ebook img

Fatigue fracture and microstructural analysis of Friction Stir Welded butt joints of aerospace PDF

163 Pages·2017·5.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fatigue fracture and microstructural analysis of Friction Stir Welded butt joints of aerospace

LLoouuiissiiaannaa SSttaattee UUnniivveerrssiittyy LLSSUU DDiiggiittaall CCoommmmoonnss LSU Master's Theses Graduate School 2009 FFaattiigguuee ffrraaccttuurree aanndd mmiiccrroossttrruuccttuurraall aannaallyyssiiss ooff FFrriiccttiioonn SSttiirr WWeellddeedd bbuutttt jjooiinnttss ooff aaeerroossppaaccee aalluummiinnuumm aallllooyyss Vinay Raghuram Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Mechanical Engineering Commons RReeccoommmmeennddeedd CCiittaattiioonn Raghuram, Vinay, "Fatigue fracture and microstructural analysis of Friction Stir Welded butt joints of aerospace aluminum alloys" (2009). LSU Master's Theses. 1827. https://digitalcommons.lsu.edu/gradschool_theses/1827 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. FATIGUE FRACTURE AND MICROSTRUCTURAL ANALYSIS OF FRICTION STIR WELDED BUTT JOINTS OF AEROSPACE ALUMINUM ALLOYS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in The Department of Mechanical Engineering by Vinay Raghuram B.S., R.V. College of Engineering, Visweswaraiah Technological University, 2003 December 2009 ACKNOWLEDGEMENTS I would like to express my deepest , and most sincere gratitude to my supervisor Dr. M. A. Wahab, Associate Professor, Department of Mechanical Engineering, LSU for his continuous guidance, encouragement, , and sharing valuable time throughout the work. It is my pleasure to acknowledge his untiring help by supplying supporting valuable references, information, and financial support, without which this work could not have been completed. I would like to thank Dr. Guoquiang Li, and Dr. Shengmin Guo for being my thesis committee members, and for their valuable comments and suggestions, which has certainly improved the quality of this work. I would like to extend special thanks to Laspace for sponsoring the research, Lockheed Martin for providing the Al-2195 T8, Al-2219-T8 material , and NASA/NCAM-New Orleans authorities for providing the facilities for the FSW. My special thanks to ME staff Mr. Charlie Smith and Mr. Mark Brennen for their help with the Universal Testing Machine (MTS) in all my experimental tests. I also wish to thank my colleagues and staff of the Department of Mechanical Engineering for their sincere co-operation during this research work. I am grateful to my parents Mr. Raghuram Rao and Mrs. Sheela Raghuram for being there, always for me, and for their continued encouragement. I would like to thank my beloved wife, Bharathi for being a great support throughout. I am thankful to all my friends; Harsha Chatra, Shrinidhi Shetty, Prasad Kalghatgi, Sunada Chakravarthy, Ajay Kardak, Ashok Badigannavar, and many more; here in Baton Rouge for their help in keeping my high spirits , and making my stay so enjoyable. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS........................................................................................................ ii NOMENCLATURE .................................................................................................................. vi ABSTRACT ............................................................................................................................. ix 1 INTRODUCTION ...............................................................................................................1 1.1 Introduction to Fatigue Crack Growth ...........................................................................1 1.2 Fatigue Crack Growth Behavior of Engineering Metals.................................................2 1.3 Damage Tolerant Design ...............................................................................................3 1.4 Motivation and Objectives ............................................................................................5 2 LITERATURE REVIEW ....................................................................................................7 2.1 Welding Al-Li Alloys ...................................................................................................7 2.2 Problems with Welding Aluminum Alloys ....................................................................7 2.3 Friction-Stir-Welding (FSW) ...................................................................................... 11 2.4 Microstructural Features ............................................................................................. 15 2.5 Theory and Mechanisms of Fatigue Failure ................................................................. 17 2.6 Intrinsic and Extrinsic Mechanisms ............................................................................. 18 2.7 Environment and Corrosion Fatigue ............................................................................ 20 2.8 Variables Affecting Corrosion Fatigue ........................................................................ 23 2.8.1 Effect of Fatigue Frequency ................................................................................. 23 2.8.2 Effect of Environment .......................................................................................... 23 2.8.3 Effect of Waveform ............................................................................................. 25 2.8.4 Effect of Temperature .......................................................................................... 26 2.8.5 Metallurgical Variables ........................................................................................ 26 2.9 Effect of Corrosion-Prevention-Compounds (CPC) on Fatigue Crack Growth ............. 27 2.10 Materials for Aerospace Structures .......................................................................... 28 2.10.1 Aluminum Alloy 2219 ......................................................................................... 28 2.10.2 Aluminum-Lithium Alloy (Al-2195) .................................................................... 29 2.11 Crack-Growth-Rates ................................................................................................ 31 2.12 Crack Closure Mechanisms ..................................................................................... 32 2.13 Plate-Orientation Effects.......................................................................................... 34 2.14 Fatigue Crack Growth Under Overload and Variable Amplitude Conditions ............ 34 2.15 Crack Growth Retardation Due to Overloads (OL) .................................................. 37 2.16 Numerical Analysis ................................................................................................. 44 2.17 Finite Element Simulation of Fatigue Crack Growth ................................................ 46 2.18 Weld Residual Stress (WRS) and Its Effect on Fatigue Life ..................................... 51 2.19 Weld Defects and Weld Metallurgy ......................................................................... 53 2.20 Conclusions from Literature Review........................................................................ 53 3 EXPERIMENTAL program .............................................................................................. 55 3.1 Introduction ................................................................................................................ 55 iii 3.2 Test Specimen ............................................................................................................. 55 3.3 Recommended Specimen Configuration & Size .......................................................... 57 3.4 Materials and Welding Procedure ................................................................................ 58 3.5 Self-Reacting FSW (SRFSW) ..................................................................................... 59 3.6 Experimental Setup ..................................................................................................... 61 3.7 Effect of Periodic Overloads on Fatigue Life ............................................................... 62 3.8 Corrosion Fatigue Crack Growth Test Method ............................................................ 64 3.9 Fracture Mechanics Approach to Analyzing Fatigue Data ........................................... 65 3.10 Corrosion Chamber ................................................................................................. 66 3.11 Corrosive Environment ............................................................................................ 66 3.12 Analysis of Fracture Surface .................................................................................... 68 3.13 Characteristics of LPS-3 Heavy-Duty Inhibitor (CPC) ............................................. 69 4 EXPERIMENTAL RESULTS AND DISCUSSIONS ........................................................ 71 4.1 Fatigue Test Objectives ............................................................................................... 71 4.2 Fatigue Life Results and Analysis ............................................................................... 72 4.3 Effect of Overloads on Fatigue Life ............................................................................ 75 4.4 Fatigue Crack Growth Characteristics ......................................................................... 81 4.5 Micrographs and Analysis ........................................................................................... 83 4.6 Conclusions ................................................................................................................ 98 5 Numerical Analysis ......................................................................................................... 100 5.1 Introduction .............................................................................................................. 100 5.2 Finite Element Programming..................................................................................... 102 5.2.1 Element Type ..................................................................................................... 102 5.2.2 Equation Solver ................................................................................................. 102 5.2.3 Symmetrical Analysis ........................................................................................ 103 5.2.4 Material Properties ............................................................................................. 103 5.2.5 Meshing ............................................................................................................. 103 5.2.6 Crack-tip Propagation ........................................................................................ 105 5.2.7 Load Step Increment .......................................................................................... 105 5.3 Traditional FEA Results ............................................................................................ 107 5.4 Overload Analysis ..................................................................................................... 110 5.5 Interface Element Technique ..................................................................................... 112 5.6 Traditional and New Approach ................................................................................. 116 5.7 Theoretical Formulation for The Interface Element Method ...................................... 117 5.8 Finite Element Method for Interface Element Technique ........................................... 121 5.9 Modeling Crack-tip Singularity in FEA ..................................................................... 123 5.10 Extraction of Stress Intensity Factor SIF ................................................................ 128 5.11 Overall Methodology Followed for Fatigue Life Calculation ................................. 129 5.12 Results and Discussions ......................................................................................... 133 5.13 Convergence.......................................................................................................... 138 5.14 Validation .............................................................................................................. 139 5.15 Conclusions ........................................................................................................... 139 6 Conclusions and Recommendations ................................................................................. 141 iv 6.1 Conclusions .............................................................................................................. 141 6.2 Recommendations for Future Work ........................................................................... 143 REFERENCES ......................................................................................................................... 145 VITA….. .......... ........................................................................................................................ 153 v NOMENCLATURE Symbol Definition a Half crack length for a central crack, constant a Final crack length f a Initial crack length o B Breadth, width of plate c A constant C Material dependent constant C Specific heat p da /dN Crack growth rate (crack length per cycle) E Modulus of elasticity f Load vector, restraining force h Tangent modulus t DXZ Dynamically Stirred action zone. HAZ Heat-affected zone. TMAZ Thermo-mechanical affected zone. K Stress intensity factor (MPa√m) (SIF) K Fracture toughness c K Critical stress intensity factor crit K Maximum stress intensity factor max K Minimum stress intensity factor min K Crack opening stress intensity factor open vi K Spring stiffness s K Theoretical stress concentration factor th ΔK Range of stress intensity factor ΔK Range of threshold stress intensity factor th L Length, latent heat of fusion m Material dependent constant m (x, a) Weight function N Number of cycles n Shape parameter N Shape function i N Fatigue crack propagation life p r Distance from crack-tip r Overload radius ol R Stress ratio r Scale parameter o r Plastic zone radius p S Nominal stress S Yield stress (same as ζ) ys y t Thickness of plate ΔS Range of stress Π Total energy vii α Weld toe angle δ Crack opening displacement ε Strain φ Lennard-Jones surface potential γ Surface energy per unit area η Natural (local) coordinate, efficiency of welding κ A coefficient, constant μ Shear modulus ν Poisson‟s ratio θ Angle in radian π Density ζ Nominal stress (local) ζ Critical bonding strength cr ζ Yield stress (same as S ) y ys ζ Crack opening stress οpen ξ Natural (local) coordinate viii ABSTRACT Friction-Stir-Welding (FSW) has been adopted as a major process for welding Aluminum aerospace structures. Al-2195, which is one of the new-generation Aluminum alloys that has been used on the external tank of the new super lightweight external tank of the space shuttle. The Lockheed Martin Space Systems (LMSS), Michoud Operations in New Orleans is continuously pursuing Friction-Stir-Welding technologies in its efforts to advance fabrication of the external tanks of the space shuttle. The future launch vehicles which will have to be reusable, m, an dates the structure to have good fatigue properties, which prompts an investigation into the fatigue behavior of the friction-stir-welded aerospace structures. The butt joint specimens of Al- 2195 and Al-2219 are fatigue tested according to ASTM-E647. The effects of: (i) Stress ratios, (ii) Corrosion Preventive Compound (CPC), and (iii) Periodic Overloading on fatigue life are investigated. Scanning electron microscopy (SEM) is used to examine the failure surface, and examine the different modes of crack propagation i.e. tensile, shear, and brittle modes. It is found that fatigue life increases with increase in stress ratio; the fatigue life increases from 30-38% with the use of CPC, the fatigue life increases 8-12 times with periodic overloading, , and crack closure phenomenon predominates the fatigue facture. Numerical Analysis in FEA has been used to model a fatigue life prediction scheme for these structures, the interface element technique with critical bonding strength criterion for formation of new surface has been used to model crack propagation. The Linear Elastic Fracture Mechanics (LEFM) stress intensity factor is calculated using FEA, and the fatigue life predictions made using this method are within acceptable 10-20% of the experimental fatigue life obtained. This method overcomes the limitation of the traditional node release scheme, and closely matches the physics of crack propagation. ix

Description:
B.S., R.V. College of Engineering, Visweswaraiah Technological University, 2003. December 2009 .. Weld Defects and Weld Metallurgy .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.