ebook img

Fault Tolerant Flight Control of Unmanned Aerial Vehicles PDF

138 Pages·2015·14.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fault Tolerant Flight Control of Unmanned Aerial Vehicles

Fault Tolerant Flight Control of Unmanned Aerial Vehicles ImanSadeghzadeh AThesis in TheDepartment of MechanicalandIndustrialEngineering PresentedinPartialFulfillmentoftheRequirements fortheDegreeofDoctorofPhilosophyat ConcordiaUniversity Montre´al,Que´bec,Canada January2015 (cid:2)c ImanSadeghzadeh,2015 CONCORDIAUNIVERSITY SCHOOLOFGRADUATESTUDIES Thisistocertifythatthethesisprepared, By: ImanSadeghzadeh Entitled: FaultTolerantFlightControlofUnmannedAerialVehicles andsubmittedinpartialfulfilmentoftherequirementsforthedegreeof DoctorofPhilosophy(MechanicalEngineering) complies with the regulations of this University and meets the accepted standards with respecttooriginalityandquality. SignedbytheFinalExaminingCommittee: Chair Dr.F.Haghighat Examiner Dr.C.Y.Su Examiner Dr.W.F.Xie Examiner Dr.A.Aghdam External ElectricalandComputerEngineering Examiner Dr.Q.Zhao External UniversityofAlberta Supervisor Dr.Y.M.Zhang Approvedby: Dr.A.Dolatabadi,Ph.D.ProgramDirector DepartmentofMechanicalandIndustrialEngineering January13,2015 Dr.AmirAsif,Dean FacultyofEngineering&ComputerScience ABSTRACT FaultTolerantFlightControlofUnmannedAerialVehicles ImanSadeghzadeh,Ph.D. ConcordiaUniversity,2015 Safety, reliability and acceptable level of performance of dynamic control systems are the major keys in all control systems especially in safety-critical control systems. A controllershouldbecapableofhandlingnoisesanduncertaintiesimposedtothecontrolled process. A fault-tolerant controller should be able to control a system with guaranteed sta- bilityandgoodoracceptableperformancenotonlyinnormaloperationconditionsbutalso in the presence of partial faults or total failures that can be occurred in the components of the system. When a fault occurs in a system, it suddenly starts to behave in an unan- ticipated manner. Thereby, a fault-tolerant controller should be designed for being able to handle the fault and guarantee system stability and acceptable performance in the pres- enceoffaults/damages. ThisshowstheimportanceandnecessityofFault-TolerantControl (FTC)tosafety-criticalandevennowadaysforsomenewandnon-safety-criticalsystems. During recent years, Unmanned Aerial Vehicles (UAVs) have proved to play a sig- nificant role in military and civil applications. The success of UAVs in different missions guarantees the growing number of UAVs to be considerable in future. Reliability of UAVs andtheircomponentsagainstfaultsandfailuresisoneofthemostimportantobjectivesfor safety-critical systems including manned airplanes and UAVs. The reliability importance ofUAVsisimpliedintheacknowledgementoftheOfficeoftheSecretaryofDefenseinthe UAVRoadmap2005-2030bystatingthat,”ImprovingUA[unmannedaircraft]reliabilityis thesinglemostimmediateandlong-reachingneedtoensuretheirsuccess”. Thisstatement gives a wide future scenery of safety, reliability and Fault-Tolerant Flight Control (FTFC) systemsofUAVs. Themainobjectiveofthisthesisistoinvestigateandcomparesomeaspectsoffault- tolerant flight control techniques such as performance, robustness and capability of han- dlingthefaultsandfailuresduringtheflightofUAVs. Severalcontroltechniqueshavebeen iii developedandtestedontwomainplatformsatConcordiaUniversityforfault-tolerantcon- troltechniquesdevelopment,implementationandflighttestpurposes: quadrotorandfixed- wing UAVs. The FTC techniques developed are: Gain-Scheduled Proportional-Integral- Derivative (GS-PID), Control Allocation and Re-allocation (CA/RA), Model Reference Adaptive Control (MRAC), and finally the Linear Parameter Varying (LPV) control as an alternativeandtheoreticallymorecomprehensivegain-schedulingbasedcontroltechnique. The LPV technique is used to control the quadrotor helicopter for fault-free conditions. AlsoaGS-PIDcontrollerisusedasafault-tolerantcontrollerandimplementedonafixed- wingUAVinthepresenceofastuckrudderfailurecase. iv ACKNOWLEDGEMENTS My greatest thanks and appreciation goes to my supervisor Dr. Youmin Zhang, who has given me the opportunity of joining his research group and provided support for my research. His careful reading of everything I write, and his thoughtful suggestions have vastlyimprovedmyresearchlevel. I would like to express the deep appreciation to Dr. Abbas Chamseddine and Dr. DidierTheilliolfortheirvulnerablehelpsinmanyaspectsofmyresearch. Iwouldsay,the successofthisthesiswouldnothavebeenpossiblewithoutthem. I show my gratitude to Leslie for her help and support with all administrative works duringmystayatConcordia. I thank my friends Mahyar, Hadi, Mohammad, Miad, Ankit, Narendra and all who alwayssupportedandhelpedmeinmyresearchandincentedmetostrivetowardsmygoal. v ThisthesisworkisdedicatedtomywifeSahar,mydaughterNavaandmyparentsMehdi andRobabehwhohavebeenaconstantsourceofsupportandencouragementduringthe challengesofmygraduatestudiesandlife. Iamtrulythankfulforhavingyouinmylife. vi TABLE OF CONTENTS LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Fault-TolerantFlightControlofRotary-WingUAVs . . . . . . . . 7 1.2.2 Fault-TolerantFlightControlofFixed-WingUAVs . . . . . . . . . 10 1.3 GeneralProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 ThesisContribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 OutlineoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Background,PreliminariesandDefinitions 19 2.1 DefinitionofFaultandFailure . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 TypesofFault-TolerantControlSystems . . . . . . . . . . . . . . . . . . . 20 2.2.1 PassiveFault-TolerantControlSystems . . . . . . . . . . . . . . . 21 2.2.2 ActiveFault-TolerantControlSystems . . . . . . . . . . . . . . . . 22 2.3 Proportional-Integral-Derivative(PID)Control . . . . . . . . . . . . . . . 23 2.3.1 Gain-ScheduledPID . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 Auto-TuningPID . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 ModelReferenceAdaptiveControl . . . . . . . . . . . . . . . . . . . . . . 28 2.5 ControlAllocationandRe-allocation . . . . . . . . . . . . . . . . . . . . . 35 2.6 LinearParameterVaryingControl . . . . . . . . . . . . . . . . . . . . . . 36 3 Fault-TolerantFlightControlofaFixed-WingUAV 38 3.1 BixlerUAVtestbedandArduPilotMega2.5Autopilot . . . . . . . . . . . 39 3.1.1 TheHKBixlerUAVTestbed . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 ArduPilotMega2.5Autopilot . . . . . . . . . . . . . . . . . . . . 41 3.2 Gain-ScheduledPIDControllerforBixlerUAV . . . . . . . . . . . . . . . 44 3.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Fault-TolerantFlightControlofaQuadrotorHelicopterUAV 50 4.1 DescriptionandDynamicsoftheQball-X4QuadrotorUAVTestbed . . . . 50 4.1.1 OptiTrackMotionTrackingSystemforLocalization . . . . . . . . 52 4.1.2 ESCs,MotorsandPropellers . . . . . . . . . . . . . . . . . . . . . 53 vii 4.1.3 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1.4 UAVDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 ModelReferenceAdaptiveFault/DamageTolerantControloftheQball-X4 QuadrotorUAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Control Allocation and Re-allocation for a Modified Quadrotor Helicopter againstActuatorFaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.1 ModifyingQball-X4intoQball-X6 . . . . . . . . . . . . . . . . . 63 4.3.2 ThePrinciplesofControlAllocationandRe-allocation . . . . . . . 65 4.3.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Fault-TolerantControlofQball-X4QuadrotorUAVBasedonGain-Scheduled PIDControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4.1 Passive Fault-Tolerant Flight Control of Qball-X4 Quadrotor UAV BasedonGain-ScheduledPIDControl . . . . . . . . . . . . . . . 76 4.4.2 Active Fault-Tolerant Control of Qball-X4 Quadrotor UAV Based onGain-ScheduledPIDControl . . . . . . . . . . . . . . . . . . . 79 4.4.3 PayloadDropApplicationofUnmannedQuadrotorHelicopterBased onGain-ScheduledPIDControl . . . . . . . . . . . . . . . . . . . 80 5 LinearParameterVaryingControloftheQuadrotorHelicopterUAV 86 5.1 Qball-X4UAVNonlinearDynamicModel . . . . . . . . . . . . . . . . . . 89 5.2 OptimalStateFeedbackLinearParameterVaryingControl . . . . . . . . . 90 5.3 H∞SelfGain-SchedulingLinearParameterVaryingControl . . . . . . . . 96 5.4 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 ConclusionandFutureWork 104 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 A UAVTestbedsDevelopment 106 A.1 AirbusA380Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.2 HKBixler-2UAVTestbed . . . . . . . . . . . . . . . . . . . . . . . . . . 109 A.3 AlignT-rex800SingleRotorHelicopterTestbed . . . . . . . . . . . . . . 111 A.4 AlignT-rex450SigleRotorHelicopterTestbed . . . . . . . . . . . . . . . 112 A.5 F-18andF-16SubscaleUAVPlatforms . . . . . . . . . . . . . . . . . . . 113 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 viii LIST OF FIGURES 1.1 TheSHELLmodel[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 TheAirbusA330crashedinJune2009 . . . . . . . . . . . . . . . . . . . . 3 1.3 Autonomouscontrolleveltrend[7] . . . . . . . . . . . . . . . . . . . . . . 4 1.4 OctocopterUAVcrash[14] . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 GeorgiaTechGTMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Simulatedwingdamageof60%inF/A-18subscaleUAV[28] . . . . . . . 11 1.7 Damage-tolerantcontrolofDARPAsubscaleF/A-18[30] . . . . . . . . . . 13 1.8 GeorgiaTechTwinstarmulti-enginetestbed[31] . . . . . . . . . . . . . . 13 2.1 Severaltypesofactuatorfailures: (a)floatingaroundtrimpoint;(b)locked- in-place; (c) hard-over; and (d) loss of effectiveness (actuator fault occur- ringaftert )[33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 F 2.2 Passivefault-tolerantcontrolblockdiagram . . . . . . . . . . . . . . . . . 21 2.3 Activefault-tolerantcontrolscheme[35] . . . . . . . . . . . . . . . . . . . 22 2.4 Control system for a process having varying dynamic properties. The GS variableexpressesorrepresentsthedynamicpropertiesoftheprocess . . . 25 2.5 Structureofarelay-basedauto-tuningPIDcontroller . . . . . . . . . . . . 26 2.6 PlantoscillatingunderrelayfeedbackwithdisabledPID . . . . . . . . . . 27 2.7 Phaseshiftbetweeninputandoutputinoscillationmode . . . . . . . . . . 27 2.8 ModelReferenceAdaptiveControl(MRAC)structure . . . . . . . . . . . . 29 2.9 MRACstructurebasedonLyapunovtheory . . . . . . . . . . . . . . . . . 34 2.10 Controlallocationblockdiagram . . . . . . . . . . . . . . . . . . . . . . . 35 2.11 Controlallocation/re-allocationstructure . . . . . . . . . . . . . . . . . . . 36 2.12 Gain-schedulingoperatingrange . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 TheHKBixlerUAVtestbedwithequippedavionics . . . . . . . . . . . . . 40 3.2 Splittedrudderforadded/enhancedhardwareredundancy . . . . . . . . . . 41 3.3 TheArduPilotMega2.5autopilot[51] . . . . . . . . . . . . . . . . . . . . 42 3.4 Missionplanneringroundcontrolstationwithacircleflighttrack . . . . . 43 3.5 BlockdiagramoftheAPM2.5integration . . . . . . . . . . . . . . . . . . 43 3.6 The custom made APM 2.5 avionics rack equipped with GPS, pitot-static tubeandradiotelemetrymodule . . . . . . . . . . . . . . . . . . . . . . . 44 3.7 IllustrativeGS-PIDcontrollerblockdiagramforHKBixlerUAV . . . . . . 45 3.8 Assignedflighttrajectoryusingfourwaypoints . . . . . . . . . . . . . . . 46 ix 3.9 FaultinjectionindownwindlegusingsinglePIDcontroller . . . . . . . . . 46 3.10 FaultinjectionindownwindlegusingGS-PIDcontroller . . . . . . . . . . 47 3.11 HKBixlerPIDaltitudecontrolblockdiagram . . . . . . . . . . . . . . . . 48 3.12 Faulteffectonrollandpitchsensors . . . . . . . . . . . . . . . . . . . . . 49 3.13 Faulteffectonyawsensor . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1 TheQball-X4quadrotorUAV[52] . . . . . . . . . . . . . . . . . . . . . . 51 4.2 TheUAVsystemblockdiagram . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 V100:R2camerausedforOptitrackpositioningsystem . . . . . . . . . . . 53 4.4 SchematicrepresentationoftheQball-X4 . . . . . . . . . . . . . . . . . . 54 4.5 Squaretrajectoryinfault-freeconditionwithMRAC . . . . . . . . . . . . 61 4.6 SquaretrajectoryinfaultconditionwithMRAC . . . . . . . . . . . . . . . 61 4.7 MRACwith18%offaultonallmotors . . . . . . . . . . . . . . . . . . . 61 4.8 Viewoftheredundantmotors . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.9 The4th(top)and5th(bottom)actuators . . . . . . . . . . . . . . . . . . . 64 4.10 TheDranganflyerX6[55] . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.11 TheDranganflyerX8[55] . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.12 TheEyeDroidoctocopter[56] . . . . . . . . . . . . . . . . . . . . . . . . 65 4.13 Controlallocation/re-allocationstrategy . . . . . . . . . . . . . . . . . . . 67 4.14 Fault-freecasebasedonMRAC . . . . . . . . . . . . . . . . . . . . . . . 69 4.15 PWMsignalforfault-freecase . . . . . . . . . . . . . . . . . . . . . . . . 69 4.16 Simulatedlossofcontroleffectivenessof64%withoutcontrolre-allocation 70 4.17 PWMsignalforsimulatedfaultwithoutcontrolre-allocation . . . . . . . . 70 4.18 Simulatedlossofcontroleffectivenessof64%withcontrolre-allocation . . 71 4.19 PWMsignalforsimulatedfaultwithcontrolre-allocation . . . . . . . . . . 71 4.20 Propellerdamageof35%withoutcontrolre-allocation . . . . . . . . . . . 72 4.21 Propellerdamageof35%withoutcontrolre-allocation . . . . . . . . . . . 72 4.22 Turnigythrustmeasuringstand . . . . . . . . . . . . . . . . . . . . . . . . 72 4.23 A70%damagedpropeller . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.24 Propellerdamageof70%withoutcontrolre-allocation . . . . . . . . . . . 73 4.25 PWMsignalforpropellerdamageof70%withoutcontrolre-allocation . . 73 4.26 Propellerdamageof100%withcontrolre-allocation . . . . . . . . . . . . 74 4.27 Propellerdamageof100%withcontrolre-allocation . . . . . . . . . . . . 74 4.28 TheeffectofPIDgainsonthethecontrolresponse . . . . . . . . . . . . . 75 4.29 SinglePIDcontrollerinthepresenceof18%offaultonallactuators . . . . 77 x

Description:
During recent years, Unmanned Aerial Vehicles (UAVs) have proved to play a sig- UAV Roadmap 2005-2030 by stating that, ”Improving UA [unmanned aircraft] service for spraying chemicals on rice farms. Rover, in AUVSI (Association for Unmanned Vehicle Systems International) Un- manned
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.