanaplatforminwhichcontentisrestrictedtopeople whohavebeenacceptedas“contacts”,“followers”or“friends”. Giventhisdifferenceinthepublicaccessibilityofplatformcontent,itseemslogicaltoassumethat SNSssuchasFacebookorSnapchataremoreaptatprovidingrelieffromFOMOthan,forexample, videosharingplatformssuchasYoutubeormicrobloggingservicessuchasTwitterbecausetheformer providegreaterrelieffromanxietiessurroundingwhatfriendsandfamilyaredoing. Int.J.Environ.Res.PublicHealth2018,15,2319 4of18 Indeed, platformssuchasFacebookorInstagramaremorepersonalSNSthatenableteensto limitcontentaccessibilitytothedesiredpublic(e.g.,friendsorfriends-of-friends). Asaresult,these SNSmaybeespeciallyattractivevenuesforteenswithahighFOMObecauseitletsthemknowwhat people in their primary affiliative groups are thinking and doing. We explore this assumption by askingthefollowingresearchquestion: ResearchQuestion. IsFOMOastrongerpredictoroftheuseofmoreprivatesocialmediaplatforms(that connectmostlytoofflinenetworks)thanmorepubliclyaccessiblesocialmediaplatforms(thatconnectmostlyto onlinenetworks)? 2.3. FOMOandProblematicSocialMediaUse(PSMU) Whensocialmediauseisexcessive,itcanbecomeproblematic. Severalstudieshaveaddressed problematicsocialmediause(PSMU)[34–36].Thereisanongoingdebateintheliteraturearoundthe differencesbetweenproblematicsocialmediauseandapossiblesocialmediabehavioraladdiction[4,37]. Anin-depthdiscussionofthisdebategoesbeyondthescopeofthiswork.Inthecurrentstudy,however, weusethetermproblematicsocialmediause,whichwedefineasanunhealthyexcessiveformof socialmediause,characterizedbyalackofcontroloverthebehavior,andcontinuedbehaviordespite adverselifeconsequences.Ourfocusisonrevealingthefactorsthatpredicttoproblematicsocialmedia useinageneralpopulationofteenagers(i.e.,theaimisnottodiagnoseoridentifypathologicalcases). Asmentionedbefore,oneoftheaimsofthisstudyistoexploreifteenagerswithagreaterFOMO reportahigherlevelsofPSMU.Previousstudiessuggestthatthisisthecase[38–43],andsuggestthat thosewhoexperienceFOMOmaytrytorelievetheiranxietybycheckinguponotherpeopleonsocial media. Ironically,however,themorepeoplechecktheirsocialmediaaccounts,however,themorethey mayfindeventstheyaremissingouton. Usingsocialmediatoreducetheanxietymayenduptobe anothersourceofFOMO.Thereforethisviciouscirclemayreinforceitself,graduallyturningsocial mediauseintoproblematicsocialmediause. Henceweexpect: Hypothesis2. TeenswhoexperiencegreaterFOMO,reporthigherPSMU. 2.4. FOMOandPhubbing AfinalstudypurposeistofocusonFOMOasapredictorofoneparticularformofproblematic social media use, which is the use of social media during conversations with co-present others. This practice is termed “phubbing” (derived from phone + snubbing), which refers to “the act of snubbingsomeoneinasocialsettingbyconcentratingonone’sphoneinsteadoftalkingtotheperson directly”[44,45]. Experimentalstudiesshowthatphubbingnegativelyimpactsrelationaloutcomes suchasimpressionformation[46]. Recentfindingsshowthatpeopleprefertousesmartphoneswhengoingonline[47].Smartphones allowsustobeincontactwithouraffiliationgroupsonsocialmedia,everywhereweare. Therefore, weassumethatifpeopleexperienceanxiety,theymaytemporarytrytoreduceitbyaccessingtheir socialmediaaccountsontheirsmartphones[48]. ItislikelythatthosehighinFOMO,whousesocial mediatoaddresstheiranxiety,mayoverusesocialmediaontheirsmartphonesinsuchawaythatit intersectswiththeirofflinesocialinteractions,leadingthemtophubtheirofflineinteractionpartners. Hence,thelastaimofthisstudyistoexplorewhetherteenswithagreaterFOMOreporttoengage inphubbingbehaviormorefrequently,andwhetherthelatterrelationshipismediatedbyPSMU: Hypothesis3a. TeenswithagreaterFOMO,aremorelikelytousesocialmediaduringconversationswith co-presentothers(cf. “phubbing”). Hypothesis3b. PSMUmediatestheformerrelationship. Int.J.Environ.Res.PublicHealth2018,15,2319 5of18 3. Method 3.1. SampleandProcedure InFlanders,aconsortiumofnon-profitorganizationscollaboratesbi-annuallyonalarge-scale surveyprojectthatexaminesthestateofaffairsofdigitalmediaownershipanduseofFlemishyouths. Apart from a large set of recurring questions, every edition of the survey includes a number of questionsontopicsthatareconsideredrelevantatthetime. Thedatagatheredforthecurrentstudywerepartofthe2016researchproject[49]. Anomnibus surveywasadministeredtothehighschoolpupilsof11geographicallydispersedhighschoolsin Flanders,Belgium. Usingtheinformationmadeavailablebytheministryofeducation,quotasampling wasusedtoselectschools,and—withintheschools—yearsandclassrooms. Thisprocedureresulted inafinalsamplethatisrepresentativeforthepopulationintermsofgender, ageandschooltrack (seeVanWaeg,D’Hanens,Dooms&Naesens[49]forfurtherdetails). Within each school, a local collaborator (e.g., the school’s information and communications technologycoordinator)organizedthesurveyadministrationprocess,accordingtoasetofinstructions providedbytheprojectleaders. Thesurveywasadministeredonline,buttoavoidself-selectionbias, thedatacollectiontookpartduringschoolhours,inthecomputerroomsoftheschools. Unfortunately, noresponserateswereregistered. However, thelocalcollaboratorsstatedthatfewpupilsdidnot receivepermissiontoparticipate. Intotal,theresponsesof3291pupilsweregathered. Theproject leaders subjected these responses to a rigorous data cleaning procedure, leading to removal of 452responsesthatwereeithersubstantiallyincomplete,eithercontainedmultipleinvalidresponses tovalidationscreeningitems. Thisprocedureresultedinafinalsampleof2663pupils(57.1%girls; M =14.87,SD=1.67). Thisfinaldatasetwasdistributedbytheconsortiumtothecollaborating age researchersforfurtheranalysis. Informedconsentwascollectedfromboththeparticipatingteenagersandtheirparents. Giventhe largesample-size,anopt-outprocedurewasusedforcollectingconsentfromparents. Theuniversity’s institutionalreviewboardapprovedthestudy. 3.2. Measures 3.2.1. BreadthofSocialMediaPlatformsUsed Basedoninterviewswithyoungpersons,alistof25frequentlyusedsocialmediaapplications wasconstructed. WeadheredtoKaplanandHaenlein’s[16]definitionofsocialmedia,whichincludes allplatformsinwhichuserscangeneratecontentthatis(semi-)publiclyavailabletoothers. Thelatter definitionexcludesplatformsthatfocusexclusivelyoninstantmessaging(e.g.,Whatsapp,Facebook Messenger). ThelistofincludedplatformscanbeconsultedinTable1. Thebreadthofsocialmediause wasassessedbyaskingforeachplatformwhethertheteenagerhadanactiveaccount(1=yes,0=no), andthensummingthetotalnumberofactiveaccountsperparticipant. Int.J.Environ.Res.PublicHealth2018,15,2319 6of18 Table1.Scaleitems,meansandstandarddeviations. Fear-of-Missing-Out(FOMO) Items M SD 1 Ifearmyfriendshavemorerewardingexperiencesthanme 2.33 1.11 2 ItisimportantthatIunderstandmyfriends’“insidejokes” 3.09 1.05 3 ItbothersmewhenImissanopportunitytomeetupwithfriends 4.16 0.90 4 WhenIgoonsummercamporvacation,Icontinuetokeeptabsonwhatmyfriendsaredoing 2.66 1.14 ProblematicSocialMediaUse(PSMU) Items M SD 1 Howfrequentlydoyoufinditdifficulttoquitusingsocialmedia? 2.89 1.19 2 Howfrequentlydoothers(e.g.,yourparentsorfriends)tellyouthatyoushouldspendlesstimeonsocialmedia? 2.72 1.28 3 Howfrequentlydoyoupreferusingsocialmediaoverspendingtimewithothers(e.g.,withfriendsorfamily)? 1.89 0.97 4 Howfrequentlydoyoufeelrestless,frustratedorirritatedwhenyoucan’taccesssocialmedia? 2.33 1.16 5 Howfrequentlydoyoudoyourhomeworkpoorlybecauseyoupreferbeingonsocialmedia? 2.51 1.17 6 Howfrequentlydoyouusesocialmediabecauseyoufeelunhappy? 2.31 1.23 7 Howfrequentlydoyoulacksleepbecauseyouspentthenightusingsocialmedia? 2.44 1.35 Phubbing Items M SD 1 Howfrequentlydoyouuseyourmobilephoneduringaconversationinabarorrestaurant? 2.39 0.99 2 Howfrequentlyareyouengagedwithyourphoneduringaconversation? 2.13 0.96 3 Howfrequentlydoyouchecksocialmediaonyourphoneduringapersonalconversation? 1.89 0.92 3.2.2. DepthofSocialMediaPlatformsUsed Thedepthofsocialmediausewasmeasuredbyassessingforeachactiveplatformhowfrequently itwasused(1=lessthanonceperweek,5=multipletimesperday). Questionswithrespecttothe usagefrequencyofaplatformwereonlyansweredbyparticipantswhohadanactiveaccountforthe platform. AsvisibleinTable2,asubstantialnumberofplatformswasusedby(very)fewparticipants. Weoptedtoonlyincludethoseplatformswhowereusedbyatleast5%ofthesample. Theanalyses forHypothesis1a,concerningFOMOasapredictorofplatformusagefrequency(seeTables3and4) areperformedonthebasisofthesubsampleofusersofeachplatform. Int.J.Environ.Res.PublicHealth2018,15,2319 7of18 Table2.Percentageofteenagerswithanaccountonvarioussocialmediaplatformsandaveragefrequencyofuseamongaccountholders(1=lessthanonce/week, 5=multipletimes/day). LessthanOnce Onceper MultipleTimes MultipleTimes AverageUsageFrequency Daily SocialMediaPlatform N %ofTotalSample perWeek Week perWeek perDay M SD % % % % % Facebook 2360 89% 4.49 0.87 1.4 3.6 6.4 22.2 66.5 Snapchat 1937 73% 4.36 1.00 2.4 4.5 10.1 20.5 62.5 Instagram 1680 63% 4.36 0.97 1.5 4.4 15.7 31.8 46.6 YouTube 1596 60% 4.17 0.95 2.1 4.4 9.7 22.3 61.4 Google+ 925 35% 2.67 1.40 28.2 21.5 19.8 16.4 14.1 Twitter 582 22% 3.63 1.35 8.8 14.9 19.4 18.6 38.3 Swarm 510 19% 4.26 1.09 3.7 5.5 10.8 20.6 59.4 WeHeartIt 329 12% 3.42 1.34 10.6 16.4 21.9 22.2 28.9 Pinterest 324 12% 2.6 1.34 28.1 21.6 24.4 14.5 11.4 Tumblr 298 11% 3.52 1.35 9.4 16.4 21.1 18.8 34.2 Vine 232 9% 3.12 1.38 15.9 19.8 23.3 18.5 22.4 Foursquare 172 6% 3.03 1.72 34.3 8.7 9.9 13.4 33.7 Tinder 120 5% 2.52 1.51 36.7 20 15.8 9.2 18.3 Kiwi 117 4% 3 1.58 25.6 18.8 13.7 13.7 28.2 Ask.fm 92 3% 3.6 1.60 20.7 6.5 12 14.1 46.7 Runkeeper 72 3% 2.17 1.10 31.9 34.7 23.6 4.2 5.6 Reddit 60 2% 3.07 1.48 20 20 18.3 16.7 25 Happening 48 2% 2.65 1.42 29.2 20.8 20.8 14.6 14.6 Vimeo 32 1% 2.91 1.61 34.4 6.3 15.6 21.9 21.9 Strava 25 1% 2.6 1.44 28 28 16 12 16 LinkedIn 24 1% 2.08 1.38 50 16.7 20.8 12.5 / Periscope 15 1% 3.07 1.28 13.3 20 26.7 26.7 13.3 Endomondo 11 0% 2.73 1.74 36.4 18.2 9.1 9.1 27.3 Ello 8 0% 1.5 1.41 87.5 / / / 12.5 Meerkat 6 0% 2.33 2.07 66.7 / / / 33.3 Int.J.Environ.Res.PublicHealth2018,15,2319 8of18 Table3.Gender,age,schooltrackandFear-of-Missing-Out(FOMO)aspredictorsofthefrequencyofFacebook,Snapchat,Instagram,Youtube,GooglePlusandTwitter. Facebook Snapchat Instagram Youtube GooglePlus Twitter PE SE Wald PE SE Wald PE SE Wald PE SE Wald PE SE Wald PE SE Wald Gender(boy) −0.50 0.09 32.55*** −0.68 0.09 52.79*** −0.61 0.10 35.85*** 0.72 0.10 56.21*** 0.18 0.12 2.23 −0.25 0.15 2.58 Gender(girl) a Age 0.15 0.03 28.1*** 0.02 0.03 0.30 0.12 0.03 14.36*** −0.01 0.03 0.14 −0.09 0.04 6.42* 0.02 0.05 0.15 Schooltrack(voc) 0.41 0.14 8.72** 0.40 0.14 8.00** −0.34 0.14 5.75* 0.54 0.15 13.58*** 0.51 0.17 8.79** 0.36 0.25 2.18 Schooltrack(s-voc) 0.28 0.12 5.67* 0.35 0.12 8.88** −0.01 0.12 0.00 −0.01 0.12 0.00 0.40 0.15 6.84** 0.76 0.18 19.06*** Schooltrack(ac) a FOMO 0.48 0.07 55.09*** 0.28 0.07 16.89*** 0.34 0.07 22.48*** 0.18 0.07 7.08** 0.04 0.09 0.22 0.15 0.11 2.02 X2(1821)=1635.34, X2(1731)=1842.31, X2(1643)=1716.37, X2(1623)=1621.94, X2(1335)=1370.00, X2(1083)=1131.58, PearsonGOF p=1.00 p=0.031 p=0.102 p=0.503 p=0.247 p=0.148 X2(5)=150.10, X2(5)=88.07, X2(5)=79.19, X2(5)=75.47, X2(5)=17.20, X2(5)=29.41, −2LLGOF p<0.001 p<0.001 p<0.001 p<0.001 p=0.004 p<0.001 NagelkerkeR2 0.07 0.05 0.05 0.05 0.02 0.05 *p<0.05, **p<0.01, ***p<0.001, Note1: PE=parameterestimate, SE=standarderror, Wald=Waldteststatistic, voc=vocational, s-voc=semi-vocational, ac=academic, GOF=goodness-of-fit,a=referencecategory. Table4. Gender,age,schooltrackandFear-of-Missing-Out(FOMO)aspredictorsofthefrequencyofSwarm,WeHeartIt,Pinterest,Tumlbr,Vine,Foursquare andTinder. Swarm WeHeartIt Pinterest Tumblr Vine Foursquare Tinder PE SE Wald PE SE Wald PE SE Wald PE SE Wald PE SE Wald PE SE Wald PE SE Wald Gender(boy) −0.48 0.19 6.58** −1.41 0.58 5.87* −0.59 0.29 4.18* −0.41 0.29 2.01 0.19 0.24 0.64 −0.04 0.29 0.02 −0.11 0.34 0.11 Gender(girl) a Age 0.21 0.06 11.25* −0.12 0.07 2.69 −0.03 0.07 0.16 −0.03 0.07 0.16 −0.13 0.08 2.48 0.03 0.11 0.10 −0.17 0.11 2.36 Schooltrack(voc) −0.58 0.25 5.34* 0.65 0.31 4.36* −0.10 0.27 0.15 −0.50 0.33 2.30 −0.21 0.36 0.33 0.25 0.37 0.46 0.75 0.48 2.45 Schooltrack(s-voc) 0.36 0.22 2.78 0.01 0.24 0.00 −0.17 0.25 0.43 0.07 0.25 0.08 0.05 0.29 0.03 0.33 0.34 0.93 0.48 0.42 1.33 Schooltrack(ac) a FOMO 0.16 0.13 1.49 0.24 0.14 2.86 0.19 0.17 1.28 0.29 0.15 3.77* 0.37 0.18 4.22* 0.47 0.21 5.26* 0.04 0.23 0.03 X2(915)=856.28, X2(571)=607.49, X2(619)=627.27, X2(619)=620.67, X2(599)=616.26, X2(475)=488.52, X2(371)=373.34, PearsonGOF p=0.917 p=0.141 p=0.400 p=0.474 p=0.304 p=0.324 p=0.456 X2(5)=28.53, X2(5)=12.53, X2(5)=6.24, X2(5)=689.76, X2(5)=8.29, X2(5)=7.47, X2(5)=4.26, −2LLGOF p<0.001 p=0.028 p=0.283 p=0.123 p=0.141 p=0.188 p=0.513 NagelkerkeR2 0.06 0.04 0.02 0.03 0.04 0.05 0.04 *p<0.05, **p<0.01, ***p<0.001, Note1: PE=parameterestimate, SE=standarderror, Wald=Waldteststatistic, voc=vocational, s-voc=semi-vocational, ac=academic, GOF=goodness-of-fit,a=referencecategory. Note2:TheresultsforWeHeartIt,PinterestandTinderhavetobeinterpretedwithcautionastheassumptionofproportionalodds wasviolated. Int.J.Environ.Res.PublicHealth2018,15,2319 9of18 3.2.3. PrivateVersusPublicAccessibilityofSocialMediaPlatformsUsed With respect to the private versus public accessibility of platforms, we consider Facebook and Snapchatassocialmediaplatformsonwhichcontentisgenerallylesspubliclyaccessible(i.e.,content is oftentimes shielded off to a public of “approved” contacts), and Youtube and Twitter as social mediaplatformsonwhichcontentisgenerallypubliclyaccessible(i.e.,contentisusuallyaccessibleto everyonewhovisitstheplatform). 3.2.4. FearofMissingOut(FOMO) Theomnibusformatofthesurveyimpliedaconstraintonthenumberofitemswecoulduse. WechosetoselectfouritemsfromPrzybylskietal.’s[8]10-itemFOMO-scale,asthisscalehadbeen pre-validated by the authors. In Przybylski et al.’s study, the ten scale items loaded on one factor, andwereinternallyconsistent. Intheabsenceofinformationonthefactorloadingsoftheindividual itemsintheoriginalstudy,wechosetoselectasubsetoffouritemsthatreflectthediversityofthe original scale items well. Those items were: “It bothers me when I miss an opportunity to meet up with friends”, “I fear my friends have more rewarding experiences than me”, “When I go on vacationorsummercamp,Icontinuetokeeptabsonwhatmyfriendsaredoing”,and“Itisimportant that I understand my friends “inside jokes””. The items were measured on a 5-point Likert-scale (1=completelydisagree;5=completelyagree). Awell-knownriskofusingadiversesetitemstoconstructashortscale,isthatinternalconsistency maybejeopardized[50]. Indeed,althoughanexploratoryfactoranalysisrevealedthatthefouritems loadedontoonefactor,withallfactorloadingsabove0.55,thetotalvarianceexplainedbythefactor (42%) was below the advised 60% threshold, and the overall Kaiser-Meier-Olkin measure (0.65) indicatedmediocresamplingadequacy. Afurtherexaminationofthescale’sreliability, confirmed thattheinternalconsistencyofthescalewasweak(α=0.56),andrevealedthatitcouldnotbefurther improvedviaitemselection,asthehighestinter-itemcorrelationwas0.36(p<0.001). AppendixA showstheinter-itemcorrelationmatrix. MeansandstandarddeviationscanbeconsultedinTable1. Asolutiontotheissueoflowinternalconsistency,istoperformanalyseswithindividualscale items,ratherthanwithascalevariable.Forthecurrentstudy,however,suchprocedurewouldimplyan inflationofresults—particularlywhenansweringHypothesis1a,whichreducesthecomprehensibility ofthestudyfindings. Thealternativeistocontinuewithasub-optimalmeasure,knowingthatthe mainriskofusingascale-measurethatsuffersfromaweakCronbachalpha,isunderestimationofthe realrelationship[51]. Inthecontextofthecurrentstudy,weoptedforthelattersolutionforreasons ofcomprehensibility,andthusworkwiththescalevariabletoanswerHypothesis1. Theriskofan underestimation of the real relationship should be kept in mind, however, when interpreting the results. ForHypotheses2,3and4,wereportboththeresultsusingtheFOMOscalevariableandthe individualscaleitems. 3.2.5. ProblematicSocialMediaUse(PSMU) ProblematicsocialmediausewasassessedusinganadaptedversionoftheC-VATinstrument[52], whichisascalebasedontheCIUS-scalethatwasdevelopedandvalidatedbyMeerkerk,Vanden Eijndenetal.[53]andMeerkerk[54]. Theadaptedversionaddressessocialmediauseratherthan videogaming. Theitemsweremeasuredona5pointLikert-scale(α =0.82). Thescaleitems, their meansandstandarddeviations,andtheirfactorloadingscanbeconsultedinTable1. 3.2.6. PhubbingBehavior Atthetimeofconstructingthequestionnaire,wewereunawareofscalesmeasuringphubbing behavior. Hence,wemeasuredphubbingbehaviorwiththreeself-constructeditems: “Howfrequently doyouuseyourmobilephoneduringaconversationinabarorrestaurant?”,“Howfrequentlyareyou engagedwithyourphoneduringaconversation?”,and“Howfrequentlydoyouchecksocialmedia Int.J.Environ.Res.PublicHealth2018,15,2319 10of18 onyourphoneduringapersonalconversation?”. Theitemsweremeasuredona5-pointLikertscale, rangingfrom1(never)to5(almostallthetime;α=0.77). Thescaleitems,theirmeansandstandard deviationscanbeconsultedinTable1. 3.2.7. Controlvariables Gender(1=boy,2=girl),ageandschooltrack(1=vocational,2=semi-vocational,3=academic) wereincludedascontrolvariablesinthelinearregressionanalyses. 3.3. Analyses Hypothesis 1a states that teens who have a greater FOMO use social media platforms more frequently. Weusedordinalregressionanalysisintotestthishypothesisbecausethefrequencyof use-measureshaveordinalresponsescales. IntheanalyseswiththefrequencyofuseofSnapchat, WeHeartit,PinterestandTinderasthedependentvariables,theassumptionofproportionalodds wasviolated;thisoccursmorefrequentlyinlargesamples,becauseminorviolationsoftheparallel linestestmayalreadybestatisticallysignificant[55]. Nonetheless,weadvisetointerprettheseresults withcaution. Hypothesis1bstatesthatFOMOpositivelypredictsthebreadthofsocialmediause. The“breadth of social media use” variable was operationalized by counting the number of active social media accountsthatteenshave(min=0,max=25). Weusedmultiplelinearregressionanalysistotestthe hypothesis,afterassessingthatthestandardizedresidualsofthevariablewerenormallydistributed (andthusthattheassumptionofnormalitywasnotviolated: becausemeasurementsgatheredinlarge samplestypicallyhaveverysmallstandarderrors,itisadvisedtoassessnormalityonthebasisofthe absolutevaluesofskewnessandkurtosisratherthanonZ-scoresofskewnessandkurtoses. Advised criticalvaluesforskewness,respectivelykurtosisinlargesamplesare2,respectively7[56]. Using these guidelines, the skewness (1.22) and kurtosis (5.95) values of the residuals indicated that the assumptionofnormalityforregressionanalysiswassufficientlymet). ToexploreourresearchquestiononthecomparativestrengthofthecorrelationsbetweenFOMO andprivateplatformsontheonehand,andbetweenFOMOandpublicplatformsontheother,we firstcalculatedthecorrelations,andnextcomparedthestrengthofthesecorrelationsusingSteiger’s Z-test[57]inLeeandPreacher’s[58]web-basedsoftware. TheSteigerZ-testoperatesonthebasis ofPearsoncorrelationsbetweentwodependentcorrelationswithonevariableincommon. Because thecorrelationshavetobedrawnfromthesamesample,wefirstrecodedthe‘frequencyofplatform use’variablessothatpersonswithoutanactiveaccountreceivedthelowestusagescore(ratherthan amissingvalue). Thisrecodingprocedureensuredthattherewere2663responsesforeachvariable. Next,wecalculatedthePearsoncorrelationcoefficients,whichformtheinputfortheSteiger’sZ-test. ThereadermaynoticethatthePearsoncorrelationtestisaparametrictest,whereasthe“frequencyof platformuse”variablesareordinal. However,thevariablesmetthestandardguidelinesforskewness and kurtosis in large samples [56], and the Pearson correlation coefficients and the Spearman rho correlation coefficients were highly similar (i.e., for only two out of ten correlations the difference betweenthePearsonandtheSpearmancorrelationcoefficientexceededavalueof0.03). Insocialscienceresearch,scalevariablesareoftentimestreatedasintervalvariables,basedon theideathatthesetsofitemsthatcompriseeachscaleformanindexthatrepresentsanunderlying latent factor [59]. The required assumptions for parametric testing were met. Hence, to examine Hypotheses2and3,wefittedamediationmodelusingmodel4ofHayes’[60]. Processmacrofor SPSS with FOMO as the independent variable, PSMU as the mediator and phubbing behavior as the dependent variable. The indirect effect was estimated for 5000 bootstrap samples with a 95% bias-correctedconfidenceinterval.

Description:
FOMO predicted phubbing behavior both directly and indirectly via Keywords: fear of missing out (FOMO); social media; problematic social media
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.