ebook img

False Vacuum Lumps with the Fermionic Core PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview False Vacuum Lumps with the Fermionic Core

February7,2008 2:45 WSPC/TrimSize: 9.75inx6.5inforProceedings mg10-hosotani FALSE VACUUM LUMPS WITH THE FERMIONIC CORE 4 0 0 YUTAKAHOSOTANI∗ 2 Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan n E-mail: [email protected] a J 0 RAMING. DAGHIGH 3 Department of Chemistry and Physics, Arkansas State University P.O. Box 419, State University, AR 72467-0419, USA 1 E-mail: [email protected] v 4 2 1 Stablegravitating lumpswithafalsevacuum coresurroundedbythetruevacuum ina 1 scalar field potential exist in the presence of fermions at the core. These objects may 0 existintheuniverseatvariousscales. 4 0 / c 1. Scalar field lumps with fermions q - Whenascalarfieldpotentialhastwonon-degenerateminima,theabsoluteminimum r g ofthepotentialcorrespondstothetruevacuum,whiletheothertothefalsevacuum. : If the entire universe is in a false vacuum, it decays into the true vacuum through v i bubblecreationbyquantumtunneling. Ifthesizeofafalsevacuumlumpissmaller X than the critical radius, the lump would quickly decay, with its energy dissipating r tothe spatialinfinity. Ifitssizeis largerthanthe criticalradius,the lumpbecomes a a black hole.1,2,3 Inthis reportwedemonstratethatastatic falsevacuumlumpbecomesstable if 4 there are additionalfermions coupledto the scalarfield. Yukawa interactions play a key role in making such a structure possible. We stress that these gravitating 5 6 7 lumps are quite different from boson stars, Q-balls and Fermi-balls. We consider a system consisting of a scalar field φ and a fermion field ψ in Einstein gravity. Its Lagrangiandensity is given by 1 1 = + gµν∂µφ∂νφ V[φ] (gφ+m0)ψ−ψ+ (1) L 16πGR 2 − − ··· where and V[φ] are the scalar curvature and the scalar potential, respectively. R We take a potential λ 1 1 V[φ] = (φ f ) φ3 (f +4f )φ2 f (f 2f )(φ+f ) , (2) 2 2 1 2 2 1 2 4 − (cid:26) − 3 − 3 − (cid:27) ∗Work partially supported by grants 13135215 and 13640284 of the Ministry of Education and ScienceofJapan. 1 February7,2008 2:45 WSPC/TrimSize: 9.75inx6.5inforProceedings mg10-hosotani 2 [φ] V φ= f φ = f 1 2 gφ<ψψ> − − <ψψ>=/ 0 <ψψ>=0 f1 f2 φ Figure1. Thescalarfieldpotential andthefalsevacuumlump. which satisfies V′[φ]=λφ(φ f )(φ f ) and V[f ]=0. 1 2 2 − − In a sherically symmetric configuration (fig. 1), g ψ−ψ =ρ0θ(R1 r) and h i − H(r) dr2 ds2 = dt2 r2(dθ2+sin2θdϕ2) . (3) p(r)2 − H(r) − The Einstein equations and the scalar field equation reduce to 2 H′ 1 φ′′(r)+ +4πGrφ′(r)2+ φ′(r)= V′[φ]+g ψ−ψ , (cid:18)r H (cid:19) H(cid:16) h i(cid:17) 2G r H =1 4πr2drT [φ] . (4) 00 − r Z 0 We look for a solution in which φ f inside the lump, whereas φ f outside. 1 2 ∼ ∼ 2. Solutions Fermions have a mass m + f m inside a lump. We consider the case in 0 S | | ≡ which m m + f and the fermion gas inside the lump is nonrelativistic so 0 2 ≪ that hψ−ψi ∼ hψ†ψi = ρn. Let R be the radius of the lump. The total fermion number (4πR3/3)ρ is kept fixed. The total energy of the lump is E(R) + n f ∼ E ǫ(ρ ) (4πR3/3)+4πR2σ where = mρ +3(3π2)2/3ρ5/3/10m. The min(cid:8)imum n f n n E of U[(cid:9)φ] = V[φ]+gρ φ is located at φ = f , i.e. U′[f ] = 0. Then ǫ U[f ] n S S S ≡ ∼ ǫ = V[f ] for small ρ , while ǫ (fρ )4/3 for large ρ . σ is the surface tension 0 1 n n n ∼ − resulting fromvarying φ inthe boundary wallregion. E(R) is minimized atR=R¯ which gives the size of the lump configuration. Thebehaviorofthe solutionisdisplayedinfig.2. φ(r) makesasharptransition from f to f in R < r < R . The wall is very thin; R R 1/√λf R S 2 1 2 2 1 1 − ∼ ≪ where f = (f +f )/2. The geometry is approximately anti-de Sitter inside the 1 2 | | lump (ǫ<0) and Schwarzschildoutside the lump. Inside the lump 3 3 3 r2 φ(r)=f +δφ(0) F +κ, κ, ; , S · (cid:16)4 4 − 2 −a2f(cid:17) February7,2008 2:45 WSPC/TrimSize: 9.75inx6.5inforProceedings mg10-hosotani 3 φ(r) H(r) f 2 2 0 1 R1 R2 rr f 1 0 f S R1 R2 r Figure2. Thebehaviorofφ(r)andH(r)isshownschematically. R2−R1≪R1 3 a = − , κ= 1 a2V′′(f )+ 9 . (5) f r8πGǫ 2q f S 4 F is Gauss’ hypergeometric function. Outside the lump φ f and H = 1 2 ∼ − (2GM˜/r). For R <r <R the solution is determined numerically. 1 2 Given appropriate values for ρ and R , a solution is found by choosing δφ(0). n 1 In the numerical investigation δφ(R ), instead of δφ(0), is fine tuned to obtain a 1 solution. For instance, with input parameters λ= g = 1, f/M =(f f )/f = pl 2 1 −| | 2 10−4, (f f )/f = 5 10−3, one finds that a /l = 8.65 107, ǫ/ǫ = 74.7, 1 S f pl 0 · − · · − κ = 12327 and ρ l3 = 8.06 10−14. For R /l = 8 107, a solution is found with n pl · 1 pl · δφ(R )/f =2.77 10−2. Using (5), one finds δφ(0)/f =4.7 10−8855 ! 1 · · We stress that solutions continue to exist for much smaller values of f. False vacuum lump solutions are typically macroscopic (R f−1). They may appear 1 ≫ atvariousscalesintheuniverse. Itisremarkablethatsuchobjectsappearinavery simple model consisting of a scalar field and fermions. References 1. R.G. Daghigh, J.I. Kapusta, and Y.Hosotani, gr-qc/0008006. 2. Y.Hosotani, Soryushiron Kenkyu103 E91 (2001), hep-th/0104006. 3. D.V.Gal’tsov and J.P.S. Lemos, Class. Quant. Grav. 18 1715 (2001), gr-qc/0008076; K.A. Bronnikov,Phys. Rev. D64 064013 (2001), gr-qc/0104092; K.A. Bronnikov and G.N. Shikin, Grav. Cosmol. 8 107 (2002), gr-qc/0109027. 4. R.G.DaghighandY.Hosotani,Prog. Theoret. Phys. 110 1151(2003),gr-qc/0307075. 5. D.J. Kaup,Phys. Rev. 172 1331 (1968); E.W. Mielke and R. Scherzer,Phys. Rev. D24 2111 (1981); P. Jetzer, Phys. Rep. 220 163 (1992). 6. S.Coleman, Nucl. Phys. B262 263 (1985); A. Kusenko,Phys. Lett. B404 285 (1997). 7. A.L. Macpherson and B.A. Campbell, Phys. Lett. B347 205 (1995); J.R. Morris, Phys. Rev. D59 023513 (1998); T. Yoshida, K. Ogure, and J. Arafune, Phys. Rev. D68 023519 (2003).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.