ebook img

Fault Diagnosis Inverse Problems - Solution with Metaheuristics PDF

173 Pages·2019·3.18 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fault Diagnosis Inverse Problems - Solution with Metaheuristics

Lídice Camps Echevarría (cid:129) Orestes Llanes Santiago Haroldo Fraga de Campos Velho Antônio José da Silva Neto Fault Diagnosis Inverse Problems: Solution with Metaheuristics 123 LídiceCampsEchevarría OrestesLlanesSantiago CentrodeEstudiosdeMatemática Dpto.deAutomáticayComputación UniversidadTecnológicadeLaHabanaJosé UniversidadTecnológicadeLaHabanaJosé AntonioEcheverría,CUJAE AntonioEcheverría,CUJAE Marianao,LaHabana,Cuba Marianao,LaHabana,Cuba HaroldoFragadeCamposVelho AntônioJosédaSilvaNeto NationalInstituteforSpaceResearch,INPE InstitutoPolitécnico SãoJosédosCampos Universidade do Estado do Rio de Janeiro, SãoPaulo,Brazil UERJ NovaFriburgo,RiodeJaneiro,Brazil ISSN1860-949X ISSN1860-9503 (electronic) StudiesinComputationalIntelligence ISBN978-3-319-89977-0 ISBN978-3-319-89978-7 (eBook) https://doi.org/10.1007/978-3-319-89978-7 LibraryofCongressControlNumber:2018940773 ©SpringerInternationalPublishingAG,partofSpringerNature2019 Preface Faults can occur in every system, but when they occur in control systems, they may cause not only economic losses but also damage to human being, material, and to the environment. But, how is a fault in a control system defined? A fault is defined as an unpermitted deviation of at least one characteristic property or parameterofasystemfromtheacceptable,usual,orstandardoperatingcondition [57,61,78,115]. The area of knowledge related to methods for diagnosing faults is called Fault Diagnosis or Fault Detection and Isolation (FDI). The name Fault DetectionandIsolationindicateshowareconceivedmanyFaultDiagnosismethods: firstdetectingiftherearefaultsthatareaffectingthesystemandthenisolatingthem, i.e.,decidingwhichfaultisaffectingthesystem. Ondiagnosingasystemreliesabiginterest.Topicssoimportantintheindustry such as reliability, safety, and efficiency are related to FDI. Fault Diagnosis is also crucial for the topic of maintenance. It is also recognized that the increase of the automation in the industry enhances the probability of faults occurrence [61]. Therefore, it is easy to conclude that Fault Diagnosis is a current area of intense research and real applications interest. But FDI is not a simple and easy problem to formulate and solve. For diagnosing faults in systems, measurements needtobeused.Thesemeasurementsarecommonlycorruptedbynoise.Moreover, the measurements can be affected by spurious disturbances acting on the system. All these facts can lead to the conclusion that the system may be deviated from its acceptable behavior, even when no faults are affecting it. This implies in false alarms.Inordertoavoidthissituation,themethodsdevelopedandappliedforFDI shouldberobust.Robustnessmeansrejectionoffalsealarms,whichareattributable to disturbances or spurious signals. With the increase of the robustness it could occur, that some faults can not be diagnosis, for example when the fault effects in the system output are within the range of deviation due to the noise. This fact is related to the system loss of sensitivity. Therefore, useful FDI methods must present two properties: robustness and sensitivity. Moreover, in complex systems, the propagation of faults can rapidly occur [57, 115]. As a consequence, Fault Diagnosisalsotakeintoconsiderationthediagnosistime[57,115]. A great variety of FDI methods can be found in the literature, and they may be brought down to two types of methods: model-based methods and non- model-based methods. Model-based methods make use of a mathematical or a physical/mathematicalmodelofthesystem. In this book, it is presented and formalized a recent methodology for Fault Diagnosis which falls into the category of model-based methods. The name of the methodology is Fault Diagnosis—Inverse Problem Methodology (FD-IPM). It unifies the results of some years of cooperation among researchers from the fields ofFDI,InverseProblems,andOptimization.Someofthecontributionsthatresulted fromthiscooperationaredescribedinRefs.[1,18–21].Asitsnameindicates,itis basedontheformulationofFaultDiagnosisasanInverseProblem.Inparticular,the FaultDiagnosisInverseProblemsareformulatedasoptimizationproblems,which aresolvedusingmetaheuristics.Therefore,intheproposedmethodology,theareas ofFDI,InverseProblems,andMetaheuristicsarelinked. The main objective of this book is to formalize, generalize, and present in a systematic,organized,andclearwaythemainideas,concepts,andresultsobtained during the last years which are based on the formulation of Fault Diagnosis as InverseProblemswhicharesolvedasoptimizationproblems. ForreadersfamiliarizedwithInverseProblems,somequestionscouldarise:why formulate FDI as an Inverse Problem, if it is well known that Inverse Problems are usually ill-posed problems (sometimes the ill- posed problems are called hard problems),therearealreadywellestablishedFDImethods,whicharenotbasedon theInverseProblemapproach? ItistruethatInverseProblemsareusuallynoteasytosolve.Themaindifficult point to deal with, when solving them, is the effect on the solution when the observed data (e.g., measurements) present noise, i.e., amplification of the noise which is always present in the observable variable affects the Inverse Problem solution.Inverseproblemsbelongtotheclassofill-posedproblems:theexistence or uniqueness of the solution are not guarantee; or it does not show continuous dependence on the input values. From the latter condition, the noise in the measurementscanbeamplifiedintheinversesolution.But,inturnFDIalsodeals withnoisydata(measurementsofthesystem),anditisveryimportanttoknowhow the noise in the data influences the diagnosis of the faults, in order to avoid, for example, false alarms or to identify faults that may be masked within the noise. It is recognized that obtaining robust and sensitive FDI methods, at the same time, continues to be a current research field of high interest [114]. Moreover, Inverse Problems is an interdisciplinary area that matches the mathematical model of a problemwithitsexperimentaldata[94].ThatisexactlytheideabehindFDI,when amathematicalorphysical/mathematicalmodelofthesystemisconsideredknown. Formulating FDI as an Inverse Problem also brings some insight to the under- standing of the FDI problem by means of the introduction of ideas and method- ologies from Inverse Problems. Inverse Problems, which arise from practical applications, deal with observable information from the system. How this infor- mation can be used is a key issue for solving Inverse Problems. Fault Diagnosis can be understood as a problem based on information (e.g., model of the system andmeasurements).Therefore,theideasfromInverseProblemsallowedtoidentify someresultsthatcouldhelpsolveproblemsoftheareaofFaultsDiagnosis. Moreover, the formulation of the Fault Diagnosis Inverse Problems as opti- mization problems allows to apply metaheuristics for computing the solution, i.e., diagnosingthefaults. Metaheuristics are a group of nonexact algorithms that allow to solve opti- mization problems based on a search strategy in the feasible solution space. Metaheuristicsmayprovideasufficientlygoodsolutiontoanoptimizationproblem, especially with incomplete information. Naturally an obvious question comes to mind. Which is the best metaheuristic for Fault Diagnosis Inverse Problems? In [137],itisdemonstratedthatthereisnotauniqueanswertothisquestion.Instead, thisbookdescribesinaneasyway,butwithrigor,fourwell-knownmetaheuristics foroptimization(DifferentialEvolution,ParticleCollisionAlgorithm,AntColony Optimization,andParticleSwarmOptimization),whichwerealsousedduringthe application of the methodology to Fault Diagnosis in three benchmark problems (DCMotor,InvertedPendulumSystem,andTwoTanksSystem)fromtheFDIarea. These examples are useful for showing how to analyze and interpret the influence ofsomemetaheuristicsparametersinthequalityofthediagnosis.Furthermore,this book presents the main ideas and concepts from optimization and metaheuristics, whichmaybeusefulforreadersthatarenotfamiliarizedwiththesetopics. The formulation of FDI as Inverse Problems also allowed to develop two new hybridmetaheuristics:ParticleSwarmOptimizationwithMemoryandDifferential Evolution with Particle Collision. New metaheuristics constantly arise in the literature, but for being accepted by the computational community, they have to be formalized and validated, following the well-recognized methodology for metaheuristicvalidations[30,45,125].Thisisalsopresentedinthisbook. The analysis of the results obtained along the experiments for the validation of thenewmetaheuristics,aswellasintheirapplicationtothebenchmarkproblems, made use of basic concepts and test from statistics. During the analysis of the experiments, different tables and graphics were constructed in order to facilitate thepresentationoftheresults,aswellastheirinterpretation. Formulating Fault Diagnosis as an Inverse Problem and solving it by means of metaheuristics bring together readers from at least three different areas: Fault Diagnosis,InverseProblems,andMetaheuristics.Thisrepresentsthenatureofthe authorsofthisbook. The prerequisites to read this book are calculus of several variables and linear algebra.Somebasicsaboutprogrammingarealsousefulforabetterunderstanding ofthechapterthatpresentsthetopicofmetaheuristics. Thechaptersofthisbookaresummarizedasfollows: (cid:129) Chapter 1: In this chapter, the main concepts, ideas, advantages, and disad- vantages related to the use of model-based FDI methods are presented. The mainideasontheformulationandsolutionofInverseProblemsarealsobriefly described. (cid:129) Chapter 2: This chapter presents and formalizes Fault Diagnosis as an Inverse Problem,aswellasthenewmethodologyforFaultDiagnosis:FaultDiagnosis— Inverse Problem Methodology. The three benchmark problems used during the experimentsarealsodescribed. (cid:129) Chapter 3: This chapter makes an introduction to metaheuristics for optimiza- tion. In particular, the metaheuristics Differential Evolution, Particle Collision Algorithm, Ant Colony Optimization for continuous problems, and Particle Swarm Optimization are described. This chapter also presents two new meta- heuristics:ParticleSwarmOptimizationwithMemoryandDifferentialEvolution withParticleCollision. (cid:129) Chapter 4: This chapter presents the application of Fault Diagnosis—Inverse ProblemMethodologytothethreebenchmarkproblemsconsidered.Inparticular, theexperimentsaredesignedinordertoanalyzerobustnessandsensitivityofthe diagnosisobtainedwithFD-IPM. Chapter 1 can be read independently when the reader is only interested in the main concepts and ideas from model-based Fault Diagnosis or Inverse Problems. Forreadersinterestedinmetaheuristics,werecommendChap.3whichcanberead independently. For the new methodology, Chap.2 has to be read. We recommend to read Chap.1 before reading Chap.2. Chapter 4 presents the applications of the methodologytothreebenchmarkproblems.BeforereadingChap.4,werecommend readingChap.2. (cid:2) Appendices A and B show the Matlab codes for the algorithms of the new metaheuristics Differential Evolution with Particle Collision and Particle Swarm OptimizationwithMemory,respectively. LaHabana,Cuba LídiceCampsEchevarría LaHabana,Cuba OrestesLlanesSantiago SãoJosédosCampos,Brazil HaroldoFragadeCamposVelho NovaFriburgo,Brazil AntônioJosédaSilvaNeto May2018 Contents 1 ModelBasedFaultDiagnosisandInverseProblems..................... 1 1.1 ModelBasedFaultDiagnosisMethods ............................... 1 1.2 FaultDiagnosisMethodsBasedonParameterEstimation ........... 4 1.3 InverseProblems ....................................................... 6 1.4 Remarks................................................................. 9 2 FaultDiagnosisInverseProblems.......................................... 11 2.1 FormulationofFaultDiagnosisasanInverseProblemandthe FaultDiagnosis:InverseProblemMethodology(FD-IPM).......... 11 2.2 Mathematical Models for the Fault Diagnosis: Inverse ProblemMethodology ................................................. 19 2.2.1 StateSpaceModel............................................. 19 2.2.2 ModelsBasedonTransferFunction.......................... 19 2.3 StructuralAnalysisofFaultDiagnosisInverseProblems: VerifyingHypothesisH3............................................... 20 2.4 DescriptionofThreeBenchmarkProblems........................... 23 2.4.1 Benchmark1:DCMotor...................................... 24 2.4.2 Benchmark2:InvertedPendulumSystem(IPS)............. 27 2.4.3 Benchmark3:TwoTanksSystem ............................ 29 2.5 ApplicationoftheFirstStepoftheFaultDiagnosis:Inverse ProblemMethodology ................................................. 31 2.5.1 BenchmarkProblem:DCMotor.............................. 32 2.5.2 BenchmarkProblem:InvertedPendulumSystem ........... 32 2.5.3 BenchmarkProblem:TwoTanksSystem .................... 39 2.6 Remarks................................................................. 41 3 MetaheuristicsforOptimizationProblems ............................... 43 3.1 IntroductiontoMetaheuristicsforOptimizationProblems........... 43 3.1.1 ClassificationofMetaheuristics............................... 45 3.2 DifferentialEvolution(DE)............................................ 48 3.2.1 DescriptionoftheDEAlgorithm............................. 48 3.2.2 RemarksonDE................................................ 50 3.3 ParticleCollisionAlgorithm(PCA)................................... 51 3.3.1 DescriptionofthePCAAlgorithm ........................... 51 3.3.2 RemarksonPCA .............................................. 53 3.4 AntColonyOptimization(ACO)...................................... 54 3.4.1 DescriptionoftheACOAlgorithmforContinuous Problems....................................................... 55 3.4.2 AntColonyOptimizationwithDispersion(ACO-d) ........ 56 3.4.3 Hybrid Strategy Ant Colony Optimization with DifferentialEvolution(ACO-DE) ............................ 58 3.4.4 RemarksonACO.............................................. 59 3.5 ParticleSwarmOptimization(PSO)................................... 59 3.5.1 DescriptionofthePSOAlgorithm............................ 59 3.5.2 RemarksonPSO............................................... 61 3.6 NewMetaheuristicforOptimization:DifferentialEvolution withParticleCollision(DEwPC)...................................... 61 3.6.1 DescriptionoftheDEwPCAlgorithm........................ 62 3.6.2 RemarksonDEwPC........................................... 62 3.6.3 ValidationofDEwPC ......................................... 63 3.7 New Metaheuristic for Optimization: Particle Swarm OptimizationwithMemory(PSO-M)................................. 71 3.7.1 DescriptionofthePSO-MAlgorithm ........................ 73 3.7.2 RemarksonPSO-M........................................... 75 3.7.3 ValidationofPSO-M.......................................... 75 3.8 Remarks................................................................. 83 4 Applications of the Fault Diagnosis: Inverse Problem MethodologytoBenchmarkProblems .................................... 85 4.1 ExperimentalMethodology............................................ 85 4.2 ExperimentswiththeDCMotor....................................... 89 4.2.1 Implementations............................................... 90 4.2.2 ResultsoftheDiagnosiswithParticleSwarm Optimization................................................... 92 4.2.3 ResultsoftheDiagnosiswithAntColonyOptimization.... 96 4.2.4 DiagnosiswithParticleSwarmOptimizationwith Memory(PSO-M)............................................. 101 4.2.5 ComparisonoftheFaultDiagnosis:InverseProblem MethodologywithOtherFDIModelBasedMethods....... 103 4.2.6 Conclusions.................................................... 111 4.3 ExperimentswiththeInvertedPendulumSystem(IPS).............. 112 4.3.1 Implementations............................................... 114 4.3.2 Results of the Diagnosis with Ant Colony OptimizationandAntColonyOptimization withDispersion................................................ 115 4.3.3 ComparisonBetweenAntColonyOptimization andAntColonyOptimizationwithDispersion .............. 123 4.3.4 Conclusions.................................................... 124 4.4 ExperimentswiththeTwoTanksSystem ............................. 124 4.4.1 Implementations............................................... 126 4.4.2 Results of Part 1: Diagnosis with Ant Colony OptimizationandDifferentialEvolution..................... 127 4.4.3 Results of the Part 2: Diagnosis with Particle CollisionAlgorithmandDifferentialEvolution ............. 132 4.4.4 Conclusions.................................................... 137 4.5 Remarks................................................................. 137 5 FinalRemarks................................................................ 139 5.1 FutureTrends........................................................... 140 (cid:2) AppendixA ImplementationinMatlab ofDifferentialEvolution withParticleCollision(DEwPC)........................................... 141 A.1 MainFunction:DEwPC................................................ 141 A.1.1 FunctionInitio................................................. 144 A.1.2 FunctionMutation............................................. 144 A.1.3 FunctionCrossover............................................ 145 A.1.4 FunctionSelection............................................. 146 A.1.5 FunctionAbsScatt............................................. 146 A.1.6 FunctionUpdate............................................... 148 A.1.7 FunctionLocal................................................. 148 (cid:2) Appendix B Implementation in Matlab of Particle Swarm OptimizationwithMemory(PSO-M) ..................................... 151 B.1 MainFunction:PSOM................................................. 151 B.1.1 FunctionBest.................................................. 156 B.1.2 FunctionUpdateVX........................................... 157 B.1.3 FunctionUpdatePgPi.......................................... 158 B.1.4 FunctionUpdatePC............................................ 159 B.1.5 FunctionGenerateAnts........................................ 159 References......................................................................... 161 Acronyms ABC ArtificialBeeColony ACO AntColonyOptimization BBO Biogeography-BasedOptimization BMs Bio-InspiredMetaheuristics CS CuckooSearch DC DirectCurrent DE DifferentialEvolution DEwPC DifferentialEvolutionwithParticleCollision EAs EvolutionaryAlgorithms EDAs EstimationofDistributionAlgorithms EP EvolutionaryProgramming FA FireflyAlgorithm FDI FaultDetectionandIsolation,FaultDiagnosis FD-IPM FaultDiagnosis—InverseProblemMethodology GAs GeneticAlgorithms GEO GeneralizedExtremalOptimization GP GeneticProgramming IP InverseProblems IPS InvertedPendulumSystem IWD IntelligentWaterDropsAlgorithm LTI LinearTimeInvariant MAs MemeticAlgorithms MPCA MultipleParticleCollisionAlgorithm NMs Nature-InspiredMetaheuristics NPMs Non-population-BasedMetaheuristics PCA ParticleCollisionAlgorithm PI Proportional-IntegralController PID Proportional-Integral-DerivativeController PMs Population-BasedMetaheuristics PSO ParticleSwarmOptimization PSO-M ParticleSwarmOptimizationwithMemory SA SimulatedAnnealing SI SwarmIntelligence SIs SwarmIntelligencealgorithms SISO SingleInputSingleOutput TS TabuSearch

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.