Fast and accurate image registration. Applications to on-board satellite imaging. Martin Rais To cite this version: Martin Rais. Fast and accurate image registration. Applications to on-board satellite imaging.. General Mathematics [math.GM]. Université Paris Saclay (COmUE); Universitat de les Illes Balears (@Université des iles Baléares), 2016. English. NNT: 2016SACLN077. tel-01485321 HAL Id: tel-01485321 https://theses.hal.science/tel-01485321 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLN077 T D HESE DE OCTORAT DE UNIVERSITAT DE LES ILLES BALEARS et de L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE A L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN (ÉCOLE NORMALE SUPÉRIEURE PARIS-SACLAY) ÉCOLE DOCTORALE N°574 Ecole doctorale de mathématiques Hadamard Spécialité de doctorat : Mathématiques appliquées Par M. Martin Emilio Rais FAST AND ACCURATE IMAGE REGISTRATION. APPLICATIONS TO ON-BOARD SATELLITE IMAGING. Thèse présentée et soutenue à Palma de Majorque, le 9 décembre 2016 : Composition du Jury : Mme C. Ballester, Professeure, Universitat Pompeu Fabra, Présidente du Jury M.Pascal Monasse, Professeur, Ecole des Ponts ParisTech, Rapporteur M.Frédéric Falzon, Directeur de Recherche, Thales Alenia Space, Rapporteur M.Vasileios Argyriou, Professeur, Kingston University, Examinateur M.Vincent Michau, Directeur de Recherche, ONERA, Examinateur M.J.-M. Morel, Professeur, ENS Paris-Saclay, Directeur de thèse M.Bartomeu Coll Vicens, Professeur, UIB, Co-directeur de thèse i AmihermanoAndrés. i Acknowledgements Mymaster’sadvisorfromBuenosAires, MartaMejail, togetherwithsomegoodfriends ofmine,NorbertoGoussiesandFranciscoGomezFernandez,introducedmetotheworld of image processing. It was when I met Jean-Michel Morel that my passion for research started. Hishardwork,motivation,geniusandmostlytheloveforwhathedoeshasbeen a constant source of inspiration all along my PhD. I don’t have enough words to thank himforwhathedidduringthelastyears. ThesamegoestomyotheradvisorBartomeu Coll. Apart from everything he has helped me from an academical point of view, his warmth,humanvalues,simplicityandhumilityhavebeenveryimportanttome. Ihave tomentionaswelltheexcellentbeerhebrews. IwouldalsoliketothanktheimagequalitygroupfromCNES,inparticularPhilippe Kubik, Gwendoline Blanchet, Jean-Marc Delvit, Christophe Latry and Carole Thiebaut, forhavingproposedseveraltopicsofthisPhDthesisaswellashavingcollaboratedwith fruitfuldiscussionsandprovidingimagesimulationsanddatasets. MygratitudegoesaswelltothethesisreviewersFrédéricFalzonandPascalMonasse, fortheirfruitfulremarksandfortakingthetimetoreadthisextensivemanuscript. Also, for the members of the jury Vincent Michau, Vasileios Argyriou, Jirˇí Matas, Coloma Ballester,JoseLuisLisaniandCatalinaSbertforhavingacceptedtobepartoftheevalu- ationboard. In the CMLA, I met some wonderful people. I begin by thanking the secretaries Micheline, Veronique and Virginie for all the help they gave me. I would also like to thankmyfriendsatwork: Ives,elMatu,CarlitosandRafa,withwhomIspentlotsofdis- cussions,funnytalks,beersandgoodtimestogether. IwouldliketothankaswellCarlo, Miguel,AxelandMauricio,someamazingresearchersIfoundhere. Andfinally,Iwantto thankparticularlytwoguysthatstronglycontributedwiththisdissertation: Gabrieleand Enric. Their guidance, patience, methodology and motivation have strongly influenced mealongmyscientificcareer,andtogetherwithJM,wereconstantsourcesofmotivation. Yourhelpwasinvaluabletome. In the TAMI group, I also met excellent researchers. I would like to begin by thank- ing Toni for all the help he gave me during this thesis. His perseverance as well as his expertise in the research community have undoubtedly contributed with my academic growth. I would also like to thank the rest of the people in the group: Ana Belen, Joan andJulia. IwouldhaveneverbeenabletofinishthisPhDwithoutthesupportofmyfriends. In France I met some amazing people. Hernan was my partner during my first years here, and a great friend. Aleksandra turned fast into my sister, and together with Claudia andHernan,weremybackboneinthefirstyearsofthisjourneyandmademyeveryday life much happier. I also have to include my Argentinean friends I made here: Alito, la chiqui,lachueka,lapetiandLala. Talkingaboutfriends,ImettwootherparticularindividualswithwhomIsharedmy every day life and that will stay in my heart forever. Larucha is the best that Uruguay haseverproduced(thankstolaPetruzi,thesecondbest). Indeed,ittooklessthanayear iii iv for her to become “my wife”. We have spent so much time together that the nickname seemed just right. She was also part of my backbone, an excellent friend and researcher andprobably,oneofthereasonsIsucceededtolivefiveyearsabroad. Thislistwouldn’t becompletewithoutNicolino. WebegantoknoweachotherwhenwetravelledtoAus- tralia for ICIP, and since then he became more and more important in my life, together with Sandra. Besides being the best ever, he is an amazing person and a great friend. It seemsthatthecakewasnotalieafterall. I would also like to thank my friends from Argentina. This includes Fede, el negro, elblanco, elpelado, camisa, Jr, Jinkis, JonyandZaina. Iregretnotbeingabletobethere for some of you in some situations, but even without communicating so often, you are amazing, and own a really important part of my heart. This obviously extends to “las chicas”: brujisina,veci,caskis,queipusiandlaprimita,andincludesSofi,AyeandAgata as well. You are the best company this manga de boludos will ever find. What can I say about the newcomers? Of course I am dying to share more time with la mumita and malenuchi, I wish I could see them often. Seeing a simple picture of them growing brightensupmyday. Iwouldalsoliketothankthepeoplethathavebeenwithmeandmyfamilyallalong thisjourney: mitíaHilda,mitíoGo,AxiyLean,MiguelySarita,Diego,BrendayErnest, eltíoEduardoylatíaElida,Luciana,Hernan,NatiyPablo,eltioJorgeylatíaDiana. Finally, I have to thank the five most important people in my life. First is my girl- friendVictoria. Notonlyfortoleratingmysnoring,myarrivinglatebecauseofthethesis, amongmanyother,butalsobecauseofalltheloveandsupportshegivesmeeveryday. Also,tomygrandmalaNani,whichImissedalotduringalltheseyears. MyparentsRita andJorgewerethemainreasonIwasabletostartandtofinishthisthesis. Theirsupport, education, constant caring, ethical values, strong commitment to work, and their love made me what I am today. At last, my brother Andrés, who has been my main inspi- ration to fight and overcome all difficulties. I miss you a lot. I love you with all my heart. Lastbutnotleast,IwouldliketothanktheMinisteriodeEconomíayCompetitividad fortheFPIscholarshipassociatedwiththeprojectTIN2011-27539. iv Contents 1 Introduction 15 1.1 Chapter2: ReviewofGlobalSubpixelShiftEstimationMethods . . . . . . 16 1.2 Chapter3: ImprovingwavefrontsensingwithaShackHartmanndevice . 19 1.3 Chapter4: Stab-Active: stabilizingonboardimageaccumulation . . . . . 21 1.4 Chapter5: RANSAAC:RANdomSAmpledAggregatedConsensus . . . . 22 1.5 Summaryofcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.6 Listofpublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ReviewofGlobalSubpixelShiftEstimationMethods 29 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.1 Subpixelshiftestimationapproaches . . . . . . . . . . . . . . . . . 30 2.1.2 Chaptersummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 Gradient-BasedShiftEstimationmethods . . . . . . . . . . . . . . . . . . . 32 2.2.1 OpticalFlowequationwithLeastSquaresminimization . . . . . . 33 2.2.2 OpticalFlowEquationwithTotalLeastSquaresMinimization . . . 33 2.2.3 Biasminimizationthroughiterativeandmultiscalegradient-based shiftestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.4 Minimizingthebiasthroughcorrectedgradientestimation . . . . . 38 2.2.5 BidirectionalbiascorrectionforGradient-BasedShiftEstimation . 38 2.2.6 Gradientcomputationandimageprefiltering. . . . . . . . . . . . . 41 2.2.7 Interpolationmethodsforimageresampling . . . . . . . . . . . . . 43 2.2.8 Shiftestimationbycentroidofinterpolatingkernel . . . . . . . . . 45 2.3 Phase-correlationmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3.1 Localfunctionfittinginthespatialdomain . . . . . . . . . . . . . . 47 2.3.2 Analyzingthephasedifferencematrixinthefrequencydomain . . 51 2.3.3 Subspacephasecorrelationmethods . . . . . . . . . . . . . . . . . . 53 2.3.4 Gradientcorrelationmethods . . . . . . . . . . . . . . . . . . . . . . 56 2.4 Methodevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.1 InfluenceofgradientestimationonGBSEmethods . . . . . . . . . 62 2.4.2 Robustnesstonoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.4.3 Robustnesstoviolationofthebrightnessconstancyconstraint . . . 76 2.4.4 Robustnesstoaliasedsampleprocesses . . . . . . . . . . . . . . . . 77 2.4.5 Computationalcostcomparison . . . . . . . . . . . . . . . . . . . . 79 2.4.6 EvaluationonrealMRIimages . . . . . . . . . . . . . . . . . . . . . 81 2.5 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3 ImprovingwavefrontsensingwithaShack-Hartmanndevice 87 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.1.1 Wavefrontsensingfromearth-observationsatellites . . . . . . . . . 89 3.2 State-of-the-artreview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 v vi CONTENTS 3.2.1 Correlation-basedMethods . . . . . . . . . . . . . . . . . . . . . . . 90 3.2.2 PhaseCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.2.3 IteratedEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.2.4 MaximumLikelihoodEstimator . . . . . . . . . . . . . . . . . . . . 95 3.3 AccurateshiftestimationusingopticalflowinthecontextofaSHWFS . . 95 3.3.1 Iterativegradient-basedshiftestimator . . . . . . . . . . . . . . . . 96 3.3.2 Gradientcomputationandimageprefiltering. . . . . . . . . . . . . 97 3.3.3 Interpolationmethodsforimageresampling . . . . . . . . . . . . . 98 3.3.4 Imageintensitiesequalization . . . . . . . . . . . . . . . . . . . . . . 98 3.3.5 Multiscaleimplementation . . . . . . . . . . . . . . . . . . . . . . . 100 3.4 Scenepreselectionandrobustnessestimation . . . . . . . . . . . . . . . . . 100 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.5.1 Scenepre-selectionevaluation . . . . . . . . . . . . . . . . . . . . . 103 3.5.2 Comparisonwithstate-of-the-artmethods . . . . . . . . . . . . . . 103 3.6 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4 Stab-Active: stabilizingonboardimageaccumulation 109 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2 Methodanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3 InfluenceofNoiseontheRegistration . . . . . . . . . . . . . . . . . . . . . 111 4.3.1 Noiseestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.2 Predictingtheerrorontheestimatedshiftcausedbythenoise . . . 112 4.3.3 Cramer-Raolowerboundsforimageregistrationofseveralimages withuniformtranslation . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3.4 ConditionsbasedontheSNRoftheimages . . . . . . . . . . . . . . 116 4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.1 Gradient-basedshiftestimationalgorithmfornoisyimages . . . . 117 4.4.2 Automaticcalculationofpforeachline . . . . . . . . . . . . . . . . 120 4.4.3 Complexityoftheanalyzedalgorithms . . . . . . . . . . . . . . . . 121 4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.1 Impactoftemporalconvolutiononimagenoise . . . . . . . . . . . 123 4.5.2 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.5.3 VisualResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5.4 ProposedAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.6 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5 RANSAAC:RANdomSAmpleAggregatedConsensus 149 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1.1 RANSACiterationsandmodelerror . . . . . . . . . . . . . . . . . . 150 5.1.2 Distanceparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.1.3 Finalrefinementstep . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.1.4 RANSACweaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.2 RANSACAlternativesorImprovements . . . . . . . . . . . . . . . . . . . . 153 5.3 RandomSampleAggregatedConsensus . . . . . . . . . . . . . . . . . . . . 155 5.3.1 Aggregationof2Dparametrictransformations . . . . . . . . . . . . 156 5.3.2 AggregationofEstimates . . . . . . . . . . . . . . . . . . . . . . . . 159 5.3.3 LocalOptimizationanditsvariants . . . . . . . . . . . . . . . . . . 160 5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.4.1 QualitativeEvaluation: PaintingsRegistrationwithProjectiveTrans- formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.4.2 QuantitativeEvaluationbyaSimulatedGroundTruth. Application 1: EstimatingProjectiveTransforms. . . . . . . . . . . . . . . . . . . 164 vi CONTENTS vii 5.4.3 Application2: EstimatingHomography+Distortion . . . . . . . . . 182 5.5 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6 Conclusions 187 A Fast Interpolation Methods. Focus on Image Resampling for Shift Estimation onSatelliteImages. 189 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 A.1.1 Problemstatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 A.1.2 Interpolationfunctionandinterpolationkernels . . . . . . . . . . . 190 A.1.3 Interpolationkernelcharacteristics . . . . . . . . . . . . . . . . . . . 190 A.2 InterpolationMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 A.2.1 IdealInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 A.2.2 NearestNeighborInterpolation . . . . . . . . . . . . . . . . . . . . . 195 A.2.3 BilinearInterpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . 195 A.2.4 QuadraticInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . 195 A.2.5 BicubicInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 A.2.6 WindowedSincApproximations . . . . . . . . . . . . . . . . . . . . 197 A.2.7 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2.8 o-Moms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.2.9 Schaum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 A.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 A.3.1 Separablekernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 A.3.2 Imagetranslationalgorithm . . . . . . . . . . . . . . . . . . . . . . . 203 A.3.3 ImagePrefiltering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 A.3.4 FourierInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 A.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 A.4.1 Quantitativeresults. . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 A.4.2 Qualitativeresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 A.4.3 ExecutionTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 A.4.4 Combiningtimeandapproximationerror . . . . . . . . . . . . . . . 225 B FastAnscombeVSTimplementationforfastonboardnoisestabilization 229 C Algorithmsforgradient-basedshiftestimationusedintheStab-Activeapplica- tion 231 vii
Description: