FATIGUE AND FRACTURE Understanding the Basics edited by F.c. campbell asM international® Materials Park, Ohio 44073-0002 www.asminternational.org Copyright © 2012 by ASM International® All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner. First printing, November 2012 Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended. Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement. Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International. Prepared under the direction of the ASM International Technical Book Committee (2011– 2012), Bradley J. Diak, Chair. ASM International staff who worked on this project include Scott Henry, Senior Manager, Content Development and Publishing; Karen Marken, Senior Managing Editor; Steve Lampman, Content Developer; Sue Sellers, Editorial Assistant; Bonnie Sanders, Manager of Production; Madrid Tramble, Senior Production Coordinator; and Diane Whitelaw, Production Coordinator. Library of Congress Control Number: 2012940642 ISBN-13: 978-1-61503-976-0 ISBN-10: 1-61503-976-7 SAN: 204-7586 ASM International® Materials Park, OH 44073-0002 www.asminternational.org Printed in the United States of America Fatigue and Fracture—Understanding the Basics Copyright © 2012 ASM International® F.C. Campbell, editor All rights reserved www.asminternational.org contents Preface � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ix ChaPter 1 Introduction to Fatigue and Fracture� � � � � � � � � � � � � � � � � � � � � � � 1 Industrial Significance of Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 The Brittle Fracture Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Changes in Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Life-Limiting Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ChaPter 2 Mechanical Behavior � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 25 Tensile Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Resilience and Toughness ................................. 33 True Stress-Strain Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Stress Concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Notched Tensile Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Shear and Torsion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Stress-Strain Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Combined Stresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Yield Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Residual Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Hardness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ChaPter 3 Ductile and Brittle Fracture � � � � � � � � � � � � � � � � � � � � � � � � � � � � 55 Ductile Fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Brittle Fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Macroscopic Ductile and Brittle Fracture Surfaces. . . . . . . . . . . . . . 86 iv / Contents Ductile-to-Brittle Transition in Steels . . . . . . . . . . . . . . . . . . . . . . . . 90 Intergranular Failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Causes of Steel Embrittlement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Combined Fracture Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 ChaPter 4 Fracture Mechanics� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 101 Griffith’s Theory of Brittle Fracture. . . . . . . . . . . . . . . . . . . . . . . . . 101 Linear Elastic Fracture Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . 104 Elastic-Plastic Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . .113 Charpy and Izod Impact Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Drop-Weight Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Fracture Toughness Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Variables Affecting Fracture Toughness . . . . . . . . . . . . . . . . . . . . . 140 ChaPter 5 Fatigue of Metals� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 147 Stress Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 High-Cycle Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Low-Cycle Fatigue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Fatigue-Life Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Cumulative Damage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Fatigue Crack Nucleation and Growth . . . . . . . . . . . . . . . . . . . . . . 170 Fracture Mechanics Approach to Fatigue Crack Propagation. . . . . 181 Crack Closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 The Short Crack Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Geometrical Stress Concentrations . . . . . . . . . . . . . . . . . . . . . . . . . 192 Manufacturing Stress Concentrations . . . . . . . . . . . . . . . . . . . . . . . 194 Fatigue-Life Improvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Fatigue Design Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 ChaPter 6 Fatigue and Fracture of engineering alloys � � � � � � � � � � � � � � � � 209 Fracture Toughness of Steels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Fatigue of Steels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Fracture Toughness of Aluminum Alloys . . . . . . . . . . . . . . . . . . . . 228 Fatigue of Aluminum Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Fracture Toughness of Titanium Alloys. . . . . . . . . . . . . . . . . . . . . . 240 Fatigue of Titanium Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 ChaPter 7 Metallic Joints—Mechanically Fastened and Welded � � � � � � � � 263 Mechanically Fastened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Threaded Fasteners in Tension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Contents / v Bolts and Rivets in Bearing and Shear . . . . . . . . . . . . . . . . . . . . . . 275 Fatigue in Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 Methods for Improving the Fatigue Life of Welded Joints . . . . . . . 291 Fracture Control in Welded Structures. . . . . . . . . . . . . . . . . . . . . . . 293 Factors Affecting Fracture Toughness. . . . . . . . . . . . . . . . . . . . . . . 295 ChaPter 8 Fracture Control and Damage tolerance analysis � � � � � � � � � � � 303 Principles of Fracture Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Concepts of Damage Tolerance Analysis. . . . . . . . . . . . . . . . . . . . . 307 Fracture Control Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 Fracture Control Plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 Damage Tolerance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Fracture Mechanics and Fatigue Design . . . . . . . . . . . . . . . . . . . . . 323 ChaPter 9 Fatigue and Fracture of Ceramics and Polymers � � � � � � � � � � � � 327 Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Toughening Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Ceramic Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 Fatigue and Subcritical Crack Growth. . . . . . . . . . . . . . . . . . . . . . . 336 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Polymer Fatigue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Impact Strength and Fracture Toughness. . . . . . . . . . . . . . . . . . . . . 359 Stress Rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 Fractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 Environmental Performance of Plastics. . . . . . . . . . . . . . . . . . . . . . 366 ChaPter 10 Fatigue and Fracture of Continuous-Fiber Polymer-Matrix Composites � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 377 Laminates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 Composites versus Metallics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 Advantages and Disadvantages of Composite Materials. . . . . . . . . 384 Fatigue Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 Delaminations and Impact Resistance. . . . . . . . . . . . . . . . . . . . . . . 396 Damage Tolerance Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . 401 Effects of Defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 Building-Block Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 ChaPter 11 high-temperature Failures � � � � � � � � � � � � � � � � � � � � � � � � � � � � 415 The Creep Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 Stress-Rupture Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 Creep Deformation Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . 426 vi / Contents Elevated-Temperature Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 Metallurgical Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 Environmental Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 Creep-Life Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Design against Creep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 High-Temperature Fatigue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 ChaPter 12 Wear Failures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 461 Abrasive Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 Erosive Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Erosion-Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 Grinding Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 Gouging Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Adhesive Wear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 Fretting Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Contact-Stress Fatigue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 ChaPter 13 environmentally-Induced Failures� � � � � � � � � � � � � � � � � � � � � � � 501 Basics of Electrochemical Corrosion. . . . . . . . . . . . . . . . . . . . . . . . 501 Forms of Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 Stress-Corrosion Cracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 Hydrogen Damage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 Corrosion Fatigue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Corrosion Prevention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 High-Temperature Oxidation and Corrosion. . . . . . . . . . . . . . . . . . 544 ChaPter 14 the Failure analysis Process � � � � � � � � � � � � � � � � � � � � � � � � � � � 549 Collection of Background Data and Samples . . . . . . . . . . . . . . . . . 550 Collecting Data and Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 Preliminary Examination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Nondestructive Examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 Fracture Origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 Selection and Preservation of Fracture Surfaces. . . . . . . . . . . . . . . 561 Macroscopic Examination of Fracture Surfaces . . . . . . . . . . . . . . . 564 Microscopic Examination of Fracture Surfaces. . . . . . . . . . . . . . . . 567 Stress Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567 Fracture Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 Fracture Mechanics Applied to Failure Analysis. . . . . . . . . . . . . . . 572 Metallographic Examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 Mechanical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 Contents / vii Chemical Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 Simulated Service Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 A Final Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 aPPenDIx a Defects Leading to Failure� � � � � � � � � � � � � � � � � � � � � � � � � � � � � 585 Design Deficiencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 Material and Manufacturing Defects. . . . . . . . . . . . . . . . . . . . . . . . 588 Ingot-Related Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 Forging Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 Sheet Forming Imperfections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 Casting Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 Heat Treating Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603 Weld Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616 Service-Life Anomalies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 Materials Selection for Failure Prevention . . . . . . . . . . . . . . . . . . . 627 Index ������������������������������������������������������ 633 Fatigue and Fracture—Understanding the Basics Copyright © 2012 ASM International® F.C. Campbell, editor All rights reserved www.asminternational.org Preface This book deals with the fatigue and fracture of engineering materials. Although modern fatigue analysis and fracture mechanics are mathe- matical disciplines, and mathematical rigor is normally found in texts on fatigue and fracture mechanics, I have endeavored to construct a more basic book that balances the major points of fatigue and fracture analysis without burdening the reader with too much complex mathematical development. This book is ideal for the engineer with a basic knowledge of materials that is just starting to be involved with either failure analysis or fatigue and fracture analysis. It also provides a sound technical groundwork for fur- ther study of more advanced texts. This book is useful for the experienced failure analyst that needs a more thorough background in fatigue and frac- ture mechanics, or for the fatigue and fracture engineer that needs to know more about failure modes. The first chapter gives a high level introduction to fatigue and fracture and describes some of the noteworthy failures that have occurred during the industrial age from 1900 to date. As a result of these failures, many of which were brittle, unexpected, and catastrophic in nature, there have been numerous changes to design philosophy, and after World War II, the evolu- tion of fracture mechanics. A number of the life limiting factors are also introduced, including material defects, manufacturing defects, stress con- centrations, elevated temperatures, and environmental degradation. The second chapter covers the basics of the static mechanical properties of materials. Included are tension, compression, shear, torsion, and com- bined stress. Both the engineering and true stress-strain curves are covered in some detail. The importance of stress concentrations and residual stresses are also included. The third chapter explains the difference between ductile and brittle fracture modes from both a macroscopic and microscopic level. The gen- eral characteristics, the macrostructural and microstructural aspects of both ductile and brittle fractures are explained. The ductile-to-brittle tran- ix
Description: