ebook img

Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North PDF

17 Pages·2012·4.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North

Geophysical Journal International Geophys.J.Int. (2012)188,1071–1087 doi:10.1111/j.1365-246X.2011.05289.x Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara David D. Oglesby1 and P. Martin Mai2 1DepartmentofEarthSciences,UniversityofCalifornia,Riverside,CA92521,USA.E-mail:[email protected] 2DivisionofPhysicalSciences&Engineering,KingAbdullahUniversityofScienceandTechnology,Thuwal23955–6900,SaudiArabia Accepted2011November3.Received2011August29;inoriginalform2011February22 D o w n SUMMARY lo a Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of d e d earthquakesontheNorthAnatolianFaultsystemintheSeaofMarmara,Turkey,considering fro the geometrical complexity of the fault system in this region. We find that the earthquake m h size, rupture propagation pattern and ground motion all strongly depend on the interplay ttp betweentheinitial(static)regionalpre-stressfieldandthedynamicstressfieldradiatedbythe s://a propagating rupture. By testing several nucleation locations, we observe that those far from c a anobliquenormalfaultstepoversegment(nearIstanbul)leadtolargethrough-goingrupture de m ontheentirefaultsystem,whereasnucleationlocationsclosertothestepoversegmenttendto ic producerupturesthatdieoutinthestepover.However,thispatterncanchangedrasticallywith .ou onlya10◦rotationoftheregionalstressfield.Oursimulationsalsorevealthatwhiledynamic p.c o unclampingnearfaultbendscanproduceanewmodeofsupershearrupturepropagation,this m /g unclampinghasamuchsmallereffectonthespeedofthepeakinslipvelocityalongthefault. ji/a Finally, we find that the complex fault geometry leads to a very complex and asymmetric rtic patternofnear-faultgroundmotion,includinggreatlyamplifiedgroundmotionontheinsides le-a offaultbends.Theground-motionpatterncanchangesignificantlywithdifferenthypocentres, bs evenbeyondthetypicaleffectsofdirectivity.Theresultsofthisstudymayhaveimplicationsfor tra c seismichazardinthisregion,forthedynamicsandgroundmotionofgeometricallycomplex t/1 8 faults,andfortheinterpretationofkinematicinverserupturemodels. gy8/3 o/1 Key words: Earthquake dynamics; Earthquake ground motions; Earthquake interaction, ol07 m1 forecasting,andprediction;Computationalseismology;Continentalmargins:transform;Dy- /6 s8 namicsandmechanicsoffaulting. Sei473 0 JI b Gy g u e s 1 INTRODUCTION wthieth∼in15th0e0MkmarlmonargaNSAeaFitshtahtehraesfonroettrhuepotunrleydsiingnthifiecpaansttp2o3r0tioyenaorsf t on 0 TheNorthAnatolianFault(NAF),runningacrossnorthernTurkey (Reilingeretal.2000),andalargeearthquakeislikelytooccuron 7 A hinazaanrdeianstt–hwisesrtegdiiornec,taiosnmfaonrif∼es1te5d00inktmhe, sdeoqmuiennacteesofthmeosdeeisrmateic- thiUspsianrgtopfrothbeabNiAlisFtic(Pmarestohnosdes,tathl.e2s0e0is0m;Picarhsaoznasrd20in04I)s.tanbulhas pril 2 0 to-large earthquakes since 1939 (12 earthquakes with M > 6.7; beenestimatedinrecentstudiesafterthe1999earthquakes(Atakan 19 e.g. Ambraseys 1970; Stein et al. 1997). The most recent events, et al. 2002; Erdik et al. 2004). Specific ground-motion scenarios the M 7.4 Izmit and the M 7.2 Du¨zce earthquakes, ruptured the basedonkinematicmodelshavealsobeengenerated(Pulidoetal. westernportionoftheNAFin1999asitenterstheBayofIzmit,the 2004; Sørensen et al. 2007). However, the relevant question for easternmostpartoftheMarmaraSea.Thewesternterminationofthe seismichazardassessmentsisnotwhetherornotanearthquakewill Izmitearthquakeislocatedonlyabout40kmsoutheastofIstanbul occur,butwhereandhowlargethenextdamagingearthquakewill (Fig. 1). Towards the western end of the Marmara Sea, the 1912 be.Hubert-Ferrarietal.(2000)suggesttheoccurrenceoftwoevents Sarosearthquake(M 7.3)representsthemostrecentmajorevent, ofequalorlargermagnitudethanthe1999Izmitearthquakewithin withitseasternextensionbeingstilluncertain(Armijoetal.2002; the next few decades. In contrast, Le Pichon et al. (1999) argue see Fig. 1). Historical earthquakes are reported by Ambraseys & for the possibility of single-event rupture along the entire length Jackson(2000)tohaveoccurredin1509and1776,withmagnitudes of the submarine Marmara Sea fault system. In this context, the intherange7.2–7.4,mostlikelylocatedonthenorthernbranchof detailedfaultgeometryoftheNAFintheMarmaraSeaneedstobe theNAFasittraversestheMarmaraSeaandbetweentheendpoints considered.TheNAFsplitsintoseveralfaultbranchesclosetothe ofthe1912Sarosandthe1999Izmitearthquakes.Thefaultsystem Du¨zcerupturezone(Armijoetal.2002):thesouthern,central,and (cid:4)C 2012TheAuthors 1071 GeophysicalJournalInternational(cid:4)C 2012RAS 1072 D.D.OglesbyandP.M.Mai D o w n Figure1. MapviewoftheNorthAnatolianFault(NAF)intheMarmaraSea,withpiecewiseplanarfaultgeometryoverlain.Arrowsinupperleftdenotethe lo orientationoftheprimaryregionalstressfield(afterArmijoetal.2005). ad e d northernNAF.IntheMarmaraSeaitself,threegeneralfaultconfig- Table1. Geometricalandstressparameters. from u1Ar9ra9mt9ioi;jnoOsekotafaycl.eu2trr0ae0ln.2t2)ly.0T0a0hct;eisvIememrfeaonudletestlshafale.vae2t0ub0ree1e;neiLtphereoPrpiaocshseoindng(lePeta(arcklo.en2et0itn0au1l-;. Segment Le(nkgmth)L (Sdtergikreeeϕs) NoσrNma(MlSPtrae)ss ShσeSar(MStPreas)s StrengthS https://a ous)strike-slipfaultsystem,oramorecomplicatedgeometrywith A 6.5 96.6 13.03 4.596 0.979 ca B 13.0 79.4 15.971 4.905 1.414 de accotnivtreolpsutlhl-eapaabritlibtyasifnosr.rTuhpetudreetatoilepdroMpaargmataeraalSoenagfamuultltgipeloemfeaturlyt CD 199..10 18085..00 1114..748767 34..893703 11..202524 mic.o segments(Wesnousky1988;Harris&Day1999;Muller&Aydin E 39.8 77.8 16.243 4.843 1.523 up 2004),tothusgeneratelargethrough-goingruptures,andtherefore F 2.4 114 10.760 2.650 2.419 .co m criticallyaffectstheseismichazardofthecityofIstanbul. G 36.1 88.6 14.373 4.961 1.040 /g ForrealisticdynamicrupturesimulationsontheNAF,theprop- H 33.6 119.0 10.906 2.306 3.487 ji/a ertiesoftheregionalstressfieldneedtobeconsideredsothatone I 27.5 88.6 14.373 4.961 1.040 rtic mayresolvethestresscomponentsontothedifferentfaultsegments. le -a Pinaretal.(2003)analysedmomenttensorsofsmall-to-moderate posed by Armijo et al. (2002) that best reproduces the observed bs sizeearthquakesintheMarmaraSeatodiscriminatebetweendif- morphologyandverticalstructuraloffsetsofakeyhorizonwithin tra c ferentseismotectonicmodelsofthearea,aswellastoestimatea theMarmaraSea(Muller&Aydin2005).Tosimplifythespatially t/1 regionalstresstensor.Thedistributionoffault-planesolutionssug- varyingregionalstressfield,weadoptauniformregionalstressfield 88 geststhatthestressfieldintheeasternpartoftheSeaofMarmara (σ1 at130◦,σ3 at220◦,σ2 vertical)thatisresolvedintoallfault /3/1 isrelativelyhomogenouscomparedtothewesternpart.Pinaretal. segments (Fig. 1, Table 1). To account for the spatial changes in 07 1 (2003) identify several shear zones whose locations and sense of theregionalstressesandrespectiveuncertainties,weexaminethe /6 8 motionareexplainedbyasimpledeformationmodelthatrequires effectswhenrotatingthehorizontalprincipalstressesby10◦clock- 47 amajorE–Wstrikingright-lateralstrike-slipfault(theNAF).Their wise and counter-clockwise. From our suite of dynamic rupture 30 inversion of the orientation of P- andT -axes of fault-plane solu- calculations,wetheninvestigatetheconditionsforandproperties by tionsresultsinaregionalstressfieldwithmaximumcompression, of dynamic ruptures on this geometrically complex fault system, gu Nσ1E,–iSnWthedNireWct–ioSnE.Hdiorewcetivoenr,ainndthmeiwniemstuemrncpoamrtporfestshieonS,eσa3o,fiMntahre- tphoesieralikseelviehroeotdhrteoatgetonetrhaeteciltayrgoeftIhstraonubguhl-,gaonindgtheearrtehsquultaiknegslothwa-t est on mara,amoreheterogeneousstressfield,asindicatedbyfault-plane frequencyground-motionpatterns. 07 solutions, may result from the change in strike of the NAF from ThefaultconfigurationoftheNAFwithintheMarmaraSeaalso Ap nearlyE–WtoWSW.Thecorrespondingdeformationmodelofan isinterestingfromamoretheoreticalpointofview,inthatitisan ril 2 ENE–WSWstrikingright-lateralstrike-slipfaultrequiresastress exampleofageometricallycomplexfaultsystemthatmayexem- 01 fieldwithanESE-orientedmaximumprincipalstressaxis,σ1,and plifymanyoftheattributesthathavebeenstudiedpreviouslywith 9 anNNE-orientedminimumprincipalstressaxis,σ3.Insummary, moregenericdynamicfaultingmodels.Manyresearchers(Segall& theNAFintheMarmaraSeaexperiencesanalmosthorizontalmax- Pollard 1980; Harris et al. 1991; Harris & Day 1993, 1999; imumcompressiveaxisσ1inthewesternpart,whichisrotatedby Yamashita & Umeda 1994; Kase & Kuge 1998, 2001; Duan & 16◦ incounter-clockwisesenseintheeasternpart.Theσ2-axisis Oglesby2006;Oglesby2008;Oglesbyetal.2008)havemodelled almostverticalintheeast(puresheartectonics),whereasitplunges the behaviour of fault systems with unlinked stepovers, and have at36◦inthewest(transpressivetectonics).Pinaretal.(2003)also foundthattheabilityofrupturetopropagateacrossastepoverde- reportchangesintheσ3-axis,beingalmosthorizontalintheeast pendson(1)thegeometricalpropertiesofthestepover(overlapor anddipping49◦inthewest. gap along strike; extensional or compressional stepover), and (2) Inthisstudy,weinvestigaterupturedynamics,sourcesizesand thedetailsofthestressandslippatternontheedgesofbothfault ground-motionpatternsforpotentialearthquakesonthefaultsys- segments. Other work has focused on the effects of fault bends tem of the NAF in the Marmara Sea using spontaneous dynamic onrupturedynamics(Bouchon&Streiff1997;Aochietal.2000, rupturesimulations.Weconsiderthe3-Dfaultconfigurationpro- 2002, 2005; Aochi & Fukuyama 2002; Harris et al. 2002; Aochi (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS RupturedynamicsontheNorthAnatolianFault 1073 &Madaraiga2003;Oglesby&Archuleta2003;Duan&Oglesby rupture timing). Our study is fundamentally different, in that we 2005).Theresultsofthesestudiesindicatethatrupturepropagation seektomodelthebasicphysicsoftheearthquakeprocess.Rather atafaultbenddependsonaninteractionbetweentheinitialapplied thanbeingspecifiedapriori,theearthquakesize,slipdistribution, stressfieldandthedynamicstressfieldradiatedbytherupturefront; rupturetimingandtheradiatedseismicwavesareaproductofthe faultbendsmayserveasbarrierstoruptureinsomecases,whereas simulations. As such, our work extends previous ground-motion inothercasestheymayallowthrough-goingrupture. simulationworkintheregionaswebuildphysicallyself-consistent TheNAFintheMarmaraSea,however,ischaracterizedbyalarge models. linkedfaultstepover,just∼20kmsouthofIstanbul(Fig.1;stepover insegmentsG,HandI).Afewstudieshaveexaminedsuchlinked stepovers. Nielsen & Knopoff (1998) modelled linked stepovers 2 METHOD over multiple earthquake cycles using a quasi-static method, and foundthattheseareascouldserveasbothbarrierstoruptureand OurmodellingmethodsandphysicalsetupfollowthoseofOglesby preferred zones of rupture nucleation. Magistrale & Day (1999) etal.(2008).Weusea3-Dexplicitfinite-elementmethod(Whirley modelledthedynamicsofthrustfaultsthatarelinkedbyunloaded &Engelmann1993;Oglesby1999)tomodelthespontaneous,dy- strike-sliptearfaults,andfoundthatthepresenceofalinkingfault namicruptureofthenon-planarNAF.Thismethodhasbeenusedto D o greatlyincreasedthepotentialrupturedistancebetweenthethrust reproducerealisticrupturebehaviourinpastearthquakes(Oglesby w n faults.Oglesby(2005)performeddynamicmodelsofearthquakes &Day2001;Oglesbyetal.2004),andhasbeenvalidatedaspartof loa d on strike-slip faults with linking dip-slip faults; this general con- theSouthernCaliforniaEarthquakeCenter/U.S.GeologicalSurvey e d figuration more closely matches the NAF geometry in this work. DynamicRuptureCodeVerificationExercise(Harrisetal.2009). fro Hefoundthattheresultsdependonwhetherthestepoverwascom- Thenumericalmethoddoesnotallowfaultopening,butwhenthe m pressional or extensional: slip on the strike-slip segments in an effectivenormalstressgoestozeroorbecomestensile,theshear http extensional stepover tended to unclamp the linking normal fault, stressissettozero. s leadingtothrough-goingrupture,whereasthesameeffecttended Ourassumedfaultgeometryfollowsasimplifiedversionofthat ://a c a toclampthelinkingthrustfaultinacompressionalstepover,thus inferredbyArmijoetal.(2005),showninmapviewinFig.1;the3- d e promoting rupture arrest. He also found that due to the complex Dfaultparametrization(averagelengthofanelementedge=500m) m ic dynamic stress interaction between the different segments during isportrayedinFig.2.Wenotethatforcomputationalease,theco- .o the rupture process, the final size of the earthquake is often de- ordinatesystemofour3-Dfaultgeometryisrotated1.4◦ counter- up .c termined by the location of the hypocentre, and the sequence in clockwise from the geographic coordinate system. Our computa- o m which individual segments rupture. Recently, Lozos et al. (2011) tionaltimestepis8.9×10−3s.Directinspectionofslip-weakening /g performeda2-Ddynamicparameterstudyofstrike-slipfaultswith curvesindicatesthatourgridspacingallowsustoresolvethephysi- ji/a stepoversandlinkingstrike-slipsegments,andfoundthatforlarge calprocessoffaultstrengthbreakdown.Inaddition,asdetailedlater rtic stepoverwidthstheabilityofrupturetopropagatethroughalinked inthiswork,weperformedsmallerscalemodelswithhigherspatial le-a stepover was dominated by the static stress field in the stepover resolution(gridsize=200m)andfoundthatourresultsarerobust bs region,whereasforshortstepoverwidthsitwasdominatedbythe withrespecttogridsize.Thus,weverifythatournumericalmethod tra c dynamicstressfieldradiatedbyfaultslip. isresolvingthephysicalprocessesofinterest.Withthelowestwave t/1 TheNAFisanidealtestcasetoseeifsomeofthedynamicef- speedbeing1.8616kms–1 inourmodelling,weestimatethatour 88 /3 fectsdiscoveredinthestudiesaboveapplyinanaturalfaultsystem, maximumresolvedwavefrequencyisaround0.4Hz,assuming10 /1 0 and whether they have important implications for ground motion gridsperwavelength.Faultdipsareallvertical,exceptthatofthe 7 1 in this region. Previously, Oglesby et al. (2008) investigated the oblique normal segment H, which has a dip of 70◦. Experiments /6 8 effectofnucleationlocationonearthquakesizeinthisregion,and withverticaldipforsegmentHimplythattheresultsarenotvery 47 3 notedthatanewmodeofsupershearrupturepropagationmayre- sensitivetodip.Thefaultsystemisembeddedina3-Dsolidwith 0 b sultfromslipongeometricallycomplexfaultsystems.Thecurrent boundariesfarenoughfromthefaulttoavoidedgereflectionsarriv- y g workgreatlyextendsthisinitialworkbyinvestigatingindetail(1) inginthedomainofinterestduringthemodelperiod.Wenotethat u e theeffectofstressorientationonearthquakesize,(2)theeffectof innature,shortsegmentsDandFarelikelytobezonesofcomplex st o non-planarfaultgeometryongroundmotionand(3)thenewmech- deformation,butweparametrizethemasshortfaultsegmentsfor n 0 anism of supershear rupture propagation on non-planar faults. In simplicity.Thefaultsareembeddedinalinearlyelastic,isotropic, 7 A ourstudy,weusedynamicmodelstoinvestigatehowdifferencesin layeredmaterial(Oglesbyetal.2008). p earthquakesizes,faultslipdistributions,rupturepropagationpat- Wenotethatourcornersareeffectivelysmearedoutoverroughly ril 2 0 terns and ground motion arise from specific assumptions on the oneelement(500m)width,sostressbuild-upsatthefaultcorners 1 9 regionalstressfieldandtherupturenucleationlocation.Although arenotsingular.Thedynamicnormalstressinourmodelseventually thefaultgeometry,stressfieldandotherinputparametersremain reaches zero within one to two elements from the fault edges on uncertain,experimentswithdifferentparametrizationsallowusto segmentsD,FandH,butthiseffectsimplyleadstotheshearstress bracketsomeofthepossiblefaultingandground-motionbehaviour on these points smoothly approaching zero; it does not result in inthisarea.Forinstance,changesintheregionalstressdirectionof extraseismicradiationorothernon-physicalbehaviourofthenodes ±10◦ maysignificantlyaltertheruptureproperties,whichinturn in question. A more realistic model would incorporate smoother affectsthegroundmotions,whicharealsosensitivetotheoverall cornersorzonesofoff-faultdamagearoundthefaultcorners.We faultgeometry.Wealsofindthattheverydefinitionofruptureve- leaveunansweredthequestionofwhetherfaultopeningmayhappen locity may need closer examination if dynamic models are to be innature,butduetorockfailureandthecuttingofsecondaryfaults usedinconjunctionwithkinematicmodels.Notethatotherstud- itisunlikelytobecommon;webelievethatthelackoffaultopening ies(e.g.Pulidoetal.2004;Sørensenetal.2007)havepreviously inourmodelsdoesnotaffectourresultssignificantly. modelledgroundmotioninthisregionwithkinematicsourcemod- OurnumericalmodelsemployaCoulombfrictionlawτ ≤μσ , n els(i.e.withassumedearthquakesize,faultslipdistributionsand where τ is the frictional stress on the fault, μ is the frictional (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS 1074 D.D.OglesbyandP.M.Mai D o w n lo a d e d fro m h ttp Ffoirguwrheic2h.s3y-nDthmeteicshslvipie-rwatoeftifmauelthgisetoomrieestrayr;efpolrovttiesduailnctlhaerietylecthtreodniisccsruetpipzaletimonenstizaeresmhoawrknediswdiotuhbtlreiatnhgeleasc.tualcomputationaldiscretizationsize.Locations s://ac a d e m coefficient and σn is the normal stress (positive in compression) 5.5-km nucleation size on segment B imply that the results be- ic.o acrossthefault.Weuseaslip-weakeningmodelfortheevolution yondthenucleationpatcharenotverysensitivetothenucleation up ofμ(Ida1972;Palmer&Rice1973;Andrews1976a)withaspa- patchsize. .co m tially invariant slip-weakening distance of 0.4 m, a static friction We apply a regional stress field inferred from moment tensor /g coefficientof0.6andaslidingfrictioncoefficientof0.1.Thelarge inversionsofsmall-tomedium-sizedearthquakes(Pinaretal.2003; ji/a drop in frictional coefficient and centimetre-scale slip-weakening Oglesby et al. 2008), with an orientation depicted in Fig. 1. This rtic distancearemotivatedbyrecentexperimental/observational(Tsut- regionalstressfieldisthenresolvedintostrike-slip,down-dipand le -a sumi & Shimamoto 1997; Goldsby & Tullis 2002; Di Toro et al. fault-normalstresscomponentsonfaultsegmentsA–Iasafunction b s 2004;Hanetal.2007)andtheoretical/numerical(Andrews2002; ofeachsegment’sorientation(valuesofshearandnormalstressfor tra c Rice,2006;Suzuki&Yamashita2006;Beeleretal.2008;Bizzarri, eachsegmentaregiveninTable1).Thesevaluestaperlinearlyto t/1 2011)workthatimplysignificantfaultweakeningathighsliprates 0.1oftheirambientvaluesbetweenadepthof3kmandthefree 88 duetoeffectssuchasmelting,flashheatingandporefluidpressur- surface. We assume a relatively constant effective normal stress /3/1 ization.Ourchoiceoftheslip-weakeningdistanceisconsistentwith (normal stress minus pore fluid pressure) with depth as in many 07 1 theworkcitedearlierandalsoismotivatedbycomputationalstabil- previous faulting models (e.g. Tse & Rice 1986; Rice 1993) to /6 8 ityconcerns.A50percentlargerslip-weakeningdistanceresults avoid a systematically higher stress drop on deeper parts of the 4 7 inquiteminorchangesinthemodelledruptureandslippatterns, fault (which is not typically observed in real-world earthquakes). 30 whereas a 50 per cent smaller slip-weakening distance results in Thispatternofeffectivenormalstresscanbeattributedtothepore by pervasivesupershearrupturepropagation,whichweattributetoa pressureincreasingatlithostaticratherthanhydrostraticratesbelow gu e lackofresolutionoftheslip-weakeningprocessinsuchacase. acertainthresholddepth. s Changes in the compressive normal stress (typical in cases of In this regional stress field, segments A–G and I are loaded in t on complex fault geometry) are immediately reflected in this model right-lateral strike-slip direction, whereas segment H is loaded in 07 aschangesinthefrictionalstress.Thisinterplaybetweenthetwo anobliquenormal/right-lateralmanner.However,thisloadingdoes A p components of stress will have important implications for the re- notconstituteanaprioriconstraintinthedirectionofslip;slipis ril 2 sults in this work. The large stress drop with respect to the ab- allowed in any on-fault direction and its direction is a calculated 0 1 9 solute stresses implied by the above parametrization results in resultofthemodels.Wealsoinvestigatetheeffectsonsourcedy- strongdynamiceffectsintheresults,aswillbeshownlaterinthis namics when rotating the regional stress field by 10◦ clockwise work. Rupture nucleation at the selected hypocentre is achieved and counter-clockwise from the above orientation to test the ro- in our models by artificially increasing the shear stress to the bustnessofourresultstodifferentassumptionsaboutthetectonic failure level in an expanding circle (rupture velocity = 3.0 km loading.Itisimportanttonotethatduetothedifferentfaultsegment s–1) up to a radius of 7 km; beyond this radius, the rupture time orientations,individualfaultsegmentshavesignificantlydifferent is a calculated result of the models. We note that such a large- initial shear stress and strength. One measure of the differences size nucleation patch is dictated by our assumed stress field: a in stress between the fault segments is the relative fault strength critical nucleation size for spontaneous nucleation (e.g. Andrews parameter S = τyield−τ0 (Andrews 1976b). Under the simplifying τ−τ 1976a; Day 1982) applies on each fault segment, and we find assumptionthatτ0 fin=al μ σ ,wecalculatethevalueof S for final sliding n that a 7-km large patch is needed to ensure rupture propagation each segment (listed in Table 1). By this measure, we note that inourmodels,especiallythosewithnucleationonless-favourable segments such as A, C, G and I are rather favourable for rupture segments. However, additional numerical experiments with a (S < 1.1), whereas segments B, E, F and H are less favourable (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS RupturedynamicsontheNorthAnatolianFault 1075 (S >1.2).Astaticcalculationof S mayhelptoexplainsomeas- pects of dynamic rupture behaviour. However, slip on one fault segmentcanstronglyaffectthestressfieldofothersegments,sothe effectivevalueof S oneachfaultsegmentchangeswithtimeasa resultoftheinterplaybetweenthetectonicpre-stressfieldandthe dynamicstresses. 3 RESULTS 3.1 Stressincrementsduetoslip Oglesbyetal.(2008)exploredtheeffectofnucleationlocationon theabilityofrupturetopropagateacrossthestepoversegmentH. Theyfoundthatwhenrupturenucleatedfarfromthestepoverseg- D ment(i.e.nucleationonsegmentEorfartherwest),rupturecould ow propagate across the statically unfavourable oblique segment H. nlo Rupturesthatnucleatednearertooronthestepoversegment(i.e. ad e segmentsG,HorI)arrestedprematurelyonsegmentH.Therea- d sonforthecomplexrelationshipbetweennucleationlocationand fro m final earthquake size is the interaction between the tectonic pre- h stressfieldandthedynamicstressesduringtheearthquakerupture ttp s process.Deeperinsightintothisinteractionmaybegainedbyex- ://a aminingthechangeinshearandnormalstressonthefaultsegments ca d duetoathrough-goingrupture.FornucleationonsegmentB,the e m finalstaticstressdrop(i.e.finalminusinitialshearstress)indicates ic adropinshearstressovertheentirefaultsystem(Fig.3,toppanel) .ou p as expected for a through-going rupture. More interesting is the .c o normalstresschange(Fig.3,bottompanel)showingstrongposi- m tive(clamping)andnegative(unclamping)stressvariationsclosely /gji/a associatedwithdiscontinuitiesinthefaultgeometry.Forexample, rtic right-lateralsliponsegmentsGandIhasunclampedtheedgesof le segmentH,makingitmorefavourableforrupturethanifitwereto -a b s rsuopmtueroefinthiesosltaritkioen-s.liTphsisegumncelnatmspminaygpexropdlauicnesrwuhpytunreuscltehaattiopnroopn- Fonigfuaruelt3s.ysItnecmredmueentotsainnesahretharqu(taokpepnauncelel)aatenddonnosremgamle(nbtoBtto.Smtrpoanngecl)hastnrgeesss tract/1 agate across segment H, even though the tectonic pre-stress (i.e. 8 innormalstressareconcentratedattheedgesofthefaultsegments.Red 8 its S value) would imply that segment H is a barrier to rupture. /3 denotesclampingandbluedenotesunclampingofthefault. /1 Conversely,right-lateralsliponsegmentHhasclampeddownthe 0 7 adjacentedgesofsegmentsGandI.Asimilarpatterncanbeseen 1 /6 on (and adjacent to) stepover segments D and F. These segments 8 aredynamicallyunclamped,buttendtohavehigherinitialS-values fieldisnotveryaccuratelydetermined,weexaminehowvariations 473 intheregionalstressfieldaffectourmodelling.Weconstructtwo 0 duetotheirorientation(S=1.22andS=2.42,respectively);rup- b additionalsetsofmodelswithdifferentregionalstressorientation y turepropagationonthesesegmentsisessentiallyacontestbetween g butthe sameregional stressamplitude: thefirstiswith thestress u the tectonic regional stress, which favours rupture slowing down e andterminating,anddynamicunclamping,whichfavoursthrough- sfitereldssrootraietendtactioounn,taenr-dcltohcekswecisoendbyis1w0◦ithwtihthesretrsepsescfitetoldtrhoetaotreidgi1n0a◦l st on going rupture. This result corroborates findings of Oglesby et al. 0 clockwise.Finalslippatternsfortheseregionalstressorientations 7 (2008): for the largest and least favourable stepover segment H, A aredisplayedinFig.4,withthenon-rotatedresultsreproducedfrom p nbuucillde-autiponoffadritrheecrtiavwitayyafnrodmdythneamsteicposvtreersssewgmaveenstathllaonwnsuacgleraetaitoenr OgTlehsebyefefteaclt.o(2f0r0o8ta)tiinngthtehSeusptpreosrstifingelIdnfcoorumnatetiro-cnlofocrkcwoimsepacrainsobne. ril 201 closetosegmentH.Thus,onlyearthquakesthatnucleatefarfrom 9 predictedreasonablywellbyexaminingFig.1.Inthisrotatedstress segment H will unclamp segment H enough to generate through- field, segment H becomes almost parallel to the maximum com- goingrupture;earthquakesthatnucleateadjacentto(oron)segment pressivestressσ ,thusexperiencesaverylowresolvedshearstress, Hdonotexperienceenoughofthis‘dynamicdirectivity’effectto 1 andisthereforequiteunfavourableforslip.Thedynamicrupture overcometheunfavourabletectonicpre-stressfield.Intheselatter computationscorroboratethisconjecture,asshowninthefinalslip cases, rupture terminates quickly when it propagates outside the distributions(Fig.4):allsimulations,includingtheBandEnucle- regionofsignificantdynamicunclampingonsegmentH. ation,terminateonsegmentHunderthecounter-clockwiserotated stressfield.IfnucleatedonsegmentsGandI,theruptureproceeds an even shorter distance across segment H than in our primary 3.2 Effectofregionalstressorientation modelsbeforedyingout. Asnotedearlier,theresultsofoursimulationsreflecttheinterplay A 10◦ clockwise rotation of the regional stress field results in between the regional tectonic stress field and the dynamic stress morecomplicatedrupturebehaviourthana10◦ counter-clockwise fieldradiatedbythepropagatingrupture.Sincetheregionalstress rotation. Under this assumption, oblique segment H changes to (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS 1076 D.D.OglesbyandP.M.Mai D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 8 /3 /1 0 7 1 /6 8 4 7 3 0 b y g u e s t o n 0 7 A Fcoiguuntreer-4c.loFciknwalisseli1p0◦pa(dtteenrnostefdoCrCeaWrt,htqoupapkaensenl)uacnledactelodcoknwifsaeu1lt0s◦e(gdmeneonttesdBC(Wa),,bEott(obm),pGan(ecl)),wHit(hdr)esapnedctIt(oet)h.eRpersiumltasryarsetrsehssowfienldf.oTrhsetreosrsiefintealtdisonrootfattehde pril 2 0 regionalstressfieldhasaverystrongeffectonthefinalearthquakesize,andaffectstheearthquakesdifferentlydependingonhypocentrelocation. 1 9 becomemorefavourableforrupture,whereasthemainstrike-slip I.NucleationonsegmentsHandIproducesrupturethatpropagates segments A, B, C, E, G and I are less favourable. Nucleation on acrosstheentirefaultsystem.Thus,byrotatingtheregionalstress segment B still produces through-going rupture, but the slip dis- fieldonly10◦ (avaluewithintheuncertaintyofthestressorienta- tribution has changed qualitatively with respect to the pattern in tionestimates),thebehaviourofthefaultsystemduringdynamic Oglesby et al. (2008), with higher slip on segment H and signif- ruptureisdrasticallychanged.Theroleofabarrierisnowtakenby icantlylowerdisplacementsonsegmentE(whichisunfavourable segmentE.NucleationonsegmentsHandI,whichunderourinitial forruptureinthisregionalstressfield).NucleationonsegmentE, assumptionsinOglesbyetal.(2008)producedsmallerevents,now under our nucleation assumptions, does not produce spontaneous producewhole-systemrupture.Conversely,nucleationonsegment rupture.NucleationonsegmentGproducesrupturethatdiesouton E, which previously led to a whole-system event, does not even segmentsFandE,butpropagatesthroughsegmentH,ontosegment produceapropagatingrupture. (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS RupturedynamicsontheNorthAnatolianFault 1077 cleationonsegmentB,itslowsdownandalmoststopsonsegment 3.3 Temporalevolutionofrupture FfornucleationonsegmentE.Thus,thesamesegmenthasoppo- We now return to an in-depth discussion of our dynamic rupture siteeffectsonrupturepropagationfordifferentnucleationlocations calculationsforthebasic(unrotated)regionalstressfield.Morein- withthesamedirectivity.Thisphenomenonmaybeunderstoodas sight into the temporal evolution of rupture propagation, and the acombinationofstaticanddynamiceffects:segmentFisstatically dynamiceffectsthatinfluenceit,maybegleanedbyexaminingslip unfavourableforrupture,andintheEnucleationcasetherupture velocity pulses at hypocentral depth (Fig. 5). Nucleation on seg- fronthasless‘dynamicdirectivity’thanintheBnucleationcase. ment B (Fig. 5a) produces largely unilateral rupture that appears Thus,forEnucleationtheshearstressincreaseandthedynamicun- topropagateataroughlyconstantrupturevelocityuntilitreaches clampingarediminished,andrupturepropagationacrosssegment segmentF,whereittemporarilyspeedsup;onsegmentItherupture F is more difficult. As in the B nucleation case, slip on segment transitions permanently to supershear speed. The sudden rupture Ftends toclampsegmentG,further inhibitingcontinued rupture acceleration on segment F is due to the dynamic unclamping of propagation. After a delay of approximately 3 s, rupture restarts thissegment,whichisotherwiseorientedunfavourablyforrupture spontaneously on segment G, and then propagates across the en- in this stress regime. We note that rupture onto segment G is de- tire fault system. Nucleation on segment G (Fig. 5c) produces a layed by approximately 0.5 s because slip on segment F tends to similarly complex rupture pattern. For the same reasons as the E Do clamp segment G. The acceleration to supershear speed on seg- nucleationcase,rupturealmostdiesoutattheintersectionbetween wn ment I follows the standard Burridge–Andrews mechanism, with segments G and F (although travelling in the opposite direction), loa d thissegmenthavinganSvalueoflessthan1.77(Andrews1976b). whilethemagnitudeofdynamicunclampingisinsufficientforrup- e d NucleationonsegmentE(Fig.5b)producesacomplexpatternin turetopropagateacrosssegmentH.NucleationonsegmentsHand fro whichtherupturealmostdiesoutattheintersectionsofsegmentsF IbothproducerupturesthatterminateonsegmentH(notshownfor m andG.WenotethatwhileruptureacceleratesonsegmentFfornu- brevity). http s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 8 /3 /1 0 7 1 /6 8 4 7 3 0 b y g u e s t o n 0 7 A p ril 2 0 1 9 Figure5. Syntheticslipvelocityamplitude(incorporatingbothstrike-slipanddip-slipcomponents)timehistoriesathypocentraldepth(Z=8km)forpoints alongstrike.Differentfaultsegmentsarelabelledandcolouredalternatelyredandblueforclarity.Rupturespeedsupandslowsdownondifferentfault segments,dependingonthenucleationlocation.TheblacklineslabelledVpandVsindicatethemoveoutoftherupturefrontpropagatingattheP-andS-wave speed,respectively,atthatdepth. (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS 1078 D.D.OglesbyandP.M.Mai Byanalysingrupturetimeandrupturevelocityforeachpointon (Bernard&Madariaga1984;Spudich&Frazer1984),andalsohas thefaultsystem,weexamineindetailtheconnectionbetweenfault beennotedinsome2-Dfaultingmodels(Bouchon&Streiff1997; geometryandvariationsinrupturepropagation.Fig.6showsrup- Duan & Oglesby 2005; Adda-Bedia & Madariaga 2008). These turetimecontoursandrupturevelocityfornucleationonsegments lobesareparticularlyvisibleatsegmentintersectionsE–F,F–G,and B,EandG.Rupturevelocityiscalculatedbasedonthetimeatwhich G–H. slipvelocityexceeds1mms–1 atagivenpointonthefault.The Anotherstrikingfeatureistheasymmetryofgroundmotionwith reciprocal of the spatial gradient of this rupture time distribution respect to the northern and southern sides of the fault. In con- isequaltothelocalrupturevelocity.Notethatthisvalueneednot trasttothesymmetricpatternexpectedforsimpleplanarstrike-slip correspondtoanyphysicalquantityinthematerial,butrathercon- faults,theinsidecornersofthefaulttendtohaveamplifiedmotion stitutesanapparentrupturespeedoverthefaultplane.Ourresults compared to the outside corners. This effect has been noted for arenotaffectedbychangingtheslipvelocitythresholdbyafactor faultwalldisplacementsin2-Dfaultingmodels(Davis&Knopoff oftwo(smallerorlarger),implyingthatthechosenthresholdvalue 1991; Duan & Oglesby 2005), and this work confirms that it is doesnotproduceartefactsintherupturevelocitydistribution.The also a strong effect for 3-D ground motion. In more detail, the ‘checkerboard’ noise inthe rupture velocity plots occurs because east–west motion (approximately fault-parallel) and north–south particlevelocitiesarerecordedatanintervalof0.01s,leadingto motion(fault-normal)fornucleationonBrevealthatasymmetric D o an apparent quantizing of the rupture velocity; the actual rupture groundmotionaredifferentforthedifferentcomponentsofmotion: wn propagationissmooth. theeast–westcomponentexhibitslargergroundmotiononthesouth loa d AnalysingrupturevelocityfornucleationonB(Fig.6a)reveals sideofsegmentEandthenortheastsideofsegmentH,whereasthe e d aninterestingpattern:asnotedinOglesbyetal.(2008),supershear opposite is true for the north–south component of motion. The fro ruptureoccursonthewesternedgesofsegmentsDandF,andthe asymmetryofgroundmotionaroundsegmentHisatleastpartly m westernfreesurfaceofH.Anewfeatureinoursimulationsarises attributabletothenon-verticaldipangleofthissegment(e.g.Davis http fornucleationonsegmentsE(Fig.6b)andG(Fig.6c):therupture &Knopoff1991;Oglesbyetal.1998),whereastheasymmetryon s velocity pattern on segment D is spatially reversed (compared to the other segments arises from non-planarity of the fault system ://a c a nucleation on B). In these cases, supershear rupture is confined andcorrespondingseismicradiationatfaultkinks(Adda-Bedia& d e to the eastern edge of segment D. This pattern reversal can be Madariaga2008). m ic explained if one attributes the supershear rupture propagation to Theneteffectofdirectivity,cornerphasesradiatedatthefault .o u thedynamicunclampingofthesegment.Whenrupturepropagates bends and asymmetric particle motion is to produce a complex p .c towards segment D from either side, it unclamps the edge of D near-fault peak-motion pattern that becomes more homogeneous o m closesttothepreviouslyslippingsegment.Theunclampedregion fartherfromthefaultduetoanaveragingeffectonradiationfrom /g hassignificantlylowerstrength,andthusfavourssupershearrupture largerareasonthefaultsystem.WhencomparingtheGnucleation ji/a propagation.However,asrupturetraversessegmentD,itthenexits casetotheBnucleationcase(Figs7banda),weseesomesignif- rtic le the region of significant unclamping, and reverts to its original icant differences. The obvious effects are the opposite directions -a slower velocity. This effect can be thought of as an extreme case of amplification due to directivity and the lack of strong ground bs oftherupture-frontaccelerationseeninbentfaultmodelsofKase motion near segments H and I, because of rupture dying out on tra c &Day(2006).Thismechanismfortransitiontosupershearrupture H in the G nucleation case. Another potentially important effect t/1 8 velocityanditsimplicationswillbeexaminedinmoredetailinthe is the spatial variation of ground-motion asymmetry for different 8 /3 Discussionsection. directionsofrupturepropagation.Thiseffectisparticularlynotable /1 0 nearthesmallstepoversegmentsDandF.Wewillexaminethecase 7 1 ofsegmentDinmoredetail(betweenapproximately35and50km /6 8 3.4 Patternofgroundmotion alongstrike),asshownintheFigs7(c)and(d),whichdisplaythe 473 peak horizontal ground velocity (the magnitude of the horizontal 0 b The simulated ground motion from potential earthquakes on this velocityvector)fortheBandGnucleationcases,respectively.In y g sectionoftheNAFdisplaysmanyfeaturesrelatedtothefaultgeom- the B nucleation case (Fig. 7c), rupture approaches from the left u e etryandassociateddynamiceffects.Fig.7comparesthesimulated (west) edge, and its propagation from segments C to D produces st o peakgroundvelocity(filteredto0.25Hz)ofthethreecomponents stronger particle motion on the inside of the corner and forward n 0 ofmotionfornucleationonsegmentsB(Fig.7a)andG(Fig.7b). alongstrike,thatis,onthesouthernsideofsegmentD.Asimilar 7 A The B nucleation case is useful as a general illustration. As ex- effectoccursontheD–Ecorner,exceptwiththeoppositedirection p pected, ground motion generally increases to the east, reflecting of bend. The net effect is to produce stronger ground shaking on ril 2 0 theeastwarddirectivityoftherupturefront.Thenorth–southcom- thesouthernsideofsegmentDovermostofitslength,andhigher 1 9 ponent of motion, normal to the predominant strike of the fault ground motion on the northern side of segment E. A similar ef- system, measures the largest ground motion, as expected in the fect occurs on segment F (between approximately 85 and 90 km caseofprimarilysubshearrupture.However,thisfamiliarpattern along strike). When rupture approaches these segments from the is strongly modulated by the fault geometry. Segment H exhibits opposite direction, such as in the case of G nucleation (Fig. 7d), smaller ground motion than segment G, even though it is farther thiseffectreversesitself.WhentheruptureapproachessegmentD along strike. Because of the slow rupture propagation around the fromsegmentE,ithashighdirectivityandradiatesmorestrongly corner from segments H to I, segment I does not experience a on the E/D corner, producing higher ground motion on the north strongdirectivityeffect,leadingtosmallernear-faultgroundmo- sideofsegmentD.AsimilareffectisseenontheD/Ccorner,with tion than on segment G, which has identical values of pre-stress. highergroundmotiononthesouthsideofsegmentC.Theground- Additionally,changesinfaultstrike,whichcausetherupturefront motionasymmetryalsoflipssidesonsegmentF.Thiseffectismost toaccelerateviaachangeinspeedand/ordirection,areassociated significant for small segments, where the radiation effects from withstronglobesofradiation.This‘cornerphase’effectisconsis- oneofthecornersissignificantovertheentirelengthoftheseg- tentwithisochroneaccelerationleadingtostrongseismicradiation ment.Thistypeofground-motionvariabilityandasymmetrydueto (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS RupturedynamicsontheNorthAnatolianFault 1079 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 8 /3 /1 0 7 1 /6 8 4 7 3 0 b y g u e s t o n 0 7 A p ril 2 0 1 9 Figure6. Rupturetimecontours(toppanel)andrupturevelocity(bottompanel)forearthquakesnucleatedonsegmentB(a),E(b)andG(c).Thelocationof supershearrupturepropagationonsegmentDchangesdependingonthenucleationlocationandhencethedirectionofrupturepropagation. (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS 1080 D.D.OglesbyandP.M.Mai D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 8 8 /3 /1 0 7 1 /6 8 4 7 3 0 b y g u e s t o n 0 7 A p sFeiggmureent7B. P(eaa)kanpdarGtic(lbe).veNloocrtihty–Saomupthlitduidreecitnioenasist–pweerpsten(tdoipcuplaarnetol),thNeoprtrhim–Saoryutfhau(mltisdtdrilkee,paannedl)thaunsdduisppdloawysngdrieraetcetrioenffse(cbtsototofmdirpeacntievli)tyf.oTrhneucnloeant-ipolnanoanr ril 20 1 faultgeometryproducesnumerouslocalhigh-amplitudeareasintheground-motionfield,whichchangesignificantlyfordifferenthypocentrelocations.(c) 9 PeakhorizontalparticlevelocityforsegmentsC,DandEfortheBnucleationcase.(d)PeakhorizontalparticlevelocityforsegmentsC,DandEfortheG nucleationcase.Trianglesindicatelocationsforsyntheticvelocitytimehistoryplotsinelectronicsupplement.Notethattheparticlemotionasymmetryflips inthenorth–southdirectionfordifferentrupturedirectivity. complexityinfaultgeometryisparticularlypronouncedinthenear- IintheBnucleationmodel(Fig.7a),wherea‘true’(long-lasting) field region, and hence is important for earthquake engineering supersheartransitiontakesplace.However,thereisnonotableMach practiceinground-motionprediction. cone;thesupershearrupturemanifestsitselfonlyasstrongerstrike- Finally, we note that typical signatures of supershear rupture parallel motion than strike-perpendicular. The lack of supershear propagation(i.e.aMachconeandfault-parallelmotionthatishigher ground-motionattributesovermostoftheourmodelspaceislikely than fault-normal motion) are not obvious in our ground-motion duetothesmallareasoverwhichsupershearruptureoccurs;italso maps, even though supershear rupture propagation occurs in our mayimplythatthepropagationspeedofthepeakslip-ratepulseis simulations.Theonlyexceptionisthegroundmotionnearsegment moreimportantforground-motiongenerationthanthepropagation (cid:4)C 2012TheAuthors,GJI,188,1071–1087 GeophysicalJournalInternational(cid:4)C 2012RAS

Description:
faults, and for the interpretation of kinematic inverse rupture models. Key words: Earthquake dynamics; Earthquake ground motions; Earthquake interaction, .. More in- sight into the temporal evolution of rupture propagation, and the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.