February7,2008 2:45 WSPC/TrimSize: 9.75inx6.5inforProceedings mg10-hosotani FALSE VACUUM LUMPS WITH THE FERMIONIC CORE 4 0 0 YUTAKAHOSOTANI∗ 2 Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan n E-mail: [email protected] a J 0 RAMING. DAGHIGH 3 Department of Chemistry and Physics, Arkansas State University P.O. Box 419, State University, AR 72467-0419, USA 1 E-mail: [email protected] v 4 2 1 Stablegravitating lumpswithafalsevacuum coresurroundedbythetruevacuum ina 1 scalar field potential exist in the presence of fermions at the core. These objects may 0 existintheuniverseatvariousscales. 4 0 / c 1. Scalar field lumps with fermions q - Whenascalarfieldpotentialhastwonon-degenerateminima,theabsoluteminimum r g ofthepotentialcorrespondstothetruevacuum,whiletheothertothefalsevacuum. : If the entire universe is in a false vacuum, it decays into the true vacuum through v i bubblecreationbyquantumtunneling. Ifthesizeofafalsevacuumlumpissmaller X than the critical radius, the lump would quickly decay, with its energy dissipating r tothe spatialinfinity. Ifitssizeis largerthanthe criticalradius,the lumpbecomes a a black hole.1,2,3 Inthis reportwedemonstratethatastatic falsevacuumlumpbecomesstable if 4 there are additionalfermions coupledto the scalarfield. Yukawa interactions play a key role in making such a structure possible. We stress that these gravitating 5 6 7 lumps are quite different from boson stars, Q-balls and Fermi-balls. We consider a system consisting of a scalar field φ and a fermion field ψ in Einstein gravity. Its Lagrangiandensity is given by 1 1 = + gµν∂µφ∂νφ V[φ] (gφ+m0)ψ−ψ+ (1) L 16πGR 2 − − ··· where and V[φ] are the scalar curvature and the scalar potential, respectively. R We take a potential λ 1 1 V[φ] = (φ f ) φ3 (f +4f )φ2 f (f 2f )(φ+f ) , (2) 2 2 1 2 2 1 2 4 − (cid:26) − 3 − 3 − (cid:27) ∗Work partially supported by grants 13135215 and 13640284 of the Ministry of Education and ScienceofJapan. 1 February7,2008 2:45 WSPC/TrimSize: 9.75inx6.5inforProceedings mg10-hosotani 2 [φ] V φ= f φ = f 1 2 gφ<ψψ> − − <ψψ>=/ 0 <ψψ>=0 f1 f2 φ Figure1. Thescalarfieldpotential andthefalsevacuumlump. which satisfies V′[φ]=λφ(φ f )(φ f ) and V[f ]=0. 1 2 2 − − In a sherically symmetric configuration (fig. 1), g ψ−ψ =ρ0θ(R1 r) and h i − H(r) dr2 ds2 = dt2 r2(dθ2+sin2θdϕ2) . (3) p(r)2 − H(r) − The Einstein equations and the scalar field equation reduce to 2 H′ 1 φ′′(r)+ +4πGrφ′(r)2+ φ′(r)= V′[φ]+g ψ−ψ , (cid:18)r H (cid:19) H(cid:16) h i(cid:17) 2G r H =1 4πr2drT [φ] . (4) 00 − r Z 0 We look for a solution in which φ f inside the lump, whereas φ f outside. 1 2 ∼ ∼ 2. Solutions Fermions have a mass m + f m inside a lump. We consider the case in 0 S | | ≡ which m m + f and the fermion gas inside the lump is nonrelativistic so 0 2 ≪ that hψ−ψi ∼ hψ†ψi = ρn. Let R be the radius of the lump. The total fermion number (4πR3/3)ρ is kept fixed. The total energy of the lump is E(R) + n f ∼ E ǫ(ρ ) (4πR3/3)+4πR2σ where = mρ +3(3π2)2/3ρ5/3/10m. The min(cid:8)imum n f n n E of U[(cid:9)φ] = V[φ]+gρ φ is located at φ = f , i.e. U′[f ] = 0. Then ǫ U[f ] n S S S ≡ ∼ ǫ = V[f ] for small ρ , while ǫ (fρ )4/3 for large ρ . σ is the surface tension 0 1 n n n ∼ − resulting fromvarying φ inthe boundary wallregion. E(R) is minimized atR=R¯ which gives the size of the lump configuration. Thebehaviorofthe solutionisdisplayedinfig.2. φ(r) makesasharptransition from f to f in R < r < R . The wall is very thin; R R 1/√λf R S 2 1 2 2 1 1 − ∼ ≪ where f = (f +f )/2. The geometry is approximately anti-de Sitter inside the 1 2 | | lump (ǫ<0) and Schwarzschildoutside the lump. Inside the lump 3 3 3 r2 φ(r)=f +δφ(0) F +κ, κ, ; , S · (cid:16)4 4 − 2 −a2f(cid:17) February7,2008 2:45 WSPC/TrimSize: 9.75inx6.5inforProceedings mg10-hosotani 3 φ(r) H(r) f 2 2 0 1 R1 R2 rr f 1 0 f S R1 R2 r Figure2. Thebehaviorofφ(r)andH(r)isshownschematically. R2−R1≪R1 3 a = − , κ= 1 a2V′′(f )+ 9 . (5) f r8πGǫ 2q f S 4 F is Gauss’ hypergeometric function. Outside the lump φ f and H = 1 2 ∼ − (2GM˜/r). For R <r <R the solution is determined numerically. 1 2 Given appropriate values for ρ and R , a solution is found by choosing δφ(0). n 1 In the numerical investigation δφ(R ), instead of δφ(0), is fine tuned to obtain a 1 solution. For instance, with input parameters λ= g = 1, f/M =(f f )/f = pl 2 1 −| | 2 10−4, (f f )/f = 5 10−3, one finds that a /l = 8.65 107, ǫ/ǫ = 74.7, 1 S f pl 0 · − · · − κ = 12327 and ρ l3 = 8.06 10−14. For R /l = 8 107, a solution is found with n pl · 1 pl · δφ(R )/f =2.77 10−2. Using (5), one finds δφ(0)/f =4.7 10−8855 ! 1 · · We stress that solutions continue to exist for much smaller values of f. False vacuum lump solutions are typically macroscopic (R f−1). They may appear 1 ≫ atvariousscalesintheuniverse. Itisremarkablethatsuchobjectsappearinavery simple model consisting of a scalar field and fermions. References 1. R.G. Daghigh, J.I. Kapusta, and Y.Hosotani, gr-qc/0008006. 2. Y.Hosotani, Soryushiron Kenkyu103 E91 (2001), hep-th/0104006. 3. D.V.Gal’tsov and J.P.S. Lemos, Class. Quant. Grav. 18 1715 (2001), gr-qc/0008076; K.A. Bronnikov,Phys. Rev. D64 064013 (2001), gr-qc/0104092; K.A. Bronnikov and G.N. Shikin, Grav. Cosmol. 8 107 (2002), gr-qc/0109027. 4. R.G.DaghighandY.Hosotani,Prog. Theoret. Phys. 110 1151(2003),gr-qc/0307075. 5. D.J. Kaup,Phys. Rev. 172 1331 (1968); E.W. Mielke and R. Scherzer,Phys. Rev. D24 2111 (1981); P. Jetzer, Phys. Rep. 220 163 (1992). 6. S.Coleman, Nucl. Phys. B262 263 (1985); A. Kusenko,Phys. Lett. B404 285 (1997). 7. A.L. Macpherson and B.A. Campbell, Phys. Lett. B347 205 (1995); J.R. Morris, Phys. Rev. D59 023513 (1998); T. Yoshida, K. Ogure, and J. Arafune, Phys. Rev. D68 023519 (2003).