FAST AND ACCURATE VISIBILITY PREPROCESSING A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF SCIENCE AT THE UNIVERSITY OF CAPE TOWN IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY By ShaunNirenstein October2003 Supervisedby E.H.Blake (cid:1)c Copyright 2003 by Shaun Nirenstein ii ThisthesisisdedicatedtomyfatherIssadoreNirenstein,mymotherRosanneNirensteinandtothe memoriesofJackNirensteinandSidneySapire. iii Abstract Visibilitycullingisameansofacceleratingthegraphicalrenderingofgeometricmodels. Invisible objects are efficiently culled to prevent their submission to the standard graphics pipeline. It is advantageoustopreprocessscenesinordertodetermineinvisibleobjectsfromallpossiblecamera views. Thisinformationistypicallysavedtodiskandmaythenbereuseduntilthemodelgeometry changes. Suchpreprocessingalgorithmsarethereforeusedforscenesthatareprimarilystatic. Currently, the standard approach to visibility preprocessing algorithms is to use a form of ap- proximatesolution,knownasconservativeculling. Suchalgorithmsover-estimatethesetofvisible polygons. This compromise has been considered necessary in order to perform visibility prepro- cessingquickly. Thesealgorithmsattempttosatisfythegoalsofbothrapidpreprocessingandrapid run-timerendering. We observe, however, that there is a need for algorithms with superior performance in prepro- cessing, as well as for algorithms that are more accurate. For most applications these features are notrequiredsimultaneously. Inthisthesiswepresenttwonovelvisibilitypreprocessingalgorithms, eachofwhichisstronglybiasedtowardoneoftheserequirements. Thefirstalgorithmhastheadvantageofperformance. Itexecutesquicklybyexploitinggraph- ics hardware. The algorithm also has the features of output sensitivity (to what is visible), and a logarithmicdependencyinthesizeofthecameraspacepartition. Theseadvantagescomeatthecost of image error. We present a heuristic guided adaptive sampling methodology that minimises this error. Wefurthershowhowthisalgorithmmaybeparallelisedandalsopresentanaturalextension ofthealgorithmtofivedimensionsforacceleratinggeneralisedrayshooting. The second algorithm has the advantage of accuracy. No over-estimation is performed, nor are any sacrifices made in terms of image quality. The cost is primarily that of time. Despite the relatively long computation, the algorithm is still tractable and on average scales slightly super- linearlywiththeinputsize. Thisalgorithmalsohastheadvantageofoutputsensitivity. Thisisthe firstknowntractableexactsolutiontothegeneral3Dfrom-regionvisibilityproblem. iv In order to solve the exact from-region visibility problem, we had to first solve a more general form of the standard stabbing problem. An efficient solution to this problem is presented indepen- dently. v Acknowledgements Iwouldliketothankmysupervisor,ProfessorEdwinBlake. Withouthisunrelentingconfidencein myabilitiesandhisguidance,mylifewouldhavetakenaverydifferenttrack. Ialsowishtothank Dr. JamesGainfortheimmenseamountoffeedbackIreceivedwhilewritingthisthesis. Icanonly hopetoachievehisstandardsofexcellence. IwouldalsoliketothanktheNationalResearchFoundationforfundingmyresearch. I am indebted to my students, Adrian Sharpe and Matthew Hampton, who performed the im- plementation and evaluation of the accelerated ray-tracer/preprocessor (see Section 4.4), and con- tributedseveralkeyideas. Iwouldalsoliketoextendmygratitudetomystudents,JohnLewisand GaryOberholster,whoimplementedtheparallelpreprocessoroutlinedinSection4.5. Iamgratefultoallthosewhohavegiveninputovertheyears. Thisincludes(inroughlychrono- logical order) Gerhard van Wagenin, Nicholas Holzschuch, Ashton Mason, Fabian Nunez, Patrick Marais, Yiorgos Chysanthou, Henri Laurie, Rudi Penneand JiriBittner. Iwouldalso liketo thank the crew at EM Software and Systems for the opportunity to work at such a dynamic company. In particular,Iwouldliketothankthemfortheunderstandingshownwhilethisthesiswascompleted. IalsothankallmembersoftheCVClab,fortheopportunitytoworkwithsuchanincrediblegroup ofpeople. Iwouldliketothankmygrandparents,MyerandThelmaSaker,forprovidingmewithendless inspiration and valuable advice. I wish to thank my parents, Issy and Rosanne, my brother Grant, Hilton and Leonie Saker, and Margaret and Bradley Bouwer for their encouragement, emotional support and inspiration. Last, and certainly not least, I would like to thank my beautiful wife Athena. Throughher,Ifindmyselftrulyalive. vi Preface Weadheretocertainconventionswithinthisdissertation. Ingeneral,vectorsarecappedwitharrows (e.g.,(cid:1)a),points,coordinatecomponentsandintegersarereferencedbythelowercaselettersofthe standardEnglishalphabet(e.g.,a). Differentiationbetweenpointsandintegersshouldbeclearfrom the context. Sets are denoted by the upper case letters of the standard English alphabet (e.g., A). ScalarsarerepresentedbylowercaseGreekletters(e.g.,α). Thenotationforpolyhedramayvary, dependingonwhethertheyaretreatedassetsofpointsexplicitly(e.g.,... ∈ P),oraselementsof asetthemselves(e.g.,p ∈ ...). Otherparticularsaredefinedincontext. All proofs that we consider interesting, yet non-essential are included in Appendix A for the reader. vii Contents Abstract iv Acknowledgements vi Preface vii 1 Introduction 1 1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 AggressiveTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 SelectiveStabbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 ExactTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Background 9 2.1 From-pointvs. From-regionVisibility . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 TimeBoundedVisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 From-pointVisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 ShadowFrustaCulling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 AnIncrementalAspectGraphApproximation . . . . . . . . . . . . . . . . 13 2.2.3 OccluderTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.4 OcclusionMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 From-regionVisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 From-RegionVisibilityasaLightSource . . . . . . . . . . . . . . . . . . 18 viii 2.3.2 StrongOccluders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3 Cell-PortalVisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.4 ExtendedProjections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.5 VolumetricVisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.6 SamplingTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.7 5DSpatialSubdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.8 Hoops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.9 TemporalBoundingVolumes. . . . . . . . . . . . . . . . . . . . . . . . . 26 1 2.3.10 2 D VisibilitySolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 2.4 RaySpaceFactorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 AnalyticVisibilityTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1 IsotopyClassesandArrangements . . . . . . . . . . . . . . . . . . . . . . 28 2.5.2 VisibilityEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.3 TheVisibilityComplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.4 TheVisibilitySkeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.5 TheAspectGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.6 PolygonStabbingandAnti-penumbraComputation . . . . . . . . . . . . . 33 2.5.7 DiscontinuityMeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.8 AnalyticVisibilityinPractice . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 CompressionofVisibilityInformation . . . . . . . . . . . . . . . . . . . . . . . . 36 3 GeometricPreliminaries 38 3.1 ProjectiveSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.1 TheClassicProjectivePlane . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2 OrientedProjectiveGeometry . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.3 ddimensionalProjectiveSpaces . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.4 ProjectiveDuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.5 Plu¨ckerspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 d-DimensionalPolytopeRepresentation . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 TheFaceLattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 FaceEnumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 SplittingaPolytopeComplexindDimensions. . . . . . . . . . . . . . . . . . . . 46 3.4 Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ix 3.5 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.1 TheGeneralisedCrossProduct . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.2 DeterminingtheLinesThroughFourLines . . . . . . . . . . . . . . . . . 51 4 AggressiveVisibilityPreprocessing 53 4.1 VisibilityFromaSurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.1 TheVisibilityCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.2 UniformSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.3 AdaptiveSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 AlgorithmFramework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.1 VisibilityFromaVolumetricRegion . . . . . . . . . . . . . . . . . . . . . 61 4.2.2 HierarchicalSubdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.3 AlgorithmAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3.2 Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4 PreprocessingRaySpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4.1 BriefBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.2 5DPre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.3 PreliminaryResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.4 Conclusion(5DSubdivision) . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.5 ParallelisingHardwareAcceleratedVisibility . . . . . . . . . . . . . . . . . . . . 88 4.6 HardwareExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.6.1 AcceleratingRendering . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.6.2 AcceleratingBufferFeedback . . . . . . . . . . . . . . . . . . . . . . . . 89 4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 TheSelectiveStabbingProblem 91 5.1 Phase1: ConstructingtheSetofStabbingLines . . . . . . . . . . . . . . . . . . . 93 5.1.1 ComputingtheSetofStabbingLinesfor|S| > 2 . . . . . . . . . . . . . . 93 5.1.2 UnboundednessintheSetofLinesThroughOnePolygon . . . . . . . . . 96 5.2 TheSetofLinesThoughTwoPolygons . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.1 ProofOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.2 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 x
Description: