ebook img

Fatty Acid Pattern Differences Among Individuals of Two Estuarine Fishes (Leiostomus xanthurus and Mugil cephalus) PDF

8 Pages·1994·5.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fatty Acid Pattern Differences Among Individuals of Two Estuarine Fishes (Leiostomus xanthurus and Mugil cephalus)

GtdfResearchReports,Vol.9.No.1.49-56,1994 ManuscriptreceivedJanuary26,1993;acceptedApril29,1993 FATTYACID PATTERN DIFFERENCES AMONG INDIVIDUALS OFTWO ESTUARINE FISHES (LEIOSTOMUSXANTHURUS ANDMUGILCEPHALUS) JULIAS.LYTLEANDTHOMASV.LYTLE GulfCoast Research Laboratory, P.O. Box 7000, Ocean Springs, Mississippi 39566-7000 ABSTRACT Tenindividualfishoftwoestuarinespecies,spot{Leiostommxanthurus)andstripedmullet(Mugil cephalus),wereanalyzedforfattyacids. Fishofsimilarsizewereobtainedfromasinglecollectiontominimize variabilityduetoage, size,location andseason. Analysisofvariance(ANOVA)ofeachfattyacidprovided statisticallysimilargroups foreach acidthatexistedamongindividualfish. Fattyacidsin thestripedmullet providedagreaternumb^ofstatisticallysimilargroupsthanthoseinspot,'mdicatinggreatervariabilityamong individual striped mullet,whichprobablyreflected agreater diversity in thefeedingregimefor this species, ANOVAresultswithinclassesoffattyacidsofbothspeciesindicatedgreaterdiversityinmonounsaturatedand polyunsaturatedthansaturatedfattyacids.Eicosapentaenoicacid(EPA)showedmoremdividualvariabilityinboth speciesthandiddocosahexaenoicacid(DHA). Dietarylipidsandmetabolicneedsofthetwospeciesaredistinct andmaybethekeyfactorsinexplainingindividualdifferencesobservedinthesetwofishspecies. Introduction inlargenumbersfromagivenareainonecatch,andthey werenumerousenoughtopermitselectionoffishhaving Naturalpopulationsoffishescontainfattyacidsand little variationinsize. Additionally,thebiology ofspot other nutritional components that are highly variable. (Gunter,1945;Dawson,1958;Hodsonetal.,1981;Chest- Stansby(1981)hasaddressedsomesourcesofvariabilityin nut,1983;Sheridanetal.y1984)andstripedmullet(Odom, fattyacidcompositionoffishoilswithinagivenspecies. 1966; Thompson, 1966) is well established, and both Other studies have focused on individual species and speciesarefoundabundantlyinlocalcoastalestuaries. variationswithrespecttoage(HayashiandTal^gi,1978), Spotisadominantbottomfishandisconsideredtofeed season (Ueda, 1976; Hayashi and Takagi, 1977. 1978; in schools over sand-mud bottoms on polychaeies, Gallagheretah, 1989),size(Gallagheretal., 1984)and harpacticoidcopepods,bivalvesandpossiblysomedetritus geographical location(Addison et «/., 1973; Whyteand (HildebrandandSchroeder,1928;Darnell,1958;Hodson BoutiUier.1991),buthavenotaddressedvariationsamong etal.,1981). Spothasafairlysmallmouthandpossesses individualsofthesespecies.Assessingimportanceofthese gillrakersthatpermitretentionofsmallfoodparticlesand variables isdependentuponappraisal ofindividual vari- preventingestionofrelativelylargefooditemssuchasfish, ability,sinceinherentbiochemicaldifferencesexistfrom shrimp and crabs (Darnell, 1958; Hodson et al., 1981; fishtofishevenwhenal!othervariablesareminimized. It Chesmut, 1983;Sheridanetal.,1984). wasessentialthatspecimensbecarefullyselectedoftwo Ontheotherhand,thestripedmulletbeginsitslifeby speciesofcoastalGulffinfisheswhichdifferedlittleinsize, eatingplanktonicplantsandanimals,butitchangesitsdiet development stage, weight or location of catch. This toincludeabroadrangeofdetritusandplantmaterialasit selectionpermittedspecificexaminationofthosefluctua- develops(Moore,1974).Itfiller-feedsaboveorganicmuds tionsinindividualfattyacidsthatmayoccurdueonlyto containing microplant material and macroplant detritus individualdifferences. Byusinganon-randomselection (Odum,1966,1970),anditisgenerallyconsideredtobea processforsamples,resultscouldnotbeusedtocharacter- broad spectrum herbivore. Occasionally, however, car- izeoveralltrendsinthetwospecies. However,itwasfelt nivorousfeedinghasbeenobservedinstripedmullet(Bishop thatresultswoulddefinesomemdividualvariationsthatare andMiglarese,1978), uniquely characteristic for these two fishes that would Fattyacidsinmarinedietarylipids,whetherplantor permitinformativeandusefulcomparisonstobemadeand animal, serve as an energy source for metabolism and thatsuggestionsforthesevariabilitydifferenceswouldbe provide polyunsaturated fatty acids (PUFA) essentialfor suitable. membranestructureandfunction. Lipidsinmuscletissue TwospeciesofcoastalGulffinfishes,spotandstriped offishgenerallyreflectthosefattyacidsobtainedfromthe mullet, were chosen for assessing mdividual variability diet.Sincethesetwospecieshaveawidelydifferentnatural becausetheymetseveralcriteria. Theyrepresentedfishes diet, they provide an opportunity to examinemdividual withdiffercnifeedingregimes,theywerecollectedeasily variabilitywithinandbetweenspecies. 49 50 LytleandLytle Materials and Methods internal standardmethyl tricosanoate. Quantitativedata werecorrectedfordifferences indetectorresponses that Collection weredeterminedthroughanalysisofauthenticstandardsof eachreportedfattyacid. FAMEweretentativelyidentified StripedmulletwerecollectedonJanuary21, 1988in bycomparisonwithretentiontimeswiththoseofauthentic theshallowestuaryofBiloxiBay,Mississippi. Spotwere standards. Verificationofidentificationonselectsamples collectedonApril 13,1988atShipIsland,abarrierisland wasaccomplishedthroughgaschromatographymassspec- 15milessouthofGultjport,Mississippi,inthenortheastern trometryanalysisconductedbyNationalMarineFisheries GulfofMexico. Allfish werecollectedby gillnetand Service,CharlestonLaboratory. Concentrationsofindi- maintainedoniceuntilexamined. Standardlengthswere vidualisomersofPUFAwereseparatelytabulated;separate measuredandweightsrecorded. Fishofapproximatelythe isomersofmonounsaturates(e.g. 18:1)werenotreported. samesizewerefilletedandindividualUnplacedseparately inpolyethylenebags,flushedwithNj,rapidlyfrozenand SampleProtection storedat*20°C.Averagebodyweightofstripedmulletwas 230g(±12%relativestandarddeviation:RSD)andaverage Several precautions were taken to ensure that no mm standardlengthwas221 (±4.5%RSD). Averagebody degradationorotheralterationoflipids occurred during weightofspotwas 147g(±5.2%RSD),andaveragestan- extraction and saponification. All analytical steps were mm dardlengthwas 174 (±3.5%RSD). conducted at ambient temperatures, and samples were constantlyflushedwithN^topreventoxidation.Further,as AnalyticalProcedure manystepsaspossiblewereconductedinasingleextraction mbetoreducelossanddegradationthatoccurswithsample All solvents used in analysis were HPLC grade or transfer. Allsolventswere flushedwithN^immediately analyticalreagentgrade. Standardswerepurchasedfrom beforeusetoremovedissolved andtopreventoxidative NuCheck Prep, Inc. (Elysian, MN). Fillets were degradation. Likewise, samples requiring storage were homogenized usingaWaringblenderand0.5 galiquots placedinsamplebagswhichwereflushedwithN^before weighedintoscrew-capped(Teflon-lined)centrifugetubes beingfrozen(-20®C).Inaddition,theantioxidantbutylated (30ml)andsaponifiedatambienttemperaturewithethanolic hydroxytoluene (BHT) was added in a concentration of KOHunderNjusingamagneticstirrerforonehour. Care 0.005% (w/v) toextraction solventstopreventoxidative wasexercisedinthevolumesofsaponifyingmixturesused degradationofunsaturaiedlipids. tokeepthe waterlevel,derived fromtissue, sufficiently high to preventtrans-esterification. Solventratios were DataAnalysis those suggested by Nelson (1966). After dilution with distilled water, the neutral fraction was extracted with One way analysis of variance (ANOVA) withpost hexane.Theremainingalkalinesolutionwasacidifiedwith facto95%confidencelevelrangetest(StatisticalGraphics 6NHCI.andfreefattyacidswereextractedwithbenzene. Corporation, 1988)wasusedtocompareindividualfatty Benzenealiquotswerecombinedandconcentratedusinga acidsaswellascertainparametersd^vedfromfattyacid rotaryevaporator.Allevaporationswerecloselymonitored dataofindividualfish. Similaritygroupswereestablished toensurethatdistillationtemperaturesdidnotexceed25®C. ofindividuals foreachvariable which were statistically Fattyacidswereconvertedtomethylestersusing7%BF^- indistinguishable (p<0.05). In addition, the number of MeOHbythemethodofMetcalfeetal(1966)modifiedto groups was tallied as a further measure of individual useambienttemperaturesandaone-hourreactionperiod. variability. Identificationoffattyacidmethylesters(FANE)was obtainedby capillary gas chromatography (GC) using a Perkin-Elmer model Sigma 2000 gas chromatograph Results equippedwithflameionizationdetectorandfinedwitha m mm 3wi0thaX00..2255mfilim.dt.hfiucksneedsssiolifcaDucarpailBloarnydcWolAuXmn(cJo&atWed Figures 1 and 2 depict mean concentration of fatty Scientific)andoperatedwithasplitratioof100:1. The acidsinthesamplesofindividualspotandstripedmulletas carricrgas.He.wasmaintainedatiopsi,Oventemperature well as mean % composition of total saturated, wasprogrammedat90-250‘^Catalinearrateof4°Aninute. monounsaturaiedandPUPA. Figures1and2alsoinclude DatawasprocessedusingaPerkin-EhnerSigma 10data thestandarddeviationsofthemeansofthetenindividual system with quantification of ah compounds based on fishandareshownbythedarkbarsinthegraphs. Concen- individual peak area response by GC compared to the trationsareshowninbothwt%ofthetotalfattyacidsand FattyAcidVariationsinTwoEstuarineFishes 51 Wt% /jg/g(1000) y Meal SD Figure1. Leiostomusxanthurus. Distributionoffattyacidsinspot. Emptybarstotheleftrepresentmeanconcentrationsin wt%oftotalreportedfattyacidsof10individualfish. Barstotherightdepictmeanconcentrationsinpg/g(wettissue). Gray barsarestandarddeviationscomputedonthemeanofthe10meanvaluesforindividualfish. t H ^ Mean SD Figure2. Mugilcephalm. Distributionoffottyacidsinstripedmullet SeecaptionforFigure1. 1 52 LytleandLytle inabsoluteconcentrationsofpg/gofwettissue. Absolute encesamonganyofthetenindividualfish.Exceptfor22: concentrationsareusefulwhenassessingmuscletissuefor in spot, each monounsanirate in both spot and striped nutritive value, particularly for omega-3 (n-3) content, mulletshowedhighdiversityamongindividualfish(four since there is an increased interest in possible health tosixsimilaritygroups). Among thePUFA,therewere benefits (Lands, 1986), while weight percentconcentra- moreANOVAsimilaritygroupsforEPAinbothspotand tionsareuseful inassessingbiochemical significanceof stripedmulletthanforDHA,indicatingagreaterdiversity fattyaciddistributions. ofEPA thanDHA inmuscle tissue. In striped mullet, Tables 1and2containfattyaciddatacomputedona ANOVA treatment of arachidonic (20:4n'6), iinolenic wt%basisforfattyacidsinmuscletissuefromspotand (18:3n-3) and octadecanoic acid (18:0) each produced stripedmullet,respectively.Alsoincludedaresununations seven similarity groups, the most diverse fatly acids in and ratios that are helpful in characteriz'mg fatty acid eitherfish. profiles in finfish. Superscripts signify the statistically similargroup(s) thateachindividual fishfallswithinfor FattyAcidClasses ANOVAtreatmentofeachfattyacidorfattyacidparam- eptreor.ducAetdtbhyeAeNndOVofAeeaxcahmirnoawtiiosntohfetnhuatmbfaetrlyoafcigd.roups prevaFliegnucreeso1famnondou2nsiandtiucraatteest,hatwibtohthspfoitshehsavsihnogwe4d6%a Individualsofbothspeciesvariedinfatcontent.Striped monoonsaturated,23%PUFAand31%saturated,ascom- mulletranged from 1.82-6.38%,whilespotranged from paredto40%,31%,and29%,respectively,forthesefatty 4.75-8.10%. acidclassesinstripedmullet. Thesaturatesforbothfishes werelessdiversethan foreitherthemonounsaturatesor FattyAcidDistributioninSpotandStripedMullet PUFA, Likewise,theaveragevalueofANOVAsimilarity groupsforindividualsaturatedfattyacidswaslessthanthat Fattyacidprofiles(Figures1and2)weresimilarfrom foundforeitheroftheotherfattyacidclassesinbothspot bodi species, particularly in content of saturated fatty andstripedmullet. acids. Hexadecanoicacid(16:0)wasdominant,followed Fattyacidsoccurring inconcentrationsabove 1%of in decreasing order by octadccanoic acid (18:0) and total fatty acids showed a higher degree of individual tetradecanoicacid(14:0). Theremainingsaturatedacids variabilitythanfattyacidsoccurringinlessthan1%forboth constimtedlessthanonepercentofthetotalfattyacids. spotandstripedmullet. Theaveragenumberofsimilarity Thepredominantmonounsaiuraiedacidinbothfishwas groupsforallfattyacidswhoseconcentrationsareabove 16:1. Relativeto16:1,thecontentsof18;1and20:1acids 1%was3.8forspotand5.0forstripedmullet,with2.5and werehigher in spot than in stripedmullet, whetherex- 4.3groupsforfattyacidscomprisinglessthan 1%. pressedinwt%orpg/g. ThetwoprincipalPUFAinboth fishes were eicosapentaenoic acid (EPA, 20:5n-3) and FattyAcidParameters docosahexaenoicacid(DHA,22:6n-3). Thesen-3PUFA constituteahigherpercentageofthetotalfatty acidsof Total n-3/n-6 ratio showed little variation among stripedmullet(23J%)thanthespot(13.5%),althoughin individual spot with ANOVA, separating into only two absoluteconcentration,thesePUFAareenrichedinspot statisticallysimilargroups.ExcludingindividualspotNo. (4,530 pg/g) relative to striped mullet (3,120 pg/g). A 1,no di-stinclionoccurredamongindividuals (Table 1). narrowrange(2.25to2.86%)aswellaslowconcentration Conversely,theseparatesumsofn-3andn-6fattyacidsin of arachidonic acid (AA, 20;4n-6) was found in spot, spotwereseparatedintofiveandthreesimilaritygroups, whereasawiderrangeandhigherconcentrations(1.70- respectively. The n-3/n-6ratio also varied less among 7.00%)werefoundinstripedmullet. individualstripedmullet(fourgroups)thantheseparate totaln-3andtotaln-6fatlyacidparameters(fiveandseven StatisticalComparisonsofComponentFattyAcids groups,respectively). ANOVAtreatmentappliedtototal PUFA in both spot and striped mullet produced five Octadccanoicacid, 18:0,wasthesecondmostdomi- similaritygroups. Inspot,theunsaturated/saturatedand nantsaturatedfattyacidinbothspotandstripedmullet. In (EPA+DHA)/n-3 parameters produced two and four spot,nosignificantdifferenceinvalueswasfoundamong ANOVAgroups,butinstripedmullet,itwasfourandsix anyoftheindividualfish (i.e.only onesimilarity group groups. ANOVA treatment separated the calculated showninTable 1). Ontheotherhand,therewereseven parametersofstripedmulletintoalargernumberofgroups statistically similar groups for 18:0 in striped mullet than those ofspot, demonstrating the higherdegree of (Table2). Minorsaturatedcomponents,20:0 and22:0in individual diversity for component fatty acids in the stripedmullet(22:0inspot),showednosignificantdiffer- stripedmullet. 1 FattyAodVariationsinTwoEstuarineFishes 53 are to <0 (D cgcicoiO'^-^cMCM^comoj'^cgcoiooi-^ fish. and ^ ^ ^ ^ ^ ^ . 5-s ^ ^ ^ a •. S~J* 4> Ti individual (p<0.05) CO. ^ ^ ^ ^ ^ ^ CT •£» ZZ- ZZ- ^ ^ 2. oi (d eg 10 of different I K 8 8 S 5 8 f 5 f I f V % t I % g- g- % I g- f g- ? § 2z3.2S!-^i::.:z.^2222ti22i:i.iS.ei.£i2S.£i2Sl£i‘=> each 5 3 3 oi eg 'xi o o o o o from statistically ^ 5 ’o 5 A 2 iz- ^ 2 i 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 tissue °§2gsZZg- 2iess25£^ss2sfi*js"^as^«^ not add. muscle are fatty homogenizedletter feaocrh 2»scd 2$Scd 25in 2;5s 2- 2 2 2 2, 2 2 2- 2 2 2- 2 2 2x®mrce2oMon^Q2oS<i'2dog.s-2H^c®g2O’c>2-o®’^c2-iv'o2i-^ supercript _ ^ ^ of computed S^I SSi ^ Q2. 2.2g_222^^^2- 2S.22225..g2,2. 2Su2>2S232S^252!252s same 1*^ $5^ #r^ §a§SiiigiSiS^§2?553Sf85SS 1 analysesthe groups ^ ^ ^ ^ TABLE replicatesharing 3. Uo 1-. :8C2M sin 2 28^ 2t“s 2I 2Sevi 2MI’ i i^id *^Rd «CO C«M. §lCoM ig«> •e'g: 2r®C«2npc2-oM2^;e2jg-g2M^^2wSg2'c^M^ similarity rows fthorere In of ^ a> 28» -^^- -f*ep:- s: .3CM. .8<o. w:^. w_.—. .wca CfMe cd s•— 8<d aid ‘2S-. 2 ^2 ^3Z. h2 ^£i 2 2 2 Entries numbers g 8 g S? p £! a S U> CM CO 5 8 5 5 means Entarriees deviations. rtefeor 28S8|2^iS2ig^2§S2SSs25s2S§S^2.B.22,g8. 52s-.Ss^CSis2lr'2~f2'§'2''2f"i2'cfm'32£CS"8M 8a2S"u> ''22^CMg"3^i^o^ss3cCJiiM. 3V«'g3c^SJ g38c-Md- ^§ numbers 1 ^ standard ispnot group gS} (m^O S$CoO i^on9 s(& a i ltOA Og J5OdJ, SjyS^- ^#\t G.CrMA-SCiOl-^S•^5'1-^.C^MSi^SnlCtMS^<.oS!-«CznM-'it^_^-^M=^o relative acids % groups; il^ iiitil5 iio l3 io l'3 l.S l^ il• lm l^l2 f3 l^l3 la ll« l-3 o Fatty are ? 2 i i I i II I ? 1 § I ? s i ^ H I 5 2 2 § 3 similarity xanthurus. parentheses as to in Leiostomus Values referred o o o 2 S ^ 22 j2 53 ^ 22 52 : 54 LytleANDLytle >-(Ou>-^(Otor^coc3r>^u>cij(o-.«-cou>c3r^ are fish. and individual (p<0.05) PeyI. TZ- SjOO.. S«0O^. ww C<>2 !* ^ 2 {5 w S^siassals a2 Ssa 10 of Its I'l5-^ iiHtIv-i, IIIIIIIIIIfsIlil dilTerent each 551 from ^ statistically S V* 5S... ^ tissue not !PS. *C> S. n. jg. S<oo ricC:iOSL isoSj r^. <o^ «1^^o.. .0^<>j. uO^j. cSt, r~ CsD )n .g. muscle acid. are letter fatty 5ifg. ai ?fc:,fi g£<x.> 5S. •i.7io> 'Si3' o^5r ^szsi, s^ s^ssrz.ssaSo.s.<>.scjs^sjriso homogenized each ^^ eg ^CO s5 S 8 s § § s ’-’-^^CO'-WOJOOI-^CtlioS for supercript oanalfyses same computed SSS-. fSa§T S88t ^?2 §3^O ¥^^3. ,8R®w. i2o ^^8 %2CcOj a§5a1S.1*” a oooo-^o'd-o 2 the TABLE replicatesharing groups a a rf. a 8cd. pSi. 8 S5&'^ aS® SSo'. ^aCO s^^ tips" ^Q5S.5^2go.^^8a8.Sg3*S^.s5V^s«2S|«-P«§sop.'a»y^S.5,i^Q.SJ^CO.55^o ®OJ 5" tt> 2*o ^ g § s b i ^’-’’-''rJSSWojooeocdS- similarity three rows ^ for in of 8 8 8 8 .$CO. .8CO. 8VO Soi' 12c.Q- i2u>, p8>. a82^:::::,2.g.88.cU.8.^.3co8-O- cd2888c>iujoSs means Entries numbers are 288^8®^^ ^siSSsaiVl to Entries deviations. refer V3^2S5S 3R CSO C?D S S 3 S S i O®S-^-!af5w&®Sl^i.5asai3Sa muUet standard numbers ^ 8 ^ 8 O SS' %CQ zi. -S. ^ a a ^ Sa8-'aSSO-<*a25D-^.3hS->a1^Ueoa^>''«sS8-^^i8SC-M*a^?..^^3-"^c3p0ro' a 8 8 § ^ § 2co<OMM>^-«i4-r«~n'-<-«coM-«ctqZ.— group striped aocifds %relaatrivee groups; .Sto. 2to SC5M| Ias Vai%ia§ga-g%agz5rS. 8rt\3e2jiw. s.S’^-:S.5^-3.Stq, .5^.8Kp. .SCcevDgj.?jCcNMd^. .8aS«>p.SjCt[Oow. p33 Fatty similarity parentheses as cephalus. to in ^ £ s i MugUValues referred PpppO'^'>--.--.-OJCO ^ T*; V! T*: «o to ^ CO a C "T V V o: FattyAcidVariationsinTwoEstuarineFishes 55 Discussion Saturatedfattyacids,bothindividuallyandasaclass, areconservative, i.e. are relatively constantandin this Thepolyunsaturatedfatlyacidsinallfishlipids(both casedemonstratelittlefluctuationinlevelanddistribution n-3andn-6)arcderivedsolelyfromthediet,butultimately amongindividualsofeitherspotorstripedmullet Onthe areofplantorigin. Ingeneral,plantssynthesizealloftheir otherhand,themonounsaturales,bothindividuallyandas fauy acids, and phytoplankton is the basic food in the aclass,exhibitedawidervariationamongtheindividual aquatic field, 'lliose species tlutt feeddirectly on plant fishforbothspecies. Individualstripedmulletshoweda material(phytoplanktonandalgae)reflectthoseplantfatty considerable range in 16:1 concentrations; again, this acids,whilehigherordercarnivoresaccumulaten-3andn- couldbearesultofthebroadspectrumofplantanddetrital 6 PUFA contained in their prey whichhaveprogressed materialinthedietThenarrowerrangeofconcentrations through the food chain from the original plant source of16:1 amongindividualspotmayreflecttheconsistent (Sargent.1976;SargeniandWhittle.1981).Redandbrown invertebratediet. macroalgaefoundinboththenorthernandsouthernhemi- Arachidonicacid,themajorn-6PUFAfoundinboth spheresarerichinarachidonicacidandEPA(Jamiesonand spotandmullet,wasoneofthemostvariableconstituents Reid. 1972). Dunstaneiat.(1988)reportedhighconcen- in mullet, producing seven statistically similar groups trationsofbothEPAandarachidonicacidinfinfisheswho withfourgroupsinspot. Thatvariationprovidesstrong feedonmacroalgaeintemperateAustralianwaterswhich evidencethatthisn-6PUFAisanon-conservativecompo- isconsistentwithfindingsofEvansetaL(1986);highlevels nent inboth species. Highproportions as well as high ofboth fatty acids were also observed with the striped variabilityofarachidonicacidarecharacteristicoftropi- mulleiinthisstudy.Gibsonetal.il984)reportedfattyacids cal Australian marinefish and shellfish (Gibson, 1983; in24Australianfinfishes.ofwhichonlythemembersofthe Sincl^, 1983). However, significantlevelshavebeen mulletfamily(Mugilidae).whiting,turbotandleatheijacket reportedinsomenorthernhemispherefish(KinsellaetaL, hadhigherEPAconcentrationsdianDHA. Adietcontain- 1977;GunstoneetaL,1978;GibsonetaL,1984;Goochet ingmacroalgaemayhelpexplaintheelevatedlevelsofboth aL, 1987). arachidonicacidandEPAinthestripedmullet. Insummary, theresultsofthisstudy,basedupona Thepronouncedvariabilityinthefattyacidlevelsin small but selective group of fish, indicate that each individualstripedmulletismostlikelyduetoinclusionof constituentfattyacidaswellasfattyacidclassvariesin detrital material in thediet, rather than the macroalgae. individualswithinaspeciesofmarinefish,evenwhenall Organicdetrinisinestuarinewatersandsedimentsiscom- environmentalandphysiologicaleffectsareminimized. posedprimarilyofsmallamorphousaggregateswhichmay Theextentofindivido^fishvariationdiffersbetweenthe originatefromseveralsources,includingbenthicmicroalgae, twospeciesthatwerestudied,withstripedmulletshowing phytoplankton,microbesandaggregatesofdissolvedor- much greater variability in fatty acid composition and ganiccarbonexcretedorleachedfromplantsandanimals lipidcontentthandidindividualspot. Dietismostlikely as well as salt marsh plants (Boesch and Tamer, 1984). theprimarycauseofvariations inindividual fish,and a Organiccarboninestuarine sedimentsisextremelyvari- morediversedietprobablyaccountsfortheaccentuation able(LytleandLytle,1985)andwouldaccountforthemore inindividualvariabilityinstripedmullet. Itispossible highly variabledietofstripedmulletwhichisderivedin thatsamplescollectedfromotherlocalesorduringanother largemeasurefromsedimentaryorganicmatter. seasonwouldhaveshownentirelydifferenttrends. This Spotfeedalmostexclusivelyoninvertebrates,prima- canonlybeestablishedfrommoredefinitiveinvestigations rily marinepolychaetesand smallbivalves. Becauseof (m thecompositionoffishdietsunder avariety offish theirselectivefeedingh^its.theirdietismoreconsistent collectionconditions. thanthedietofstripedmullet,particularlythosefeedingin thesameareas. N^'mepolychaeteworms,adietaryitem ofspotbutnotmullet,containhighconcentrationsofn-3 PUFA with EPA (20:5n-3) concentrations much higher Acknowledgments DHA than (22:6n-3)(LytleandLytle. 1990a). Similarly. EPAconcentrationswerehigherthanDHAconcentrations Theauthors thankConstanciaRamos for technical inthe individual spot Over90% of40 speciesofGulf assistanceandRobinOverstreet formanuscriptreview. finfishes analyzed in our laboratory (Lytle and Lytle. The work was supported by NOAA National Marine 1990b)containedhigherconcentrationsofDHAthanEPA FisheriesServiceGrantNo.NA88AA-H-SK018andthe Spotwasoneoftheexceptions. StateofMississippi. , . 56 LytleandLytle LiteratureCited Addison,R.F.,R.G.AckmanandJ.Hingley. 1973. Seasonaland Jamieson,G.R.andE.H.Reid. 1972.Thecomponentfattyacids local variations in odd-chain fatty acid levels in Nova ofsomemarinealgallipids. Phytochemistry 8:1423-1432. Scotianrainbow smelt {Osmerusmordax). J. Fish. Res. Kinsella,J.E.,J.L.Shimp,J.MaiandJ.Weihrauch. 1977. Fatty BoardCan.30:113-115, acidcontentandcompositionoffreshwaterfinfish.Am.Oil Bishop,J.M.andJ,V.Miglaresc. 1978. Carnivorousfeedingin Chem.Soc.1.54:424^29. adultstripedmullet. Copeia4:705-707. Lands,W.E.M. 1986. Fishandhumanhealth. AcademicPress, Bocsch, D-F. and R.E, Turner. 1984. Dependenceoffishery NewYork,NY. 170pp. speciesonsaltmarshes:theroleoffoodandrefuge. Estu- Lytle,T.F.andJ.S.Lytle. 1985. PolluianiTransportinMissis- aries! sippiSound. Mississippi-AlabamaSeaGrantConsortium, Chestnut,D.E. 1983. Foodhabitsofjuvenilespots,Leiostomus SeaGrantPubl.No.MASGP-82-038. 124pp. xanihurus(Lacepede),inNorthInletestuary,Georgetown, Lytle,J.S.,andT.F.Lytle. 1990a, Polyunsaturatedfatty acid SouthCarolina,MastersThesis,UniversityofSouthCaro- profilesasacomparativetoolinassessingmaturationdiets lina,Columbia,S.C. 68pp. ofPenaeusvannamei. Aquaculture89:287-299. Darneblrla,teRs.Mo.fL1a9k5e8.PonFcohoardtrhaaibnit,sLoofuifsiisahneas,aanndelsatrugaerriinnevcerotme-- Se,r1v9i9ce0,b.GrSaenctonNd0ANnnAu8a8lARAe-poHr-tS,KNaOtIi8on.a1l1Mpapr.ineFisheries munity. Pabl.Inst.Mar.Sci.Univ.Tex.5:353-416. Metcalfe, L.D., A.A. Schmitz and J.R. Pelka. 1966. Rapid Dawson,C.E. 1958. Astudyofthebiologyandlifehistoryofthe panraelpyasriast.ioAnnaolf.fCahtteym.ac3i8d:5e1st4e-r5s15f.or gas chromatographic spot,LeiostomusxanihurusLacepede,withspecialrefeience toSouthCatolina.Conir.BearsBli^Laboratories28:1-48. Moore,R.H. 1974. Generalecology,distributionandrelative Dunstan,G.A.,A.J.Sinclair,K.O’Deaai>dJM.Naughton.1988. aSbouutnhdaTncxcae.socfoaMsutg.iCloncierp.hMalaurs.Sacnid.UMnuigvi.lTecxu.r1e8m:a24o1-n25t5h.e TTie lipid content and fatty add composition ofvarious Nelson, GJ. 1966. Isolation andpurificationoflipids from marine species from southern Australian coastal waters. animaltissues.In:Perkins,E.G,(td.)AnalysisofLipidsand Comp.Biochem.Physiol.9lB:165-169, Lipoproteins^pp. 1-22. American OilChemists’ Society, Evans,A.J.,A.C.FogertyandK.J.Sainsbuiy. 1986. Thefatty Champaign,IL, acid composition of fish from the North West Shelf of Odum.W.E. 1966.Foodandfeedingofthestripedmullet,Mugil Australia. CSIROFd.Res.QA6AM5. cephalus, in relation to the environment, M.S. Thesis, Gallagher,M,L.»E.KaneandR.Bcringcr. 1984. Effectofsize UniversityofMiami,Miami,FL. 118pp. on composition ofthe American cel, Anguilla rostrata. 1970. Utilizationofthedirectgrazingandplantdetritus Comp.Biochem.Phys.78A:533-536. foodchainsbythestripedmulletMagi/cephalus.In:Steel, Gallagher,M.L.S.H.McLeodandR.Rulifson. 1989. Seasonal J.H.(ed.)MarineFoodChains,pp.222-240. Universityof variationsinfattyacidsofstripedbassMoronesaxatilis.J. CaliforniaPress,Berkeley. WorldAqua.Soc.2(I3%-A5, Sargent,J.R. 1976. Thestructure,metabolismandfunction of Gibson.R.A. 1983, Australianfish-anexcellentsourceofboth lipidsinmaiineoiganisms.In:Matins.D.C.,andJ.R.Sargent arachidonicacidand-3polyunsaturatedfattyacids. Lipids (eds.)Biochemicalandbiophysicalperspectivesinmarine 18:743-752. biology.Vol.3.,pp.149-'212.AcademicPress,SanDiego. Gibson,R.A.,R.KneeboneandG.M.Kneebone.1984.Compara- Sargent,J.R.andKJ.Whittle. 1981. Lipidsandhydrocarbonsin tivelevelsofarachidonicaddandeicosapentaenoicacidin themarinefoodweb.In: Longhuist,A.R.(ed.)Analysisof Malaysianfish. Comp.Biochem.Physiol. 78C:325-328. marineecosystems pp.491-533. AcademicPress,London. Gooch,J.A.,M.B.Hale,T.BrownJr.,J.C.Bonnet,C.G.Brand Sheridan,P.F.,D.LTrimmandB.M.Bakcr.1984.Reproduction andL.W.Regier. 1987.Proximateandfattyacidcomposi- andfoodhabitsofsevenspeciesofnorthernGulfofMexico tionof40southeasternfinfishspecies. NOAATechnical fishes. Conir.Mar.Sci.Univ.Tex.27:175-204. ReportNMFS54, 23pp. Sinclair,A.J. 1983. Elevatedlevelsofarachidonicacidinfish Gunstone,F.D.,R.C.WijesunderaandC.M.Scrimgeour. 1978. fromnorthernAustraliancoastalwaters.Lipids18:877-881 Thecomponentaddsoflipidsfrommarineandfreshwater Stansby,M. 1981. Reliabilityoffattyacidvaluespurportingto specieswithspecialreferencetofuran-contoiningacids.J. representcompositionofoilfromdifferentspeciesoffish. Sci.Fd.Agric.29:539-550. J.Am.OilChem.Soc.58:13-16. Gunter,G. 1945.StudiesonmarinefishesofTexas.Conir,Mar. StatisticalGraphicsCorporation,Analysisofvariance. 1988.In: Sci.Univ.Tex.1:1-190. StatigraphicsUser’sGuide,Rockville,MD. pp.141-147. Hayashi,K.andT.Takagi. 1977. Seasonalvariationsinlipids Thompson,J.M. 1966. Thegreymullets. Oceanogr.andMar. andfattyaddsofsardine{Sardinopsmelano^icta). Bull. Biol.Ann.Rev.4:301-335. Fac.Fish,HokkaidoUniv.28:83-94. Ucda.T. 1976.Changesinthefattyacidcompositionofmackerel , 1978. Seasonalvariationsin lipidsand fattyacidsof lipidandprobablyrelatedfactors.1.Influenceoftheseason, Japaneseanchovy. Engraulisjaponica29:38-47. body length andlipidcontent. Bull.Jpn. Soc.Sci.Fish. Hildebrand,S.F.andL.E. Schroeder. 1928, FishesofChesa- 42:479-492. peakeBay. Bull.US.Bur.Fish.43:1-366. Whyte, J.N.C- and J.A. Boutillier. 1991. Concentrations of Hodson, R.G.,J.O.Hackman andC.R.Bennett. 1981. Food inorganic elements and fattyacidsin geographicpopula- habitsofyoungspotsinnurseryareasoftheCapeFearRiver tionsofthespotprawnPandalusplatyceros. Can.J.Fish. estuary,NorthCarolina.Trans.Am.Fish.Soc.110:495-501. Aquat.Sci.4%:3%2-390.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.