ebook img

Fate of Yang-Mills black hole in early Universe PDF

0.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fate of Yang-Mills black hole in early Universe

Fate of Yang-Mills black hole in early Universe Łukasz Nakonieczny 1and Marek Rogatko 2 InstituteofPhysics MariaCurie-SkłodowskaUniversity 20-031Lublin,pl.MariiCurie-Skłodowskiej1,Poland 3 Abstract. AccordingtotheBigBangTheoryaswegobackintimetheUniversebecomesprogressivelyhotteranddenser. 1 ThisleadsustobelievethattheearlyUniversewasfilledwithhotplasmaofelementaryparticles.Amongmanyquestions 0 concerning thisphase of historyof the Universethereare questions of existence andfate of magneticmonopoles and pri- 2 mordialblackholes.StaticsolutionofEinstein-Yang-Millssystemmaybeusedasatoymodelforsuchablackhole.Using methodsoffieldtheorywewillshowthatitsexistenceandregularitydependcruciallyonthepresenceoffermionsaroundit. n a Keywords: primordialblackholes,fermions J PACS: 04.50.+h 7 1 INTRODUCTION Dirac field. Using dimensionalreductionand bosoniza- tionwewillanalyzetheinfluenceoffermionsonthecon- ] c Recentobservationaldatastronglysuggesttheexistence sideredPBH. q of dark matter (DM) [1]. One of a few remaining DM - r candidates compatible with the Standard Model (SM) g areprimordialblackholes(PBH)[2].Theseblackholes DIRACEQUATIONIN MAGNETIC [ were formed in the early Universe during gravitational YANG-MILLSBLACK HOLE 2 collapseofdensityfluctuation.TheexistenceofthePBH BACKGROUND v was first proposed in [3, 4, 5] and their formation dur- 3 inginflationorphasetransitionintheearlyUniversewas A general form of a spherically symmetric and time 3 discussedin[6,7,8].Anothertypeofobjectsthatcould 4 independentmetricis be formedduringphase transition in early Universe are 2 1. tmopoonloopgoilceasl[9d]e.fIefctthsesliekoebcjeocstmsriecalsltyrifnogrsmeadnddumrinaggneevtoic- ds2=−A2(r)dt2+B−2(r)dr2+r2dW 2, (1) 0 lution of the Universe we should consider the possibil- where r is an usualradialcoordinateand dW 2 =dq 2+ 3 1 ity of interactions among them. Within the framework sin2(q )df 2 is a standard metric on two dimensional : offieldtheoryasimplemodelofthesystemthatallows sphere.Thelocationofaneventhorizonofablackhole v the existence of magnetic monopoles may be given by is given by the largest positive root of A2(r), which is i X Yang-Mills(YM)theorywithSU(2)gaugegroup.Parti- denotedasr .Actuallyforanalyzingfermionsequations H r clelikesolutionsofEinstein-Yang-Mills(EYM)system ofmotionitismoreconvenienttointroducetheso-called a describingthemagneticmonopolewerefirstconstructed tortoise coordinate r . This coordinate is given by the in [10]. On the otherhand,solutionsdescribinga black followingrelation: ∗ hole with magnetic monopole in this context were pre- sentedin[11].Therewasalsoshownin[12]thatfinite- B(r) dr = dr. (2) nessoftheblackholemassdemandsabsenceofanelec- ∗ A(r) tricpartofYMfield. Ourmetricexpressedincoordinates(t,r ,q ,f )is Another important component of the early Universe ∗ whose interaction with PBH we should consider is ds2=A2( dt2+dr2)+C2dW 2, (3) fermionic matter. To describe these interactions we use − ∗ methodsoffieldtheory.AsatoymodelofPBHwetake where we introduce a function C to keep in mind that the aforementioned spherically symmetric YM black now we have r =r(r ). From now on, to simplify our hole. As a representation of fermionic matter we use notation we will omit∗explicit writing of arguments of functions. During our computations we will use tetrad formalism. The local ortogonal tetrad is defined by the 1 [email protected] relation gmn =eim emjh ij, where eim is an element of the 2 [email protected] tetrad, gmn and h ij are metric tensorsin curvedand flat spacetimesrespectively.We use the followingsignature MASSLESS FERMIONS convention:h = 1,h =h =h =+1. 00 11 22 33 − The generalformof static and sphericallysymmetric Inthemasslescaseweseefrom(6)thatchiralitiesdecou- Yang-Millspotentialmaybewrittenas ple and effective two dimensional theory contains two fermionic fields connected to y and y . The effective L R Hm =eim [ainktk+1−2lwC(r)eijknjt k], (4) Lagrangianforthefieldy Ris L = iG¯ g˜a(cid:209) G l B G¯ g˜ag˜3G + whereai=(a0,a1)andwrepresentelectricandmagnetic FR−2d − R a R− a R R partsofYMfield,niisaunitvectornormaltothesphere, +VG¯ g˜ G VG¯ g˜ G , (9) R L R R R R l is a coupling constant, e stands for a totally anti- − ijk symmetricLevi-Civitasymbol,andt k aregeneratorsof where V = Cw. In this formula GR is two dimensional spinor field connected to y by rescaling and multipli- SU(2)gaugegrouprepresentedbyPaulimatrices.Asthe R cationbyappropriates matrices[15].Twodimensional representationforfourdimensionalgammamatriceswe flatspacetime gammamatricesaregivenbythe follow- chooseWeylbasis ingrelations: 0 I 0 s i g 0=(cid:20)I 0(cid:21), g i=(cid:20) s i 0(cid:21), (5) g˜i,g˜j =2h ij, h 00= 1= h 11, − { } − − g˜0= is 3, g˜1= s 2, whereIisaunittwodimensionalmatrixands iarethree − − 1 Paulimatrices.Gammamatricesincurvedspacetimeare g˜3=g˜0g˜1=s 1, g˜ = (I g˜3). (10) givenbythestandardrelation:g m =em g k.Representing L/R 2 ± k y aspinory asy = y L wemaywritetheDiracequa- TheLagrangianforthefieldconnectedtoy Ldiffersfrom (cid:18) R(cid:19) (9)onlybyasignofatermproportionaltoB . a tionas Analyzingequationsofmotionforfermionsincurved i/D+y my =0, spacetimeisa highlynontrivialanddifficulttask.How- R L − ever, in case at hand since we can express our prob- i/D−y L my R=0, (6) lem in form of effective two dimensional theory we − may use bosonizationtechnique [16]. This technique is whereoperators/D±aregivenby[13,14] well defined for flat spacetime two dimensional prob- w 1 lemsandalsoforasymptoticallyflatspacetimes[17,18]. /D±=A−1¶ t−il {[s 0a0±s 1a1]n¯·t¯± 2l−C n¯·s¯ ×t¯}+ Themeritofbosonizationisthatweexpressafermionic sectorofourtheoryintermsofcomplexscalarfield.Ba- 1 s¯ n¯A−1¶ r s¯ n¯ A−1C−1¶ r C+ A−1A−1¶ r A + sicbosonizationformulasinourcasearegivenbelow ± · ∗± · { ∗ 2 ∗ } ±C−1DS2. (7) ja=y¯g˜ay = 1 e ab(cid:209) f , (11) √p b In the above formula a bar over a quantity represents 1 threedimensionalvector,adot–scalarmultiplication, j3a=y¯g˜ag 3y = (cid:209) af , (12) –vectormultiplication,andD isDiracoperatoronS×2. √p S2 We are mainly interested in fermions in s-wave sector, yg¯ Ly =be2i√pf , yg¯ Ry =be−2i√pf . (13) whichisdescribedbythelowesteigenvalueofD .The S2 actionofoperatorsn¯·t¯,n¯·s¯ ×t¯,s¯ ·n¯ andDS2 onthese After bosonization from (9) we obtain the following statesmaybefoundin[13].Wemayusethisknowledge scalarLagrangian: to integrate over the angles in four dimensional Dirac actiontoobtaineffectivetwodimensionaltheoryin(t,r ) L = 1(cid:209) f (cid:209) af l B 1 (cid:209) af + plane. ∗ BR −2 a R R− a√p R On the otherhand, dimensionalreduction of the YM +Vb(e2i√pf R e 2i√pf R), (14) actiongivesusthefollowingLagrangian: − − C2 1 fromwhichwederiveanequationofmotionforf Rfield L = f fab dw2 (w2 1)2, (8) YM−2d − 4 ab −| |−2C2 | | − l (cid:209) (cid:209) af + (cid:209) Ba+4ib√p Vcos(2√pf )=0. (15) whered =(cid:209) iB , f =¶ B ¶ B ,andB =eia. a R √p a R a a− a ab a b− b a a a i Fromnowonlatinlettersfromthebeginningofalphabet Then, we derive an equation of motion for scalar field will label indexes from curved two dimensional (t,r ) spacetimeandthosefromthemiddlefromflatspacetim∗e. connected to the y L sector of our original fermionic theoryanalogically: for electric and magnetic parts of this field in the pres- enceoffermions.Afterusingbosonizationformulas(11) l (cid:209) (cid:209) af (cid:209) Ba+4ib√p Vcos(2√pf )=0. (16) theseequationsread[15] a L−√p a L l (cid:209) [C2fab] 2 w2Bb= [(cid:209) bf (cid:209) bf ], (24) Equations (15) and (16) are highly nonlinearand we a − | | √p R− L werenotabletofindasolutionintermsofknownspecial 2 functionsinthewholespacetime.Nevertheless,wemay (cid:209) (cid:209) aw w(w2 1)+2wB Ba= a −C2 | | − a find some useful information about their solutions by 2b analyzing them in two asymptotic regions, namely in i [sin(2√pf )+sin(2√pf )]. (25) R L C nearhorizonregionandinlarger region. Inthelarger regionwehavet∗hat Conclusions that stem from the above equations are ∗ the following. First, let us remind that equations (15) A2 1, C=r, w 1, r r. (17) ≈ ≈± ∗∼ and(16)differonlybysignin frontofthetermpropor- tional to B and we assume that initially a black hole Takingthisintoaccounttheequation(15)turnsinto a hasonlymagneticcharge(B =0).Second,fromequa- a w(¥ ) tion (24) we see thatinthis case contributionsofscalar −¶ t2f R+¶ r2f R+4ib√p r cos(2√pf R)=0. (18) fields cancel each other and Ba =0 is still a valid so- ∗ lution to (24). Third, from equation (25) we see that After dropping a term proportional to O(r 1) we get there is a nonzero contribution of scalar fields to mag- − afreewaveequation neticpartofYMfield.Butsincethesefieldsaretimede- pendentsoshouldbetheresultingw.Ontheotherhand, ¶ 2f +¶ 2f =0. (19) through Einstein equations, this results in time depen- − t R r R ∗ dence of metric tensor elements and ultimately means A regularsolutionto thisequationmaybe expressedas thattheassumptionofstaticityofYang-Millsblackhole aplanewave isdestroyedinthepresenceofmasslessfermions. f =c e iw (t r ), (20) R 0 − ±∗ MASSIVEFERMIONS where c is an integration constant. On the other hand, 0 inthenearhorizonregionwehave Formassivefermionsweseefrom(6)thatchiralitiesare A2=2k (r r ), C=r , r r =e2k r , (21) mixed up. To use bosonization in this case we need to − H H − h ∗ make an additional assumption about the form of y R where k is surface gravity of a Yang-Mills black hole. andy L.Weusethefollowingansatz: Theequation(15)inthisregiontakestheform G =is 3G G, (26) L R ≡ −¶ t2f R+¶ r2∗f R+i8b√prwh(rh)k e2k r∗cos(2√pf R)=0. wnehcetreedGwLitahnydGaRnadrey twroesdpiemcetinvseiloyn[a1l5s]p.inHoarvfiinegldtshcisonin- L R (22) mindaneffectivetwodimensionalfermionicLagrangian Becauseasweapproachablackholehorizonr ¥ , isasfollows: we may drop a term proportional to e2k r∗ in th∗e→ab−ove L = iG¯g˜a(cid:209) G l B G¯g˜ag˜3G+ equation.Fromthisweseethataregularsolutionisagain GF−2d − a − a atimedependentplanewavegivenby +(V+m)G¯g˜LG+(m V)G¯g˜RG, (27) − f R=c1e−iw (t±r∗), (23) where like in massless case V = Cw. Using the same bosonizationformulasas inthe masslesscase we arrive wherec issomeotherintegrationconstant.Onthebasis atthefollowingscalarLagrangian: 1 ofthisanalysiswemayconcludethataregularsolution 1 l to the considered scalar field equation will be time de- L = (cid:209) f (cid:209) af B (cid:209) af + pendent. But both scalar fields represent fermionic cur- GB −2 a −√p a rents and their time dependence ultimately means that +(V+m)be2i√pf +(m V)be 2i√pf . (28) − fermionicfieldswillalsobetimedependent.Toseehow − thismayinfluenceYMfieldweuseequationsofmotion Theequationofmotionforscalarfieldinthiscaseis Firstwewilldiscussthemasslesscase.Byasymptotic analysis we find an evidence that regular solutions to l (cid:209) (cid:209) af + (cid:209) Ba+ equations(15)and(16)shouldbetimedependent.These a √p a equationsdescribebosonizedmasslessfermionsandgive anonzerocontributiontoamagneticpartofYang-Mills +4ib√p Vcos(2√pf )+imsin(2√pf ) =0. (29) field.Becausetheirsolutionsaretimedependentthere- (cid:26) (cid:27) sulting magnetic part of YM field will be time depen- Inthelarger limit,afterdroppingtermsproportionalto dentand,throughEinsteinequations,elementsofamet- O(r 1),weo∗btainasine-Gordonequation rictensorwillalsobetimedependent. − In massive case bosonizedfermionsare describedby −¶ t2f +¶ r2f −4b√p msin(2√pf )=0, (30) solutionstoequation(29).Thesametypeofanalysislike ∗ in massless case also revealsthe destructionof staticity for which a regular time dependent and decaying at ofourblackhole.Moreover,massivefermionswilllead infinity(kinktype)solutionisgivenby to the formation of a dyonic black hole. But, as was shownin [12], the presenceof an electricpartof Yang- f = √2p arctan(cid:18)e−q81b−pvm2(r∗−vt)(cid:19). (31) Mills field leads to infinite mass of the resulting black hole. In conclusion we may say that the presence of On the other hand, the same type of analysis like in fermionsand theirinteraction with the consideredPBH themasslesscaserevealedthatinthenearhorizonlimit will lead to its destruction through mechanisms de- we againhave a free wave equationwith a regulartime scribedabove. dependentsolutioninformofaplanewave: f =c e iw (t r ). (32) 2 − ±∗ REFERENCES Nowwewilldiscusstheinfluenceofmassivefermions on a YM black hole. Yang-Mills equations of motion 1. WMAPcollaboration, D. Larsonet al.,Astrophys. J. in the presence of fermions (after bosonization) are the Suppl.180,16(2011). 2. P,H.Frampton,M.Kawasaki,F.Takahashi,andT.T. following: Yanagida,JCAP04,023(2010). l 3. Ya.B.Zeldovich,andI.Novikov,Sov.Astron.10,602 (cid:209) [C2fab] 2 w2Bb= (cid:209) bf , (33) (1967). a − | | √p 4. S.W.Hawking,Mon.Not.Roy.Astron.Soc.152, 75 2 (1971). (cid:209) a(cid:209) aw−C2w(|w|2−1)+2wBaBa= 5. B.J.Carr,Astrophys.J.201,1(1975). 6. M.Y.Khlopov,B.A.Malomed,andYa.B.Zeldovich, 2b i sin(2√pf ). (34) Mon.Not.Roy.Astron.Soc.215,575(1985). C 7. B.J.Carr,J.Gilbert,andJ.Lidsey,Phys.Rev.D50,4853 (1980). From equation (33) we see that, even if we initially set 8. M.Y.Khlopov,andA.G.Polnarev,Phys.Lett.B97,383 Ba=0,fermionsgiveanonzerocontributiontotheelec- (1980). tric part of YM field. This means that contrary to the 9. A.Vilenkin,andE.P.S.Shellard,CosmicStringsand massless case the presence of fermions leads to dyonic OtherTopologicalDefectsCambridgeUniversityPress, 1994. structure of a black hole. But as was shown in [12] dy- 10. R.Bartnik,andJ.McKinnon,Phys.Rev.Lett.61,141 onicYang-Millsblackholenecessarilyhasinfinitemass. (1988). On the otherhand,formequation(34) we see thattime 11. P.Bizon,Phys.Rev.Lett.64,2844(1990). dependent fermions give a nonzero contribution to the 12. P.Bizon,nadO.Popp,Class.Quant.Grav.9,193(1992). magnetic part of YM field. Through Einstein equations 13. G.W.Gibbons,andA.R.Steif,Phys.Lett.B314,13 this leads to a time dependent line element and the de- (1993). 14. M.Góz´dz´,Ł.Nakonieczny,andM.Rogatko,Phys.Rev. structionofstaticityofablackhole. D81,104027(2010). 15. Ł. Nakonieczny, and M. Rogatko, Phys. Rev. D 85, 124050(2012). CONCLUSIONS 16. J. Zinn-Justin, Quantum Field Theory and Critical PhenomenaClarendonPress-Oxford,2002. Now we shall present a short summary of our results 17. R.E.GamboaSaravi,F.A.Schaposnik,andH.Vucetich, Phys.Rev.D30,363(1984). concerning the influence of fermions on a primordial 18. J.Barcelos-Neto, andA.Das,Phys. Rev.D33, 2262 black hole modeled by a magnetic Yang-Mills black (1986). hole.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.