Fault Detection In the Electrohydraulic Actuator Using Extended Kalman Filter A Thesis Submitted to the College ofGraduate Studies and--Research in Partial Fulfillment ofthe Requirements for the Degree ofDoctor ofPhilosophy in the Department ofMechanical Engineering University ofSaskatchewan, Saskatoon Canada By Yuvin Adnarain Chinniah © Copyright Yuvin A. Chinniah, March 2004. All rights reserved. Permission to Use Inpresentingthis thesis inpartial fulfillment oftherequirements for a Postgraduate degree from theUniversityofSaskatchewan, I agreethatthe Libraries ofthis University maymakeitfreely available for inspection. Ifurther agreethat thepermissionfor copyingthis thesis in anymanner, in wholeorinpartfor scholarlypurposes, maybe grantedbytheprofessors who supervisedmythesis work or, intheir absence, bythe Head ofthe DepartmentorDeanofthe Collegeinwhichmythesis workwas conducted. Itisunderstoodthat anycopyingorpublicationoruse ofthis thesis orparts thereoffor financial gain shall notbeallowedwithoutmywrittenpermission. Itis also understoodthatduerecognition shallbe givento me andto the Universityof Saskatchewan in any scholarlyusewhichmaybemade ofanymaterial inmythesis. Requests forpermission to copyorto makeotheruse ofmaterial inthis thesis, inwhole orpart, shouldbeaddressedto: Head ofthe DepartmentMechanical Engineering UniversityofSaskatchewan CollegeofEngineering 57 Campus Drive sm Saskatoon, Saskatchewan 5A9 Canada i Abstract Inthis thesis a fault detectiontechnique for ahigh perfonnancehydrostatic actuationsystemwas developed and evaluated. TheExtendedKalmanFilter(EKF) was used for parameteridentificationandwas appliedto anElectrohydraulicActuator (ERA) and theperfonnanceofthe technique is discussed. The ERA is ahigh perfonnance, closedloop actuationsystem consistingofan AC variablespeedelectric motor, abi-directional gearpump, anaccumulator, checkvalves, a cross-overrelief valve, connectingtubes anda custommade symmetrical actuator. The ERAhas potential applications inthe aerospace industryfor flight surface actuation andin robotics. Failures inthe ERA canposea safetyhazard andunscheduledmaintenance canresultin costlydowntime. Fault detection inthe ERAwill increaseits safetyand efficiency. Theproposedpreventivemaintenance approachinvolvesmonitoringtheERA byestimatingtwo parametersofinterest, namelythe effectivebulkmodulus and the viscous dampingcoefficient. Loweringofthe effectivebulkmodulus, as aresult ofair entrapment, will affecttheresponse ofthe ERA andmay causestabilityissues, by loweringthebandwidthofthe system. Changes inthe damping coefficientfor the actuatorcanindicatedeteriorationofthe oil, wearinthe seals orchanges in external friction characteristics. Thetwo parameterswere estimatedusingtheEKF andchanges inthe estimatedvalues wererelatedto faults inthe system. Priorto applyingtheEKF to theERAprototype, an extensivesimulation study was carriedoutto investigatethefeasibility ofthe approach aswell as the level of accuracyto be expectedwiththe experimental system. The simulation studywas used to verifythat changes inthetwo parameters were detected and accuratelyestimated. In this study, an attemptwas also made to visitsomeoftheproblems reported withtheuse oftheEKF for fault detectionpurposes, namelythe difficultyinsettingthe correctvalues inthematrices to initializethe EKF algorithm and thepresenceofbiases inthe estimates. Theproblem wasbelievedto be linked to systemobservabilitywhich 11 was investigated inthis research. Itwas found that using observable statespacemodels for the EKF improvedthe abilityofthe EKF to estimateparameters, bothinterms of accuracyofthe estimations and repeatabilityofexperimental results. System observabilitywas investigatedinthis workbyfirst using simplemechanical systems andthenusingthemore complex ERA system. Aniterative approachwas presented wherebyparameters werenot estimated atthe sametimebutiterativelyand using differentmodels. System observabilitywasmaintainedbyreducingthe numberofstates andbyusingthe correcttype andnumberofsystemmeasurements. Also, the use of observable systems eliminatedtheneedto chooseparametervalues, intheinitial state vectorofthe EKF, closeto the desiredparametervalues, as was very oftendonein previousresearch. No a-priori knowledge abouttheparameters was assumed inthis research. Biasesinthe estimates (thishas beenreported inprevious studies) are believedtobedue to the filter facing alocal minimaproblem. Thisproblemis linkedto the error covariancematrixnotconvergingto a globalminimum. IntheKalman Filter, themain objectiveofthe error covariancematrix is to computetheKalman gain, which is inturnusedto correct an estimatewiththelatest sensormeasurement. Errors inthe Kalman gainmayleadto biases inthe estimates. Inthis study, itwas also found that althoughthe systemisnotobservable, it canbedetectable, althoughthe converseis not true, and as such, changesinparameters canbedetectedbutnotnecessarily accurately estimated. Observabilityensuresuniqueness ofthe estimate. The effectivebulkmodulus andviscous damping coefficientwere estimated successfully, bothinsimulations andusingexperimental data. Faults were introducedin theEHAprototype and changesintheparameters were detected and estimated. The friction characteristicofthe actuator for theERA was also investigated. A novel empirical frictionmodel wasproposed. The EKF wasusedto estimateiteratively (to maintainsystemobservability), the coefficientsofthat friction function whichwas believedtobe arealisticrepresentationoffriction effectintheprototype. Simulation and experimentalresults werepresented. Insummary, the applicationofthe EKF techniqueto the ERAhas produced verypromisingresults. 111 Acknowledgements The authorexpresseshis gratitudeto his supervisors, Dr. R.T. Burtonand Dr. S. Habibi for theirguidance and adviceduringthe courseofthis research and thewritingofthis thesis. Thetechnical assistance ofMr. D.V. Bitneris also gratefullyacknowledged. Financial support inthe fonn ofgraduate studentmonthlystipend, Universityof Saskatchewan Graduate Student Scholarship and Canadian Commonwealth Scholarship is also acknowledged. Special gratitudemustbe conveyedto mywife, Priscilla, whosepatienceand support havebeeninvaluableduringmy studies. I also wishto expressmy gratitudeto myfamily, especiallyto myparents andbrothers for theirencouragementand support. iv Table ofContents Permission to Use i Abstract ii Acknowledgements iv Table ofContents v ListofTables x · ifD' .. Llst0 r 19ures Xll Nomenclature xix 1. Introduction.o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. 1 0 00••• 0 000 0 000 0 0" 0 00••••0 0 000. 0 0•••0" 0•••• 000••00" 0" 1.1. PreliminaryRemar1cs 1 1.2. Techniques Used inHealth Monitoring ofHydraulic Systems 3 1.3. The ExtendedKalman Filterin Condition Monitoring 3 1.4. Parameters ofInterest in theHydrostaticActuationSystem 5 1.5. Research Objectives 7 1.6. Thesis Outline 8 2. Condition Monitoring Strategies in Fluid Power o. o.o.o. 11 00'0•••• 0•••00•••0••• 2.1. Introduction 11 2.2. MonitoringFluid Condition 13 2.3. Vibration Analysis 17 2.4. TemperatureMonitoring 19 2.5. Pressure andFlowMonitoring 20 v 2.6. ExpertSystemsfor Condition Monitoring in FluidPower 21 2.7. NeuralNetworks for Condition Monitoring in FluidPower 22 2.8. FaultDetection usingMathematicalModels ofthe Systems 25 2.9. Condition Monitoring usingthe ExtendedKalman Filter 27 2.10. Condition Monitoringfor the EHA System Using the EKF 28 2.11. Conclusions 30 3. Electrohydraulic Actuator (ERA) 31 3.1. Introduction 31 3.2. Description oftheElectrohydraulicActuator 33 3.2.1 Hydraulic Pump 35 3.2.2 New SymmetricalLinearActuatorfor EHA 37 3.2.3 Accumulator 39 3.2.4 ControlStrategy inEHA 39 3.2.5 ElectricMotor/Pump Subsystem Model 40 3.2.6 LinearizedModel oftheEHA 43 3.3. FailureModes andEffectsAnalysisfortheEHA Components 47 3.3.1 Faults andEffectsAnalysisforthe EHA 50 3.4. Summary 53 4. ERA Instrumentation and Model Validation 54 4.1. ExperimentalDetermination oftheEHA Parameters 54 4.2. ExperimentalDetermination ofthePumpLeakage Coefficient.. 55 4.3. ExperimentalDetermination oftheLeakage Coefficientin theActuator 61 vi 4.4. SimplifiedModelfor the EHA 64 4.5. Linear Variable Differential Transformer (LVDT) 66 4.6. Measured Outputofthe EHA Prototype Using theLVDT 67 4.7. DifferentialPressure Transducer 69 4.8. LinearOpticalEncoder 70 4.9. ConcludingRemar'ks 73 5. Introduction to the Kalman Filter 74 5.1. Introduction 74 5.2. StatisticalReview 75 5.3. Discrete State SpaceModelofaLinearSystem 75 5.4. The Kalman Filter 76 5.4.1 Derivation oftheKalman FilteringEquations '" 78 5.5. ExtendedKalman Filter 81 5.6. Divergence in the ExtendedKalman Filter 84 5.7. Conclusions 86 6. Parameter Estimation Using Extended Kalman Filter 87 6.1. Importance ofthe Observability Condition 88 6.2. ApplyingtheKalman Filter to the EHA in Simulation 99 6.3. ParameterEstimation in theEHA 104 6.3.1 Discussions 113 6.4. Estimatingthe EffectiveBulkModulus in the EHA 115 6.4.1 Sensitivity Study ofthe Effective BulkModulus 120 vii 6.4.2 Estimation ofEffectiveBulkModulus (High FrequencyInput) 122 6.5. Estimation ofViscous DampingCoefficientin Simulation 127 6.6. UsingEKFin Estimatingthe Viscous Damping Coefficient Using a Known EffectiveBulkModulus Value 133 6.7. ConcludingRemarlGs 138 7. Experimental Results: ParameterEstimation in the EHA 141 7.1. Proceduresfor CollectingExperimentalData 141 7.2. Viscous DampingCoefficient Estimation 143 7.3. EffectiveBulkModulus Estimation 148 7.4. Estimation ofViscous Friction Coefficient Using the ComplexModeL 153 7.5. Estimation ofParametersIteratively Using Three EKFs 155 7.6. IntroducingFaults in the EHA Prototype 157 7.7. Conclusions 163 8. Estimation ofNonlinear Friction using the EKF 164 8.1. Friction Nonlinearities in HydraulicActuators 164 8.2. NonlinearFriction Modelfor the ElectrohydraulicActuator 165 8.2.1 Equivalent Viscous Friction 166 8.2.2 QuadraticFrictionModel 170 8.2.3 Summary 182 8.3. Simulation Study Using the QuadraticFrictionModel 183 8.4. Estimation ofthe Effective BulkModulus in Simulation Using the Quadratic Friction ModeloftheEHA in theEKF 195 V111 8.4.1Simulation Studies: EffectiveBulkModulus Estimation 197 8.4.2 ExperimentalStudies: EstimatingtheEffectiveBulkModulus 200 8.5. Conclusions 201 9. Conclusions and Recommendations 204 9.1. Summary 204 9.2. Outcomes 205 9.3. Conclusions 207 9.4. Important Contributions 208 9.5. Future Research Recommendations 210 List ofReferences 211 Appendix A: Statistical Review ofRandom (Stochastic) Signals 218 A.1. Expectation (Average) 218 A.2. Variance 218 A.3. Normal or Gaussian Random Variables 218 A.4. Covariance 219 Appendix B: Importance ofObservability Condition to the EKF 220 B.1. Observability Condition andFormula 220 B.2. Mass-Damper System 220 B.3. Applicationofthe EKFto the Mass-Damper System 226 B.4. Mass-Spring-Damper System 232 B.5. ParameterEstimation in the Mass-Spring-Damper System 236 ix
Description: