ebook img

Fault-Tolerant Traction Electric Drives: Reliability, Topologies and Components Design PDF

118 Pages·2020·5.541 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fault-Tolerant Traction Electric Drives: Reliability, Topologies and Components Design

SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING Igor Bolvashenkov Hans-Georg Herzog Flyur Ismagilov Vyacheslav Vavilov Lev Khvatskin Ilia Frenkel Anatoly Lisnianski Fault-Tolerant Traction Electric Drives Reliability, Topologies and Components Design SpringerBriefs in Electrical and Computer Engineering Series Editors Woon-Seng Gan, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore C.-C. Jay Kuo, University of Southern California, Los Angeles, CA, USA Thomas Fang Zheng, Research Institute of Information Technology, Tsinghua University, Beijing, China MauroBarni,DepartmentofInformationEngineeringandMathematics,University of Siena, Siena, Italy SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum offields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typicaltopicsmightinclude:timelyreportofstate-of-theartanalyticaltechniques, a bridge between new research results, as published in journal articles, and a contextualliteraturereview,asnapshotofahotoremergingtopic,anin-depthcase study or clinical example and a presentation of core concepts that students must understand in order to make independent contributions. More information about this series at http://www.springer.com/series/10059 Igor Bolvashenkov Hans-Georg Herzog (cid:129) (cid:129) Flyur Ismagilov Vyacheslav Vavilov (cid:129) (cid:129) Lev Khvatskin Ilia Frenkel (cid:129) (cid:129) Anatoly Lisnianski Fault-Tolerant Traction Electric Drives Reliability, Topologies and Components Design 123 Igor Bolvashenkov Hans-Georg Herzog Institute of Energy ConversionTechnology Institute of Energy ConversionTechnology Technical University of Munich (TUM) Technical University of Munich (TUM) Munich,Bayern, Germany Munich,Bayern, Germany Flyur Ismagilov Vyacheslav Vavilov Department ofElectromechanics Department ofElectromechanics Ufa State Aviation Technical University Ufa State Aviation Technical University Ufa,Russia Ufa,Russia LevKhvatskin Ilia Frenkel CenterforReliabilityandRiskManagement CenterforReliabilityandRiskManagement ShamoonCollege ofEngineering (SCE) ShamoonCollege ofEngineering (SCE) Beersheba, Israel Beersheba, Israel AnatolyLisnianski TheSystem Reliability Department Israel Electric Corporation Ltd Haifa, Israel ISSN 2191-8112 ISSN 2191-8120 (electronic) SpringerBriefs inElectrical andComputer Engineering ISBN978-981-13-9274-0 ISBN978-981-13-9275-7 (eBook) https://doi.org/10.1007/978-981-13-9275-7 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface The challenge of vehicular electrification has recently become an extremely important engineering task. This is primarily due to the well-known benefits of electric traction drive. The most significant element inthe solution of this problem is the development of highly efficient and fault-tolerant traction electric drives that will be the optimal choice for vehicles performing under specified operating con- ditions. Since vehicular traction electric drives are safety-critical systems, they are subject to the most stringent requirements with respect to reliability and fault tolerance. The aim of this book is to provide a comprehensive presentation of systematic analysis of operational availability and performance of the fault-tolerant traction electricaldrivethatwouldbemostsuitableforicebreakerships,takingintoaccount the real conditions of ice navigation. To solve the above task, we applied new theoretical approaches, including combined random process methods, the Lz-transform technique for multistate systems, and statistical data processing. In addition, the book deals with the reliability-oriented design of the fault-tolerant components of electrical drives for a more electric aircraft. Theauthorssuggestthatthisbookwillbeofconsiderableinteresttoresearchers, practical engineers, and industrial managers who are involved in the addressing of issues related to the reliability-oriented design and operation offault-tolerant trac- tionelectricdrives.Inaddition,it willbeahelpfultextbookforundergraduate and graduatecoursesinseveraldepartments,includingelectricalengineering,industrial engineering, mechanical engineering, and applied mathematics. This book is self-contained and does not require the reader to use other books or papers. There are five chapters in this book. Chapter1presentstheLz-transformapproach,tothecomparativeanalysisofthe fault tolerance of multi-motor electrical drives with multi-phase traction motors. Suchatopologyofthetractionelectricdrivecanbeusedinperspectivepropulsion systems of ships, aircraft, trains, heavy trucks and buses, to increase the fault toleranceofelectricorhybrid-electricvehicle.Theuseofmulti-motortractiondrive topologies makes the propulsion system more resilient and flexible in control, v vi Preface especially in the failure mode. Many technical systems, such as a multi-motor tractiondriveswithmulti-phaseelectricmotors,aredesignedtoperformtheirtasks with different performance levels: level of perfect functioning, levels with reduced capacity, and complete failure level. Such systems were analyzed as multistate systems with two competitive types of maintenance strategy. Chapter 2 evaluates the highly important reliability features of the new ice- breaker gas tanker “Christophe de Margerie”, with Lz-transform, the modern stochastic process method for the reliability assessment of a multistate system. Basing ourselves on the stochastic model while considering the conditions of ice navigation along the Northern Sea Route eastward during the summer-autumn period,wedeterminedtheoperationalavailabilityoficebreakershipandhispower drive performance in specific operation conditions of Arctic navigation. These values largely determine the operational economic efficiency of multi-tonnage icebreaker gas tankers in the Arctic ice conditions. Chapter 3 focuses on analysis of the reliability-oriented design of multiphase high-speed permanent-magnet generators and their constraint for using in aviation industry. Their designs are described and the research results of their studies by finite element methods are shown. Approaches and algorithms for the design of aviationfault-tolerantmultiphasehigh-speedpermanent-magnetgeneratorsarealso presented taking into account the requirements of aviation standards. The theoret- icalresearchmaterialsaresupportedbyexperimentaldataobtainedonexperimental prototypes. The best design offault-tolerant electric generators is proposed. Chapter 4 is concerned with the multiphase electric motors to realize the more electric aircraft concept, according with the requirements for electric motors applicable in various aircraft systems. Various designs of multiphase fault-tolerant permanent-magnet electric motor with external and internal rotor arrangement are considered and compared, and a multidisciplinary approach to the design of the electricmotorsisdescribedindetails.Thefault-tolerantelectricmotorisverifiedby the experimental prototype for a fuel pump of the aircraft engine. In addition, parameters of the designed motor are presented. Chapter 5 presents brief description of the Lz-transform method and MATLAB codes for examples’ solution. Munich, Germany Igor Bolvashenkov Munich, Germany Hans-Georg Herzog Ufa, Russia Flyur Ismagilov Ufa, Russia Vyacheslav Vavilov Beersheba, Israel Lev Khvatskin Beersheba, Israel Ilia Frenkel Haifa, Israel Anatoly Lisnianski Contents 1 Reliability and Fault Tolerance Assessment of Multi-motor Electric Drives with Multi-phase Traction Motors . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 State of Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 System Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Structure of the Ship’s Traction Drive with Six 3-Phase Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 StructureoftheShip’sTractionDrivewithThree6-Phase Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.3 Structure of the Ship’s Traction Drive with Two 9-Phase Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.4 StructureoftheShip’sTractionDrivewithOne18-Phase Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Reliability Evaluation of Different Traction Drive Topologies . . . . 6 1.4.1 The Six 3-Phase Motors Topology . . . . . . . . . . . . . . . . . . 6 1.4.2 The Three 6-Phase Motors Topology . . . . . . . . . . . . . . . . 8 1.4.3 The Two 9-Phase Motors Topology . . . . . . . . . . . . . . . . . 12 1.4.4 The One 18-Phase Motor Topology . . . . . . . . . . . . . . . . . 15 1.5 Calculation of Reliability Indices of Multi-motor Electric Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Operational Availability Investigation of Multi-drive Electric Propulsion System of the Arctic Gas Tanker with Ice Class Arc7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Object of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Diesel-Electric Propulsion System . . . . . . . . . . . . . . . . . . . . . . . . 28 vii viii Contents 2.4 Multi-state Models of LNG Tanker Power System . . . . . . . . . . . . 29 2.4.1 Description of the LNG Tanker Power System . . . . . . . . . 29 2.4.2 Description of the Subsystems and Elements. . . . . . . . . . . 30 2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Reliability Oriented Design of High-Speed Multi-phase Electric Generator for the Aerospace Application . . . . . . . . . . . . . . . . . . . . . 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Requirements and Limitations in the EG Design . . . . . . . . . . . . . 50 3.3 Ways to Ensure the Fault Tolerance of Aircraft EGs . . . . . . . . . . 53 3.3.1 Ensuring the Fault Tolerance of Multiphase EG by Control the Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 Multimodular EG with a Tooth-Coil Winding . . . . . . . . . . 55 3.3.3 EG with Vertical Windings . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.4 Mechanical Shunting of the Magnetic Flux . . . . . . . . . . . . 61 3.3.5 Artificial Quenching of SCC by Using Special Algorithms and Power Electronics . . . . . . . . . . . . . . . . . . 61 3.3.6 High-Reactance EGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.7 Increase the External Inductances . . . . . . . . . . . . . . . . . . . 62 3.3.8 EG with External Inductances . . . . . . . . . . . . . . . . . . . . . 67 3.3.9 Electromagnetic Shunting of Magnetic Flux . . . . . . . . . . . 67 3.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Fault Tolerant Multi-phase Permanent Magnet Synchronous Motor for the More Electric Aircraft . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 The Use of EMs in the MEA and EAE Concepts. . . . . . . . . . . . . 74 4.3 Requirements for EMs of Aircraft FPs. . . . . . . . . . . . . . . . . . . . . 76 4.4 Types of Failures in PMEMs and Methods for Their Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 Design Features of Multi-phase PMSMs for Aircraft MPs. . . . . . . 78 4.5.1 The Material Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5.2 The PMSM Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.5.3 The PMSM Stator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.5.4 Reliability of Multi-phase and Duplicated PMSMs . . . . . . 80 4.5.5 Loss Analysis in Multi-phase and Duplicated PMSMs. . . . 81 4.5.6 Control System of Multi-phase and Duplicated PMSM . . . 81 4.6 Mathematical Description of the Processes in Fuel-Submersible PMSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.7 Fault-Tolerant 6-Phase PMSM for the Aircraft MPs . . . . . . . . . . . 86 4.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Contents ix 5 Lz-transform: Definition, Main Properties and Examples . . . . . . . . . 93 5.1 Brief Description of Lz-transform . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.1 Lz-transform: Definition and Main Properties . . . . . . . . . . 93 5.1.2 Lz-transform and Ushakov’s Universal Generating Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1.3 Determination Reliability Indices Using Lz-transform. . . . . 97 5.1.4 Evaluating MSS Reliability Indices Using Lz-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Code MATLAB for Evaluating MSS Reliability Indices Using Lz-transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.