ebook img

Fast Reconfigurable SOA-Based Wavelength Conversion of Advanced Modulation Format Data PDF

15 Pages·2017·2.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fast Reconfigurable SOA-Based Wavelength Conversion of Advanced Modulation Format Data

applied sciences Article Fast Reconfigurable SOA-Based Wavelength † Conversion of Advanced Modulation Format Data YiLin1,*,AravindP.Anthur1,SeanP.ÓDúill1 ID,FanLiu2,YonglinYu2andLiamP.Barry1 1 SchoolofElectronicEngineering,DublinCityUniversity,Dublin9,Ireland;[email protected](A.P.A.); [email protected](S.P.ÓD.);[email protected](L.P.B.) 2 WuhanNationalLaboratoryforOptoelectronics,HuazhongUniversityofScienceandTechnology, Wuhan430073,China;fl[email protected](F.L.);[email protected](Y.Y.) * Correspondence:[email protected];Tel.:+353-1-700-5883 † ThispaperisanextendedversionofpaperpublishedintheTheOpticalFiberCommunicationConference andExhibition,OFC2017heldinLosAngeles,19–23March2017. Received:31August2017;Accepted:3October2017;Published:10October2017 Abstract: We theoretically analyze the phase noise transfer issue between the pump and the wavelength-converted idler for a nondegenerate four-wave mixing (FWM) scheme, as well as studythevectortheoryinnonlinearsemiconductoropticalamplifiers(SOAs), inordertodesign a polarization-insensitive wavelength conversion system employing dual co-polarized pumps. A tunable sampled grating distributed Bragg reflector (SG-DBR) pump laser has been utilized to enable fast wavelength conversion in the sub-microsecond timescale. By using the detailed characterizationoftheSGDBRlaser,wediscussthephasenoiseperformanceoftheSGDBRlaser. Finally, we present a reconfigurable SOA-based all-optical wavelength converter using the fast switchingSGDBRtunablelaserasoneofthepumpsourcesandexperimentallystudythewavelength conversion of the single polarization quadrature phase shift keying (QPSK) and polarization multiplexed(Pol-Mux)QPSKsignalsat12.5-Gbaud. Awidetuningrange(>10nm)andlessthan 50nsand160nsreconfigurationtimehavebeenachievedforthewavelengthconversionsystemfor QPSKandPM-QPSKsignals,respectively. Theperformanceundertheswitchingenvironmentafter therequiredreconfigurationtimeisthesameasthestaticcasewhenthewavelengthsarefixed. Keywords: all-opticalnetworks;wavelengthconversiondevices;tunablelasers 1. Introduction The massive growth in the demand for bandwidth for multimedia services and interactive networksisshapinganewerafortoday’scommunicationnetworks. Futurenetworksneedtooffer bandwidth-hungryapplicationsliketelemedicine,IP-TV,virtualrealitygaming,video-on-demand, andhigh-speedinternetaccess,combinedwithguaranteedQualityofService[1]. Inopticalnetworks thatemploywavelengthdivisionmultiplexed(WDM),theuseofopticalswitchingtechnologiesona burstorpacketlevel,combinedwithadvancedmodulationformats,wouldachievegreaterspectral efficiencyandutilizetheexistingbandwidthmoreefficiently. All-opticalwavelengthconverterswhich typicallycompriseoftunablepumplasers,nonlinearmedia,andthetunableopticalfilter,areexpected tobeoneofthekeycomponentsinthesebroadbandnetworks. Theycanbeusedtointerfacedifferent networks and potentially increase the capacity of a communication system [2,3]. The wavelength converterscanbealsousedatthenetworknodestoavoidcontentionandtodynamicallyallocate wavelengthstoensureoptimumuseoffiberbandwidth[4]. Recently,significantworkhasbeenundertakenonwavelengthconversionbasedonfour-wave mixing(FWM)byusingdifferentnonlineardevicessuchasnonlinearsemiconductoropticalamplifiers (SOAs)[5],highlynonlinearfiber(HNLF)[6–8],periodicallypoledLithiumNiobate(PPLN)[9],and Appl.Sci.2017,7,1033;doi:10.3390/app7101033 www.mdpi.com/journal/applsci Appl.Sci.2017,7,1033 2of15 nonlinear waveguides [10–12]. Nonlinear SOAs give the best conversion efficiency among these nonlinear devices because they are active devices [13]. To perform the wavelength conversion of datasignalswheretheinformationisencodedontothephaseandamplitudeoftheopticalcarrier, e.g., quadrature phase shift keying (QPSK) and 16-ary state quadrature amplitude modulation (16-QAM),thewavelengthconversionprocessmustpreservetheamplitudeandphaseinformation. Therefore, FWM is required as the wavelength conversion process because FWM preserves the amplitudeandphaseinformationoftheinputsignal. Inaddition,FWMistransparenttothedifferent modulationformatswheretheinformationcanbeencodedintheamplitude,phase,andpolarization oftheopticalcarrier[14],andisalsotransparenttothesignalbaudrate(thewavelengthconversion oftheon-offkeying(OOK)signalat100Gbaudhavingbeendemonstratedin[15]). Recently,alotof workhasbeendoneonthewavelengthconversionofdatasignalsemployingdifferentmodulated formatsincluding(Differential)QPSK,8-PhaseShiftKeying(PSK),16-QAM,and64-QAMbasedon FWMinSOAsusingsinglepumpanddualpumpwavelengthconversionsystems[16–27]. In-additiontophaseandamplitude,opticalcommunicationnetworksareemployingpolarization multiplexed(Pol-Mux)modulationformatstoachievetwicethespectralefficiencybyencodingdata ontwoorthogonalpolarizationsofthelight. Whendataispresentintwoorthogonalpolarizations, itisveryimportanttoensurethatFWM-basedwavelengthconvertersaretransparenttoPol-Mux modulationformats. VectortheoryofFWMinnonlinearmediaiswellunderstoodandutilizedfor achievingpolarization-insensitivewavelengthconversion[28]. Vectortheorywasstudiedandverified innonlinearSOAsandthiswasutilizedtodesignapolarization-insensitivewavelengthconversion schemeforPol-Muxmodulationformatsutilizingdualco-polarizedpumpsinourearlierwork[29]. Utilizingtheunderstandingfromthesephasenoiseandpolarizationstudies,wedesignedthemost efficientandimpairment-freewavelengthconverterbasedonFWM.Weusethisdesigntostudythe dynamiccharacteristicsoftheFWM-basedwavelengthconverterandpresenttheresults,whenthe dataiscommunicatedinbursts/packets. OneimportantissuethatneedstobeconsideredwhenusingFWMforall-opticalwavelength conversionofdatasignals,wheretheinformationisencodedontothephaseoftheopticalcarrier,isthe phasenoisetransferissuebetweenthepumpandtheconvertedidler. In[30],asimplerelationship betweenthelinewidthofthesignal,pump,andconvertedidlerintheFWMprocesswasfoundby theoreticalanalysisandverifiedexperimentally. ForthecaseofthesinglepumpFWMschemeshown inFigure1a,thelinewidthoftheconvertedidleristhelinewidthofthesignalplusfourtimespump linewidth,andforthecaseofthedualpumpFWMschemeshowninFigure1b,thelinewidthofthe convertedidlerisequaltothesummedlinewidthsofthesignalandthedualpumps. Thephasenoise transferproblemwillcauseasignificanteffectfortheFWM-basedwavelengthconversionofdatawith phaseencoding,asitbecomesmoredifficulttorecoverthedatawiththeinduceduncertaintyinthe phaseofthewavelengthconvertedidler. Thus,thelinewidthisanimportantparameterforthepump lasertobeemployedintheFWM-basedwavelengthconversionsystem. An example of a typical all-optical packet-switched network which employs wavelength conversionisillustratedinFigure1c. IPpacketsenterthenetworkthroughtheedgerouterwhere theyareretransmittedonanewwavelengthtoavoidcontention[31]. Byemployingtheall-optical wavelengthconverterinthisnetwork,itcanenablerapidroutingofthesamewavelengthchannels fromanydirectiontoanydirection,andeasilyavoidthecontentioninwhichdifferentpacketswith thesamewavelengthsaretryingtoleavetheedgerouter. Thewavelengthconverterconsistsoffast tuning tunable lasers as the pumps, an SOA, and a tunable optical filter. The wavelength of the wavelength-convertedsignalthroughFWMcanbepreciselyalteredbytuningthewavelengthofthe pumpsources,andafterthenonlinearwavelengthconversionprocessintheSOA,theconvertedsignal isthenfilteredoutbyusingatunableopticalfilterandsenttothenextnetworknode. Theswitching speed of this SOA-based wavelength converter mainly depends on the tunable pump lasers and thetunableopticalfilter[32],butinthisworkwefocusontheeffectofthetunablelaser. Thelaser wavelengthtuningspeedcanbeaslowasseveralnsforvarioustunablelaserdesignssuchasthe Appl. Sci. 2017, 7, 1033 3 of 15 Appl.Sci.2017,7,1033 3of15 the sampled grating distributed Bragg reflector (SG-DBR) laser [33], the digital super-mode distributed Bragg grating (DS-DBR) laser [34], and the modulated grating Y-branch (MGY) laser [35]. sampledgratingdistributedBraggreflector(SG-DBR)laser[33],thedigitalsuper-modedistributed These lasers can also achieve a wide tuning range (>45 nm), a high side mode suppression ratio Bragggrating(DS-DBR)laser[34],andthemodulatedgratingY-branch(MGY)laser[35]. Theselasers (SMSR > 35 dB), and large output power (>10 dBm). All the components in the wavelength converter canalsoachieveawidetuningrange(>45nm),ahighsidemodesuppressionratio(SMSR>35dB), (lasers and SOA) can be integrated and these results motivate the construction of a compact, optically- andlargeoutputpower(>10dBm). Allthecomponentsinthewavelengthconverter(lasersandSOA) integrated, and rapidly reconfigurable all-optical wavelength converter. canbeintegratedandtheseresultsmotivatetheconstructionofacompact,optically-integrated,and Most of the previous research on wavelength conversion is undertaken by using static, fixed- rapidlyreconfigurableall-opticalwavelengthconverter. wavelength lasers. However, wavelength converters with rapid, dynamic wavelength Most of the previous research on wavelength conversion is undertaken by using static, re-configurability would be required to bypass the power-hungry electronic switches with high fixed-wavelength lasers. However, wavelength converters with rapid, dynamic wavelength latency in the switching nodes of future transparent optical networks. The main focus of this paper re-configurabilitywouldberequiredtobypassthepower-hungryelectronicswitcheswithhighlatency is thus to develop a wavelength converter comprised of an SOA as the nonlinear element and a fast- intheswitchingnodesoffuturetransparentopticalnetworks. Themainfocusofthispaperisthusto switching SG-DBR tunable laser as one of the pump sources. In Section 2, we initially discuss the developawavelengthconvertercomprisedofanSOAasthenonlinearelementandafast-switching theory of the phase noise transfer issue in FWM and the dual co-polarized pumping scheme. In SG-DBRtunablelaserasoneofthepumpsources. InSection2,weinitiallydiscussthetheoryofthe Section 3, using the detailed characterization of the SGDBR laser, we discuss the phase noise of the phasenoisetransferissueinFWMandthedualco-polarizedpumpingscheme. InSection3,usingthe SGDBR. In Section 4, we provide a complete set of experimental results for single polarization QPSK detailedcharacterizationoftheSGDBRlaser,wediscussthephasenoiseoftheSGDBR.InSection4, [36] and experimentally demonstrate rapid wavelength conversion of a PM-QPSK signal with the weprovideacompletesetofexperimentalresultsforsinglepolarizationQPSK[36]andexperimentally switching time of tens of nanoseconds using a fast-switching, tunable laser as one of the pumps in a demonstraterapidwavelengthconversionofaPM-QPSKsignalwiththeswitchingtimeoftensof dual wavelength pumping scheme. After the reconfiguration time, the performance under a nanosecondsusingafast-switching,tunablelaserasoneofthepumpsinadualwavelengthpumping switching scenario is the same as the case when the wavelengths are held static. The experimental scheme. Afterthereconfigurationtime,theperformanceunderaswitchingscenarioisthesameasthe results indicate that the incoming signal can be precisely and quickly converted to the required casewhenthewavelengthsareheldstatic. Theexperimentalresultsindicatethattheincomingsignal wavelength channel on a nanosecond timescale. canbepreciselyandquicklyconvertedtotherequiredwavelengthchannelonananosecondtimescale. Source node Input signal Core router SOA TOF Edge Tunable laser Control signals router Tunable optical filter (a) Edge Core Input signal router router Control signals Tunable laser SOA TOF Tunable laser Tunable optical filter Optical core network Destination Control signals (b) (c) node Figure 1. (a) A single pump semiconductor optical amplifier (SOA)-based wavelength converter Figure 1. (a) A single pump semiconductor optical amplifier (SOA)-based wavelength converter employing one fast tunable pump laser. (b) A dual-pump SOA-based wavelength converter employingonefasttunablepumplaser.(b)Adual-pumpSOA-basedwavelengthconverteremploying employing fast tunable pump lasers where the output wavelengths can be chosen by appropriately fasttunablepumplaserswheretheoutputwavelengthscanbechosenbyappropriatelyselectingthe selecting the wavelength of the tunable lasers. The wavelengths of the tunable lasers are adjusted by wavelengthofthetunablelasers. Thewavelengthsofthetunablelasersareadjustedbythecontrol the control signals to the SG-DBR devices. (c) Schematic of an all-optical packet-switched network. signalstotheSG-DBRdevices.(c)Schematicofanall-opticalpacket-switchednetwork. 2. Theory 2. Theory 22.1.1. .PPhhaases eNNooisies eaanndd FFWWMM Consider two pumps with electric field intensities given by (cid:1831)(cid:4652)(cid:1318)→ and (cid:1831)(cid:4652)(cid:1318)→ mixing with a signal Considertwopumpswithelectricfieldintensitiesgivenby E(cid:3043)(cid:2870) and E(cid:3043)(cid:2869) mixingwithasignal having an electrical field intensity of →(cid:1831)(cid:4652)(cid:1318)(cid:3046), generating an idler throughp 2FWM wpi1th a field intensity of havinganelectricalfieldintensityof E ,generatinganidlerthroughFWMwithafieldintensityofE. (cid:1831). Let the frequencies of the mixing psumps and the signal be represented as (cid:2033) , (cid:2033) , and (cid:2033) , i (cid:3036) (cid:3043)(cid:2869) (cid:3043)(cid:2870) (cid:3046) Letthefrequenciesofthemixingpumpsandthesignalberepresentedasω ,ω ,andω ,respectively. respectively. Let the phase of the mixing pumps and the signal be represepn1tedp 2as (cid:2038) , s(cid:2038) , and (cid:2038) (cid:3043)(cid:2869) (cid:3043)(cid:2870) (cid:3046) Letthephaseofthemixingpumpsandthesignalberepresentedasφ ,φ ,andφ respectively. The respectively. The frequency and the phase of the idler are related to thpe1 mipx2ing freqsuencies by, frequencyandthephaseoftheidlerarerelatedtothemixingfrequenciesby, (cid:2033) = (cid:2033) − (cid:2033) + (cid:2033) (1) (cid:3036) (cid:3043)(cid:2870) (cid:3043)(cid:2869) (cid:3046) ω = ω − ω + ω (1) i p2 p1 s (cid:2038) = (cid:2038) − (cid:2038) + (cid:2038) (2) (cid:3036) (cid:3043)(cid:2870) (cid:3043)(cid:2869) (cid:3046) φ = φ − φ + φ (2) i p2 p1 s Appl.Sci.2017,7,1033 4of15 Unlessbothpumpshavecorrelatedphasenoise,thephasenoiseoftheidlerisrelatedtothephase noise of the mixing frequencies by the following relationship when the phase noise of the mixing frequenciesisuncorrelated[16,30], ∆σ2 = ∆σ2 +∆σ2 +∆σ2 (3) i p1 p2 s where∆σ2representsthevarianceofthephasenoise. Forwhitefrequencyphasenoise,thelinewidth (representedby∆ω)andthephaseerrorvariancearelinearlyrelated[37]. Therefore,thelinewidthof theidlerduetowhitephasenoiseisrelatedtothelinewidthofthemixingpumpsandthesignalby, ∆ω = ∆ω + ∆ω + ∆ω (4) i p1 p2 s ThusitcanbeobservedfromEquation(4)thatthephasenoiseoftheidlerwillbethesumofthe phasenoiseofthemixingfrequencies. 2.2. FWMwithDualCo-PolarizedPumps WenextlookatthevectortheoryofFWMinnonlinearSOA.Thestatesofpolarizationofthe two co-polarized pumps and signal are shown in Figure 2a. Pump1 and pump2 are co-polarized. Forsimplicity,weconsideralinearlypolarizedinputsignalatanarbitraryangleθwithrespecttothe pumps.TheoutputspectrumofthisFWMschemeisgiveninFigure2b.Theconvertedidlersgenerated bythebeatingbetweenthedualco-polarizedpumpshaveopticalfrequenciesω −ω +ω and p1 p2 s ω −ω +ω . WeshowthattheFWMwavelengthconversionschemepreservesthepolarization p2 p1 s properties of the signal within the idler at frequency ω −ω +ω . The electric field of the two p2 p1 s → → → co-polarizedpumps(E and E )andsignal(E )aregivenby, p1 p2 s → (cid:0) (cid:0) (cid:1)(cid:1)→ E = A exp j ω t+φ x (5) p1 p1 p1 p1 → (cid:0) (cid:0) (cid:1)(cid:1)→ E = A exp j ω t+φ x (6) p2 p2 p2 p2 → (cid:104) → →(cid:105) E = A exp(j(ω t+φ )) cos(θ)x +sin(θ)y (7) s s s s whereA ,A ,andA aretheamplitudesofpump1,pump2,andthesignal,respectively. Theidler p1 p2 s atafrequencyofω = ω − ω +ω isgeneratedbytheresultantoftwobeatingprocessesgiven i p2 p1 s by[38–40], → (cid:18)→ →∗ (cid:19)→ (cid:18)→ →∗ (cid:19)→ (cid:0) (cid:1) (cid:0) (cid:1) E =r ω − ω E ·E E +r ω −ω E ·E E , (8) i p2 p1 p2 p1 s s p1 s p1 p2 (cid:0) (cid:1) (cid:0) (cid:1) wherer ω − ω istheefficiencyofthebeatingprocessbetweenthetwopumpsand r ω − ω p1 p2 s p1 istheefficiencyofthebeatingbetweenthesignalandthepump1[41]. In the case of co-polarized pumps scheme, we tune the wavelengths of the two pumps such thattheinputsignalisfarenoughfromthepumpsinordertoavoidtheirinteraction,whichmeans (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)ωp2−ωp1(cid:12) (cid:28) (cid:12)ωs−ωp1(cid:12). Therefore,theelectricalfieldoftheidlercanbegivenby, → (cid:18)→ →∗ (cid:19)→ (cid:0) (cid:1) E =r ω −ω E ·E E (9) i p2 p1 p2 p1 s SubstitutingEquation(5)toEquation(7)inEquation(9)gives, → → E = r(cid:0)ω −ω (cid:1)A∗ A E exp(cid:2)j(cid:0)ω −ω +ω (cid:1)t+(cid:0)φ −φ +φ (cid:1)(cid:3) (10) i p2 p1 p1 p2 s p2 p1 s p2 p1 s ItcanbeobservedfromEquation(10)thatthegeneratedidlerhasthesamepolarizationasthat oftheinputsignal,andtheoutputpowerisindependentofthestateofthepolarizationoftheinput Appl.Sci.2017,7,1033 5of15 signal. AssumingtheSOAispolarizationindependent,thedualco-polarizedpumpingschemecanbe usedtoconvertasignalwitharbitrarypolarizationwithaconstantconversionefficiencyandsingle nonlinearSOA. Appl. Sci. 2017, 7, 1033 5 of 15 Y Pump1 Pump2 Signal Δω Signal Idler Idler Δω Δω θ X ω Pump1 ωp1 ωp 2 ωp1-ωp2+ωs ωs ωp2-ωp1+ωs Pump2 (a) (b) Figure 2. Four-wave mixing (FWM) scheme with dual co-polarized pumps. (a) The X and Y axes Figure2. Four-wavemixing(FWM)schemewithdualco-polarizedpumps. (a)TheXandYaxes denote orthogonal states of polarization. In the dual pump FWM scheme, the polarization state of the denoteorthogonalstatesofpolarization.InthedualpumpFWMscheme,thepolarizationstateofthe wavelength-converted idler is that of the input signal provided both pumps have the same wavelength-convertedidleristhatoftheinputsignalprovidedbothpumpshavethesamepolarization. polarization. (b) Spectral locations of the pumps, signal, and idlers. (b)Spectrallocationsofthepumps,signal,andidlers. 3. Linewidth Characterization of SGDBR Pump Lasers for Wavelength Conversion 3. LinewidthCharacterizationofSGDBRPumpLasersforWavelengthConversion Among the tunable lasers, the SGDBR laser has been proven to be a suitable fast tunable laser Acamndoindagteth [4e2t]u, annadb tlheel satsreurcstu,trhe eofS tGhiDs tByRpel oafs elarsehra iss sbheoewnnp irno Fviegnurteo 3ba.e Ita iss ucoimtapbrliesefdas otf tounnea gbalien laser candisdeacttieon[4, 2o]n,ea pnhdatshe esescttriuocnt,u arnedo tfwtoh igsratytipneg osefcltaiosenrs.i Dssuhe otow tnhein peFriigoudr ien 3wah.iIcthi sthceo mtwpor gisreadtinogfso anree gain sampled differently, each grating has different period of reflection maxima. Therefore, the Vernier section,onephasesection,andtwogratingsections. Duetotheperiodinwhichthetwogratingsare effect is enabled and enhances the overall tuning range considerably. The function of the phase sampleddifferently,eachgratinghasdifferentperiodofreflectionmaxima. Therefore,theVernier section is to allow the cavity modes to be shifted independently of the grating’s reflection peak, effectisenabledandenhancestheoveralltuningrangeconsiderably. Thefunctionofthephasesection achieving continuous tuning. As the data is modulated on the phase of the laser in the transmission istoallowthecavitymodestobeshiftedindependentlyofthegrating’sreflectionpeak,achieving systems employing advanced modulation formats, the phase noise of the lasers becomes an contiinmupoourstatnut nfainctgo.r Ains dtheteerdmaitnainigs mthoe dtrualnastmedissoionnt hpeerpfohramsaenocef t[h43e].l aFsoerr thine tShGeDtBraRn lsamseirs, sbiootnh sthyes tems emplogayiinn gseactdiovna nancedd thme opdasusliavtei otunnfionrgm seacttsi,otnhse cpanh acosentnriobiustee otof tthhee olavseerrasll bpehcaosme neosiasen oifm thpeo lratsaenrt [4fa4c].t orin deterImn ionridnegr ttoh echtraarancstmeriizses itohne ppehrafsoer nmoaisne coef [t4h3e] .SGFoDrBtRh elaSseGr,D thBeR frlaeqseure,nbcoyt mhothdeulgataiionn s(eFcMti)o nnoaisned the passivspeetcutrnuinmg, swehcitciohn hsacsa bneecno nptrroibvuedte toto bteh ea ovvereyr asluliptahbales emneoaissueroemftehnet loafs ethre[ 4p4h]a.sIen nooridsee rotfo lacshearrsa tcot erize be employed in coherent systems [45], can be obtained by the technique using a coherent receiver thephasenoiseoftheSGDBRlaser,thefrequencymodulation(FM)noisespectrum,whichhasbeen with a narrow-linewidth LO [37]. As shown in Figure 3b, white noise from the gain section and low provedtobeaverysuitablemeasurementofthephasenoiseoflaserstobeemployedincoherent frequency carrier noise from the passive tuning sections are observed. Due to the advance in digital systems[45], canbe obtainedbythe techniqueusing acoherent receiverwith anarrow-linewidth signal processing (DSP), the low frequency excess phase noise can be compensated. A 2nd-order PLL LO[37]. AsshowninFigure3b,whitenoisefromthegainsectionandlowfrequencycarriernoise scheme has been used in the carrier phase estimation to track the excess phase noise [46], which fromthepassivetuningsectionsareobserved. Duetotheadvanceindigitalsignalprocessing(DSP), presents the ability to employ fast tunable laser for higher order modulation formats. thelowfrequencyexcessphasenoisecanbecompensated. A2nd-orderPLLschemehasbeenusedin thecarrierphaseestimationtotracktheexcessphasenoise[46],whichpresentstheabilitytoemploy fasttunablela(sae)rforhigherordermodulationformats. (b) Apart from that, the phase noise of the SGDBR laser isCstarrorinegr lnyodiseependent on the injection currentsoneacFhrosnetctionG,aainndthPehalsineewBidatchkvariesbetweenseveral100’skHztoseveralMHzwith differentinjectedcurrents. TheoutputwavelengthandphasenoiseoftheSGDBRlaserasafunctionof theinjectedcurrentsinthefrontsectionaremeasuredandshowninFigure4,with90mAcurrenton thegainsectionand0mAcurrentonthephaseandbacksection. Thewhitenoiseandcarriernoise arerepresentedbythehighfrequencylinewidthandlowfrequeWnchyitlein neowisiedth,whicharecalculated fromtheFM-noisespectrumbythesimpleequation: ∆ν=π···S(f)[47]. Thehighfrequencylinewidth isrelatedtotheFMnoiselevelinthefrequencyrangebeyond500MHz,whereasthelowfrequency linewidthcontributedbythepassivetuningsectionsisextractedbythemeanvalueoftheFM-noise inthefrequencyrangeunder50MHz. ItcanbeobservedfromFigure4,bychangingthecurrents Figure 3. (a) Structure of the sampled, grating-distributed Bragg reflector (SGDBR) laser; (b) intoagratingsection,thattheentirereflectioncombofthegratingsectionshiftsinwavelengthand frequency modulation (FM) noise spectrum of the SGDBR laser. thelaserwavelengthjumpsnotonlytoanadjacentlongitudinalmode,butcanalsojumpbyseveral Appl. Sci. 2017, 7, 1033 5 of 15 Y Pump1 Pump2 Signal Δω Signal Idler Idler Δω Δω θ X ω Pump1 ωp1 ωp 2 ωp1-ωp2+ωs ωs ωp2-ωp1+ωs Pump2 (a) (b) Figure 2. Four-wave mixing (FWM) scheme with dual co-polarized pumps. (a) The X and Y axes denote orthogonal states of polarization. In the dual pump FWM scheme, the polarization state of the wavelength-converted idler is that of the input signal provided both pumps have the same polarization. (b) Spectral locations of the pumps, signal, and idlers. 3. Linewidth Characterization of SGDBR Pump Lasers for Wavelength Conversion Among the tunable lasers, the SGDBR laser has been proven to be a suitable fast tunable laser candidate [42], and the structure of this type of laser is shown in Figure 3a. It is comprised of one gain section, one phase section, and two grating sections. Due to the period in which the two gratings are sampled differently, each grating has different period of reflection maxima. Therefore, the Vernier Appl.Sci.2017,7,1033 6of15 effect is enabled and enhances the overall tuning range considerably. The function of the phase Appl. Sci. 2017, 7, 1033 6 of 15 section is to allow the cavity modes to be shifted independently of the grating’s reflection peak, achieving continuous tuning. As the data is modulated on the phase of the laser in the transmission nmtoAapnaortt hferromsu pthear-tm, tohdee pahtaaswe anvoeisleen ogft hthwe hSeGreDtBhRe rleaflseerc tiios nstproeankgslyo fdtehpeeVnedrennite ro-tnu ntheed ignrjaetcitniogns systems employing advanced modulation formats, the phase noise of the lasers becomes an hcuavrreenret-sa oling neeadch. Bsyecitniocrne, aasnindg ththee lcinuerwreindttsho vnatrhiees gbreattwinegense scetivoenr,atlh 1e0l0o’sw kfHrezq utoe nsecvyelrinale wMiHdtzh wanitdh important factor in determining the transmission performance [43]. For the SGDBR laser, both the hdiigffherfernetq iunejencctyedli cnuerwreidntths. Tarhee foouutnpdutt woapvreelseenngtthan anodp ppohsaistee ntroeinsed .of Tthhee SloGwDBfrRe qlauseenr cays ali nfuenwcitdiothn gain section and the passive tuning sections can contribute to the overall phase noise of the laser [44]. uofs uthaell yinijneccrteedas ceusrurnentitlst hine twhea vfreolennt gstehctjiuomn paroec mcuerass,uwrhedil eanthde sthreonwdnf oinr tFhigeuhrieg h4,f wreiqthu e9n0c mylAin ceuwrirdetnht In order to characterize the phase noise of the SGDBR laser, the frequency modulation (FM) noise iosnd tehcer sgepaaesicnetrd su.emcAt, iwosnhm iaconhsd ht a0lso m wbeAef nrce upqrruroeevnnetdc oy tnop tbhheae as p evhenaroysei ss uaenitcdaab nblea bcmeke csaeosucmtriepomenne. nTstah oteef dwthhbe iypteht hanseoei DsneoS iaPsn,e dtoh fc ealarosrepireesrr tanoto iiosne paroein rtespborefe sethemneptSleoGdy DebdyB iRtnh lceao shheiergrehwn fittr hseyqlsuetseesmnhcs yi[g 4lh5in]f,e rcewaqniud betehn coaybntndaio nlioesdwe a bfryree tqphuere etfneeccrhyrne lidiqnuteoew upisedirntfhgo, r awm chodihcaehtra eantrtre ar nceacselmcivuieslras itoend efrxopmer tihmweiet Fhn Mtas .n-naAorrcioscweo r-sldpinienecwgtriutdomtht hLbeOys et[h3l7ein] .s eiAwms ipsdhlteoh wemqnu eianat siFouignrue: mrΔe νe3 nb=t, sπw rh·e iSste(uf )lnt o[s4i,s7te]w .f rToohmwe athhvieeg glhea nfinrge tsqheucsteioonfnc tyah nleidnS leGowwDi dBtRh lias sreerlaatfrereedqc tuhoeo ntshceyen cFtaoMrrsi wenro inticsoheis lebe efvrteowlm ei neth ntehf peo arfsrtsehiqveuel eatuntencriynw gr aasnvecgetelieo bnnegsy tahorenc doob n5sv0eer0vr MseidoH. nDzeu, xewp thoe ertirhmeea easnd ttvh.aeTn hlcoeew i1n 5 fdr4ei8gq.i6uta8el nncmy wlinaevweliedsnitgghnt ahclo opnfrtortchibeesusStinGedgD (bDByRS Pt,h)w,e t hhpieac lhsoswiisv ferre etpquruneeisnnecgny t seeexdcctebisoysn ptshh ieass beel xantcorkiascept coeadinn btbyAe ctsohhmeo pmweennasiannt evFdai.g lAuu e2r enodf4 -,tohirsed ceFhrM oPsL-enLno ibsye scheme has been used in the carrier phase estimation to track the excess phase noise [46], which ainp pthlyei nfrgeq9u0emncAy cruarnrgeen tuonndethr e50g aMinHsze.c Ittio cnanw bheil eobthseerovtehde rfrpoamss Fivigeuturen 4in, gbyse cchtiaonngsinagre ttheer mcuinrraetnedts. presents the ability to employ fast tunable laser for higher order modulation formats. Tinhteo 1a5 5g3r.a7t0inngm sewctaivoenl,e tnhgatth t(hpeo einnttiBre) irsecfhleocsteionnb cyoimncbr eoafs tinhge tghreatciunrgr esnecttoionnt hsehiffrtosn itns wecativoenletnog3t.h4 manAd. the laser wavelength jumps not only to an adjacent longitudinal mode, but can also jump by several nm to another s(uap)er-mode at a wavelength where the reflection peaks of the Vernier-tuned gratings (b) have re-aligned. By increasing the currents on the grating section, the low frequency linewidth and Carrier noise high frequency Flirnoenwt idthG aairne foPuhnasde to Bparceksent an opposite trend. The low frequency linewidth usually increases until the wavelength jump occurs, while the trend for the high frequency linewidth is decreased. As most low frequency phase noise can be compensated by the DSP, the operation points of the SGDBR laser with less high frequency noise are preferred to perform data transmission experiments. According to these linewidth measurements results, two wavelengths of the SGDBR White noise laser are chosen to switch between for the later wavelength conversion experiment. The 1548.68 nm wavelength of the SGDBR, which is represented by the black point A shown in Figure 4, is chosen by applying 90 mA current on the gain section while the other passive tuning sections are terminated. The 1553.70 nm wavelength (point B) is chosen by increasing the current on the front section to 3.4 mA. FigureF3i.gu(ar)e S3tr. u(cat)u rSetroufcttuhree saomf tphlee ds,agmrpatleindg, -gdriasttirnibgu-dtiesdtriBbruatgedg rBerflaegcgt orre(fSleGctDorB R(S)GlaDsBeRr;) (bla)sferre; q(ube) ncy frequency modulation (FM) noise spectrum of the SGDBR laser. modulation(FM)noisespectrumoftheSGDBRlaser. B A FFiigguurree 44.. MMeeaassuurreedd hhiigghh ffrreeqquueennccyy lliinneewwiiddtthh ((ggrreeeenn ttrriiaanngglleess)),, llooww ffrreeqquueennccyy lliinneewwiiddtthh ((rreedd ddoottss)),, aanndd oouuttppuutt wwaavveelleennggtthh ((bblluuee ssqquuaarreess)) wwiitthh ddiiffffeerreenntt ccuurrrreennttss oonn tthhee ffrroonntt sseeccttiioonn ooff tthhee SSGGDDBBRR llaasseerr,, wwiitthh 9900 mmAA ccuurrrreenntt oonn tthhee ggaaiinn sseeccttiioonn,, 00 mmAA ccuurrrreenntt oonn tthheep phhaasseea annddb baacckks seeccttiioonn.. 44.. EExxppeerriimmeennttaall SSeettuupp ffoorr RReeccoonnfifigguurraabbllee WWaavveelleennggtthhC Coonnvveerrtteerr FFiigguurree 55 ddeeppiiccttss tthhee sscchheemmaattiicc ddiiaaggrraamm ooff tthhee eexxppeerriimmeennttaall sseettuupp ooff tthhee SSOOAA--bbaasseedd wwaavveelleennggtthh ccoonnvveerrssiioonn ooff QQPPSSKK aanndd PPMM--QQPPSSKK ((bblluuee ddaasshheedd)) ssiiggnnaallss uussiinngg aa SSGGDDBBRR llaasseerr aass oonnee ooff tthhee ppuummpp ssoouurrcceess.. AA nnaarrrrooww lliinneewwiiddtthh eexxtteerrnnaall ccaavviittyy llaasseerr ((EECCLL)) ttuunneedd ttoo 11554422..55 nnmm ffoorr aallll eexxppeerriimmeennttss iiss uusseedd aass tthhee ssiiggnnaall ssoouurrccee aanndd wwaass mmoodduullaatteedd wwiitthh QQPPSSKK ddaattaa aatt 1122..55--GGbbaauudd uussiinngg aann ooppttiiccaall IIQQ mmoodduullaattoorr.. TThhee ooppttiiccaall mmoodduullaattoorr iiss ddrriivveenn bbyy eelleeccttrriiccaall ssiiggnnaallss ggeenneerraatteedd bbyy tthhee aarrbbiittrraarryy wwaavveeffoorrmm generator (AWG) with two uncorrelated pseudo-random bit sequences (PRBS) of 27-1 bits periodicity. The AWG operated at 25 GSa/s, which gives 2 samples per symbol for the 12.5-Gbaud QPSK signal. Appl.Sci.2017,7,1033 7of15 generator(AWG)withtwouncorrelatedpseudo-randombitsequences(PRBS)of27-1bitsperiodicity. Appl. Sci. 2017, 7, 1033 7 of 15 TheAWGoperatedat25GSa/s,whichgives2samplespersymbolforthe12.5-GbaudQPSKsignal. ThetwoQPSKsignalsareamplifiedbyusingtheradiofrequency(RF)amplifiers. Toimplementthe The two QPSK signals are amplified by using the radio frequency (RF) amplifiers. To implement the PM-QPSKsignalscheme,thePM-QPSKsignalisgeneratedbyusingaPol-Muxemulator,consisting PM-QPSK signal scheme, the PM-QPSK signal is generated by using a Pol-Mux emulator, consisting ofapolarizationbeamsplitter(PBS)atitsinput,apassivestagewithadelayof4.88ns(61symbols), of a polarization beam splitter (PBS) at its input, a passive stage with a delay of 4.88 ns (61 symbols), twopolarizationcontrollers,andapolarizationbeamcombiner(PBC)tocombinethepolarization two polarization controllers, and a polarization beam combiner (PBC) to combine the polarization tributaries. Theoutputofthetwopumpsarepassedthroughpolarizationcontrollers,combined,and tributaries. The output of the two pumps are passed through polarization controllers, combined, and polarization-aligned using a 3 dB coupler and a PBS. For the wavelength conversion of the QPSK polarization-aligned using a 3 dB coupler and a PBS. For the wavelength conversion of the QPSK signaldata,thegeneratedopticalQPSKsignalisthencoupledwithtwopumps(oneSGDBRlaserand signal data, the generated optical QPSK signal is then coupled with two pumps (one SGDBR laser onenarrowlinewidthECL)andsentintotheSOA-basedwavelengthconverter. ForbothQPSKand and one narrow linewidth ECL) and sent into the SOA-based wavelength converter. For both QPSK PM-QPSKschemes,thepowerofthesignalandthepumpsattheinputoftheSOAaresetat−10dBm and PM-QPSK schemes, the power of the signal and the pumps at the input of the SOA are set at and0dBm,respectively,foroptimumconversionefficiency[48]. Thesignalwavelengthundergoes −10 dBm and 0 dBm, respectively, for optimum conversion efficiency [48]. The signal wavelength wavelengthconversionthroughnon-degenerateFWMintheSOAoperatingat500mAbiascurrent. undergoes wavelength conversion through non-degenerate FWM in the SOA operating at 500 mA TheSOAdeviceusedintheexperimentisanonlinearSOAwithaveryfastgainrecoverytimeless bias current. The SOA device used in the experiment is a nonlinear SOA with a very fast gain recovery than25ps. ItoperatesoverC-bandwithatypicalsmallgainof25dB,asaturationpowerof+13dBm, time less than 25 ps. It operates over C-band with a typical small gain of 25 dB, a saturation power of andlessthan0.5dBpolarization-dependentsaturatedgain. +13 dBm, and less than 0.5 dB polarization-dependent saturated gain. QPSK Transmitter AWG Pol-MUX emulator RF RF I Q PBS PC PBC Converted Idler ECL (Signal) Coherent receiver PC QPSK-Mod Wavelength converter + analysis τ DelayPC LO Coh.Rx 3 dB SOA OBPF PC + ECL (Pump 1) VOA ISO DSP offline PC 3 dB PC 3 dB OSA Switching OBPF PBS VOA OSNR measurement ASE VOA Back Phase Gain Front SGDBR (Pump2) PC Dual pumps Noise loading Figure 5. Schematic diagram of the reconfigurable SOA-based wavelength conversion of the Figure5.SchematicdiagramofthereconfigurableSOA-basedwavelengthconversionofthequadrature quadrature phase shift keying (QPSK) and polarization multiplexed (Pol-Mux)-QPSK (blue dashed) phase shift keying (QPSK) and polarization multiplexed (Pol-Mux)-QPSK (blue dashed) signals signals employing a sampled grating distributed Bragg reflector (SGDBR) pump laser. PC: employing a sampled grating distributed Bragg reflector (SGDBR) pump laser. PC: polarization polarization controller, PBS: polarization beam splitter, PBC: polarization beam combiner, OBPF: controller,PBS:polarizationbeamsplitter,PBC:polarizationbeamcombiner,OBPF:opticalband-pass optical band-pass filter, ISO: isolator, ASE: noise source, VOA: variable optical attenuator, OSA: filter,ISO:isolator,ASE:noisesource,VOA:variableopticalattenuator,OSA:opticalspectrumanalyzer, optical spectrum analyzer, LO: local oscillator, Coh.Rx: coherent receiver. LO:localoscillator,Coh.Rx:coherentreceiver. After the FWM process in the SOA, the converted idler is then filtered out by using a tunable AftertheFWMprocessintheSOA,theconvertedidleristhenfilteredoutbyusingatunable optical bandpass filter (OBPF). For system performance evaluation purposes, the optical signal to optical bandpass filter (OBPF). For system performance evaluation purposes, the optical signal to noise ratio (OSNR) of the idler is changed by adding amplified spontaneous emission (ASE) from an noiseratio(OSNR)oftheidlerischangedbyaddingamplifiedspontaneousemission(ASE)from Erbium-doped fiber amplifier (EDFA) that is passed through a 2 nm bandwidth tunable optical anErbium-dopedfiberamplifier(EDFA)thatispassedthrougha2nmbandwidthtunableoptical bandpass filter. The filtered idler is then passed through a 3 dB splitter with one arm sent to the bandpassfilter. Thefilteredidleristhenpassedthrougha3dBsplitterwithonearmsenttotheoptical optical spectrum analyzer (OSA)for the OSNR measurement, and the other arm is passed into the spectrumanalyzer(OSA)fortheOSNRmeasurement,andtheotherarmispassedintothepolarization polarization diversity coherent optical receiver and captured by a real-time oscilloscope sampling at diversitycoherentopticalreceiverandcapturedbyareal-timeoscilloscopesamplingat50GSa/sfor 50 GSa/s for offline DSP processing. The received idler power at the input of the coherent receiver is offlineDSPprocessing. Thereceivedidlerpowerattheinputofthecoherentreceiverismaintainedat maintained at −19 dBm. The data captured from the real-time oscilloscope is first resampled to 2 −19dBm. Thedatacapturedfromthereal-timeoscilloscopeisfirstresampledto2samplespersymbol samples per symbol using a priori knowledge of the clock frequency. Then the constant modulus usingaprioriknowledgeoftheclockfrequency. Thentheconstantmodulusalgorithm(CMA)[49–51] algorithm (CMA) [49–51] is utilized to enable polarization de-multiplexing for PM-QPSK signal. An isutilizedtoenablepolarizationde-multiplexingforPM-QPSKsignal. AnMthpowerfrequencyoffset Mth power frequency offset compensation method [52–54] is employed to compensate the frequency compensationmethod[52–54]isemployedtocompensatethefrequencyoffsetbetweentheconverted offset between the converted idler signal and the local oscillator in the coherent receiver, with m = 4 idlersignalandthelocaloscillatorinthecoherentreceiver,withm=4beingthenumberofdistinct being the number of distinct phases in the QPSK symbol set. In order to make this frequency offset compensation method work correctly, it is essential to make sure that the absolute frequency offset is less than Rs/(2 M), where Rs is the symbol rate. A second order Phase-Locked Loop (PLL) is employed for the phase noise estimation [46], and the synchronization is achieved by adding training symbols at the beginning of the data [55] in order to carry out the BER calculation. Appl.Sci.2017,7,1033 8of15 phasesintheQPSKsymbolset. Inordertomakethisfrequencyoffsetcompensationmethodwork correctly,itisessentialtomakesurethattheabsolutefrequencyoffsetislessthanRs/(2M),where Rs is the symbol rate. A second order Phase-Locked Loop (PLL) is employed for the phase noise estimation[46],andthesynchronizationisachievedbyaddingtrainingsymbolsatthebeginningof Appl. Sci. 2017, 7, 1033 8 of 15 thedata[55]inordertocarryouttheBERcalculation. 55.. RReessuullttss aanndd DDiissccuussssiioonn The wavelength of the fast-tuning SGDBR pump laser is switched between two operating modes Thewavelengthofthefast-tuningSGDBRpumplaserisswitchedbetweentwooperatingmodes by applying a switching signal to the wavelength tuning sections. In order to benchmark the system byapplyingaswitchingsignaltothewavelengthtuningsections. Inordertobenchmarkthesystem performance, we first present the BER performances when pump2 is tuned and fixed to the two performance, we first present the BER performances when pump2 is tuned and fixed to the two wavelengths that pump2 will later be dynamically switched between. The wavelength and power of wavelengthsthatpump2willlaterbedynamicallyswitchedbetween. Thewavelengthandpower the signal and pump1 (ECL) are kept constant throughout. The input and output spectra of the SOA ofthesignalandpump1(ECL)arekeptconstantthroughout. Theinputandoutputspectraofthe when the SGDBR laser is set at 1548.68 nm and 1553.70 nm are shown in Figure 6a,b, respectively, SOAwhentheSGDBRlaserissetat1548.68nmand1553.70nmareshowninFigure6a,b,respectively, and it can be observed that the indicated idler of interest has changed wavelength position from Ch1 anditcanbeobservedthattheindicatedidlerofinteresthaschangedwavelengthpositionfromCh1 (1541.395 nm) to Ch2 (1538.684 nm). (1541.395nm)toCh2(1538.684nm). (a) 0 Output Pump1 Input Pump2 -20 Signal Idler (Ch 1) -40 -60 -80 1539 1541 1543 1545 1547 1549 1551 1553 Wavelength (nm) Figure 6. Input and output spectra of SOA showing the spectral locations of the signal of the external Figure6.InputandoutputspectraofSOAshowingthespectrallocationsofthesignaloftheexternal cavity laser (ECL), pump1 (ECL), pump2 (SGDBR), and converted idlers. (a) SOA input and output cavitylaser(ECL),pump1(ECL),pump2(SGDBR),andconvertedidlers.(a)SOAinputandoutput spectra when SGDBR is set at 1548.68 nm. (b) SOA input and output spectra when SGDBR is set at spectrawhenSGDBRissetat1548.68nm. (b)SOAinputandoutputspectrawhenSGDBRissetat 1553.70 nm. The detected idlers are indicated. 1553.70nm.Thedetectedidlersareindicated. BER performance as a function of OSNR at the receiver for the original signal; the signal after BERperformanceasafunctionofOSNRatthereceiverfortheoriginalsignal;thesignalafter SOA and converted signals (idlers) for the QPSK and PM-QPSK signals at 12.5 GBaud are displayed SOAandconvertedsignals(idlers)fortheQPSKandPM-QPSKsignalsat12.5GBaudaredisplayedin in Figure 7a,b, respectively. It can be observed that the penalty between the original signal, the signal Figure7a,b,respectively. Itcanbeobservedthatthepenaltybetweentheoriginalsignal,thesignal after SOA, and wavelength converted idler is under 0.5 dB for both cases, indicating the quality of after SOA, and wavelength converted idler is under 0.5 dB for both cases, indicating the quality the wavelength conversion scheme and potential usefulness. The constellation diagrams of the wavelength converted idler for a received OSNR of 12 dB and 14.5 dB are also given in Figure 7a,b, respectively. The phase noise of the FWM components is studied by using a coherent phase noise measurement technique [37,46]. The ECL’s employed for the signal and pump1 have a linewidth of around 40 kHz and the linewidth of the 1548.68 nm and 1553.70 nm wavelengths of the SGDBR laser (employed as the second pump for FWM scheme) are 260 kHz and 230 kHz, respectively. The linewidth (from the high frequency phase noise region) of the idlers is measured to be around 370 kHz and 300 kHz, as expected when the SGDBR is set to the two operating modes, since the idler Appl.Sci.2017,7,1033 9of15 ofthewavelengthconversionschemeandpotentialusefulness. Theconstellationdiagramsofthe wavelengthconvertedidlerforareceivedOSNRof12dBand14.5dBarealsogiveninFigure7a,b, respectively. ThephasenoiseoftheFWMcomponentsisstudiedbyusingacoherentphasenoise measurement technique [37,46]. The ECL’s employed for the signal and pump1 have a linewidth ofaround40kHzandthelinewidthofthe1548.68nmand1553.70nmwavelengthsoftheSGDBR laser(employedasthesecondpumpforFWMscheme)are260kHzand230kHz,respectively. The linewidth(fromthehighfrequencyphasenoiseregion)oftheidlersismeasuredtobearound370kHz Appl. Sci. 2017, 7, 1033 9 of 15 and300kHz,asexpectedwhentheSGDBRissettothetwooperatingmodes,sincetheidlerlinewidth ilsinthewesidutmh iosf ththee sluinme wofi dththe slionfetwhiedpthusm opf sthaen pdusmigpnsa al,nadn sdiginnatlh, iasncda sien tthheisl cinaesew tihdeth linofewthiedtShG oDf BthRe pSuGmDpBlRa speurmdopm lainseart edso.minates. FFiigguurree7 7..( a(a))B Bitiet rerorrrorra trea(tBe E(RB)EvRe)r svuesrsoupst iocapltsiciganl asligtonanlo itsoe nraotiisoe (OraStNioR ()OcSuNrvRe)s fcourrtvhees infopru tthoer igininpault soigringainl,atlh seigsniganl,a tlhaef tseirgnSaOl Aaf,taenr dSOthAe, caonndv tehrtee cdoindvleerrtsefdo rid1l2e.r5s GfoBra 1u2d.5Q GPBSaKudsi gQnPaSlK. ( sbi)gBnaElR. (vbe) rBsuEsR OvSeNrsRusc uOrSvNesRf ocrutrhveesin fpour ttohrei gininpaults iogrnigailn,tahl essigignnaal,l tahftee rsiSgOnAal, aafntdert hSOecAo,n avnedrt etdhei dcloenrsvfeorrte1d2 .i5dGleBrsa ufodr P1M2.5-Q GPBSaKudsi gPnMal-.QPSK signal. To calculate the limitations of the wavelength conversion scheme, we study the OSNR of the To calculate the limitations of the wavelength conversion scheme, we study the OSNR of the idler as a function of the detuning between the two pumps. The different wavelength converted idlers idler as a function of the detuning between the two pumps. The different wavelength converted are filtered out by using an optical tunable band-pass filter. The OSNR measurement is then idlersarefilteredoutbyusinganopticaltunableband-passfilter. TheOSNRmeasurementisthen undertaken by using the OSA. In order to estimate the signal power and the noise floor correctly, the undertakenbyusingtheOSA.Inordertoestimatethesignalpowerandthenoisefloorcorrectly,the solution is to take two consecutive sweeps of the OSA with different resolution bandwidth (RBW) solutionistotaketwoconsecutivesweepsoftheOSAwithdifferentresolutionbandwidth(RBW) settings [56]. For the first sweep, OSA 0.2 nm RBW is used for the measurement of the signal power, settings[56]. Forthefirstsweep,OSA0.2nmRBWisusedforthemeasurementofthesignalpower, and the second sweep measures the noise power by using 0.1 nm RBW setting. The output OSNR of the idler wavelength for the case with signal fixed at 1542.5 nm, pump1 fixed at 1549.8 nm, and the pump2 (SGDBR) tuned from 1548.7 nm to 1564.7 nm is displayed in Figure 8, which shows a tuning range of around 14 nm can be achieved with more than 9 dB OSNR, which is enough for the wavelength conversion of the QPSK data at 12.5 Gbaud to get a BER value below the 7% FEC limit (3.8 × 10−3). Around 11 nm tuning range can be achieved for the wavelength conversion of PM-QPSK data to get a BER value below the 7% FEC limit. In order to investigate the time-resolved BER [57,58] performance of the fast-reconfigurable wavelength converter, we apply a square wave current with 500 kHz repetition rate to the front section of the SGDBR to switch the wavelength converted idler between Ch1 (1541.395 nm) and Ch2 (1538.684 nm), with the other currents applied to the SGDBR laser held constant and the received OSNR set at 12 dB for the QPSK signal and 14.5 dB for the Appl.Sci.2017,7,1033 10of15 andthesecondsweepmeasuresthenoisepowerbyusing0.1nmRBWsetting. TheoutputOSNR oftheidlerwavelengthforthecasewithsignalfixedat1542.5nm,pump1fixedat1549.8nm,and the pump2 (SGDBR) tuned from 1548.7 nm to 1564.7 nm is displayed in Figure 8, which shows a tuningrangeofaround14nmcanbeachievedwithmorethan9dBOSNR,whichisenoughforthe wavelengthconversionoftheQPSKdataat12.5GbaudtogetaBERvaluebelowthe7%FEClimit (3.8×10−3). Around11nmtuningrangecanbeachievedforthewavelengthconversionofPM-QPSK datatogetaBERvaluebelowthe7%FEClimit. Inordertoinvestigatethetime-resolvedBER[57,58] performanceofthefast-reconfigurablewavelengthconverter,weapplyasquarewavecurrentwith 500kHzrepetitionratetothefrontsectionoftheSGDBRtoswitchthewavelengthconvertedidler Appl. Sci. 2017, 7, 1033 10 of 15 betweenCh1(1541.395nm)andCh2(1538.684nm),withtheothercurrentsappliedtotheSGDBRlaser hPeMld-QcoPnSsKta snigtnaanld. Tthhee rteimceeiv-reedsoOlvSeNdR BsEeRt amte1a2sduBrefmorentht eisQ cPhSaKrascitgenriazleadn fdor1 4C.h51d bByf ofirxtihneg PthMe- cQePnSteKr sfrigenquale.nTchye otfim thee-r OesBoPlvFe dtoB CEhR1m aenads uardejmusetnintgis tchhea LraOct etori zthede wfoarvCehle1nbgythfi xoifn Cghth1.e Tchenet eprrofrceeqsus eins ctyheonf trheepeOaBtePdF ftoor CChh12a. ndadjustingtheLOtothewavelengthofCh1. TheprocessisthenrepeatedforCh2. 40 35 30 25 20 15 10 5 1526 1528 1530 1532 1534 1536 1538 1540 1542 Wavelength of the converted ider Figure 8. OSNR as a function of the wavelength of the converted idler. Figure8.OSNRasafunctionofthewavelengthoftheconvertedidler. We now present results of wavelength conversion when pump2 is dynamically tuned between Wenowpresentresultsofwavelengthconversionwhenpump2isdynamicallytunedbetween 1547.68 nm and 1553.7 nm. In order to accurately estimate the time-resolved BER performance after 1547.68nmand1553.7nm. Inordertoaccuratelyestimatethetime-resolvedBERperformanceafter a switching event, a number of switching events are captured via multiple acquisitions using the real- a switching event, a number of switching events are captured via multiple acquisitions using the time scope. Each data point in the time-resolved BER curves corresponds to the probability of real-timescope. Eachdatapointinthetime-resolvedBERcurvescorrespondstotheprobabilityof receiving an error in a 10 ns period. This means the BER is averaged over a block length of 125 receivinganerrorina10nsperiod. ThismeanstheBERisaveragedoverablocklengthof125symbols symbols (10 ns), and data captured from 200 switching events is used for the calculation, with a total (10 ns), and data captured from 200 switching events is used for the calculation, with a total of of 5 × 104 bits and 105 bits used for calculating each BER point in the time-resolved BER curves for 5×104bits and 105 bits used for calculating each BER point in the time-resolved BER curves for QPSK and PM-QPSK signal at 12.5 GBaud, respectively. It can be seen from Figure 9a,b that the QPSK and PM-QPSK signal at 12.5 GBaud, respectively. It can be seen from Figure 9a,b that the reconfiguration time (time to have a BER better than the 7% FEC limit) after a switch is approximately reconfigurationtime(timetohaveaBERbetterthanthe7%FEClimit)afteraswitchisapproximately 50 ns and 160 ns for QPSK and PM-QPSK signal, respectively. The red curves in Figure 9a,b show the 50nsand160nsforQPSKandPM-QPSKsignal,respectively. TheredcurvesinFigure9a,bshowthe temporal frequency offset between the idler and the local oscillator in the coherent receiver after a temporalfrequencyoffsetbetweentheidlerandthelocaloscillatorinthecoherentreceiveraftera switching event. It takes around 70 ns for the frequency of the wavelength converted idler for QPSK switchingevent. Ittakesaround70nsforthefrequencyofthewavelengthconvertedidlerforQPSK signal to fully stabilize after a switch, and 100 ns for PM-QPSK signal. signaltofullystabilizeafteraswitch,and100nsforPM-QPSKsignal. Figure10showstheBERmeasurementasafunctionofOSNRinaswitchingenvironmentwith differentwaitingtimeaftertheidlerisswitchedtoCh1andCh2whenusingQPSKandPM-QPSK decoding. Theblueandredcurvesshowtheresultsforthedatawithawaitingtimeof50nsafter switchingwhenusingQPSKdecodingforCh1andCh2,respectively. Thebrownandgreencurvesare fora160nswaitingtimewhenusingPM-QPSKdecodingforCh1andCh2,respectively. Thepink andblackcurvesshowthebadperformancewitha50nswaitingtimeusingPM-QPSKdecodingfor Ch1andCh2,respectively. TherequiredwaitingtimewhenusingPM-QPSKdecodingislongerthan QPSKdecodingmainlyduetothelongerconvergencetimeassociatedwiththeCMAmethodusedfor de-multiplexingthedual-polarizationpackets.

Description:
employing advanced modulation formats, the phase noise of the lasers becomes an Due to the advance in digital signal processing (DSP),.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.