University of Tasmania School of Mathematics and Physics Fairly Amenable Semigroups Joshua Thomas Deprez, BComp-BSc (Hons) May 21, 2014 Supervisor: Dr Des FitzGerald Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy Abstract Amenabilitydevelopedalongsidemodernanalysis,asitisacentralpropertylacking in a group used to show, for example, the Banach-Tarski paradox (Wagon, 1993). e(cid:277)rstworkingde(cid:277)nitionwasgivenbyvonNeumann(1929),intermsof(cid:277)nitely- additive measures. A number of useful theorems are capable of being shown using thisbasicde(cid:277)nition. e(cid:277)rstmodernde(cid:277)nitionofamenabilitywasgivenbyM.M.Day(1957),whose concept involved invariant means. For groups this coincides exactly with the von Neumanncondition: eachinvariantmeancorrespondstoaninvariant(cid:277)nitely-additive measure,correspondingviaLebesgueintegration. isadvancewassigni(cid:277)cantasit opened thedoortothe applicationofabstract harmonicanalysis, (cid:277)xed-pointtheo- rems,andanindustryofconsequences. Amenablegroupssupportalmost-invariant (cid:277)nite means, and via decomposition this is culminated as the Følner condition, a statementabout(cid:277)nitesets. Abeliangroupsareamenableasasimpleconsequenceof the Markov-Kakutani (cid:277)xed-point theorem. A theorem of B. E. Johnson (1972) led to the development of amenable Banach algebras and C*-algebras, neatly encoding amenabilityinthemechanicsofcohomologytheory. While amenability is directly generalisable from groups to semigroups, the two keyde(cid:277)nitionsdonotcorrespondinthesamewayastheydoforgroups: extracting a(cid:277)nitely-additivemeasurefromale-invariantmeanyieldswhatmightbecalleda le preimage-invariant measure, and for groups these merely correspond to the in- verseelements. AsimplebutsurprisingconsequenceofDay’sde(cid:277)nitionofamenabil- ity is that semigroups with a zero element are both le and right amenable (Day, 1957). Yet they cannot support a (totally) invariant (cid:277)nitely-additive measure (van Douwen, 1992, p231). On the other hand, all semigroups with more than one dis- tinctlezeroarenotleamenable(Paterson,1988),andinparticulartherearemany non-amenable(cid:277)nitesemigroups,whichisanothercontrasttothegroupcase: all(cid:277)- nite groups are amenable. is standard de(cid:277)nition of amenability for semigroups i ABSTRACT ii is therefore unintuitive and, perhaps, unsatisfactory. Restricting to better-behaved classesofsemigroups,suchastheinversesemigroups,doeslittletoimprovethis. e (cid:277)rst new result of the present work is that there is a weakening of invari- ancethatcanbeusedinthecontextof(cid:277)nitely-additivemeasurestogeneralisegroup amenabilitytosemigroupsinadifferentway. ForasemigroupS, a(cid:277)nitely-additive measure (cid:22) 2 [0;1]P(S) will be called le fairly invariant if, for all s 2 S andA (cid:18) S such that (cid:21) j is an injection, (cid:22)(sA) = (cid:22)(A). When a semigroup supports such s A a (cid:277)nitely-additive measure, then it is le fairly amenable. Fair amenability is a gen- eralisation of group amenability, and retains some of the useful theorems. Some of theresultsshownusingthisformulationinclude: asemigroupislefairlyamenable whenitsatis(cid:277)esaweakenedStrongFølnerCondition,(cid:277)nitesemigroupsareallfairly amenable,semigroupswithinvolutionareeitherfairlyamenableonboththeleand the right or not at all, adjoining a zero does not cause a non-fairly amenable semi- grouptobecomefairlyamenable,directedunionsoffairlyamenablesemigroupsare fairly amenable, and a variety of examples which are fairly amenable or not fairly amenable. ename“amenable”is,asthestorygoes,supposedtobeapun,sinceamenable groupssupportinvariantmeans. usanimportantquestionforfairamenabilityis, what condition for a mean is equivalent to the fair invariance of the corresponding (cid:277)nitely-additivemeasure? Oneapproachisto(cid:280)ipthedualitybetweentheconvolu- tionactioninℓ1(S)andthedualactioninℓ1(S)upside-down: attemptconvolution in ℓ1(S) and the dual action in ℓ1(S). In this scenario, the curious will consider suchill-de(cid:277)nedexpressionsas0(cid:3)(cid:31) . Fortunately,wherevertheconvolutionpartial S actionofsonϕ 2 ℓ1(S),i.e. s(cid:3)ϕ,iswell-de(cid:277)nedandbounded,thentheintegral with respect to a le fairly-invariant measure can be readily computed. It is shown thatasemigroupSlefairlyamenableif,andonlyif,thereexistsameanmsuchthat m(ϕ) = m(s(cid:3)ϕ) for all s 2 S and ϕ 2 ℓ1(S) such that s(cid:3)ϕ 2 ℓ1(S). Hence thenomenclature“fairlyamenable”isjusti(cid:277)edasapunalso. Some variations on fair amenability and related results are also explored. As a variation on the (cid:3) partial action, an operator ⊛ is introduced on ℓ1(S), which in- ducesafullactionofS. Onedrawbackof⊛comparedto(cid:3)isthat,inordertoexpress fairamenability,anadditionalconditionisrequiredtolimitthescopeofinvariance ⊛ appropriately. Finally,inner invarianceandits“fair”variantarebrie(cid:280)yexplored. Declarations Declaration of Originality is esis contains no material which has been accepted for a degree or diploma bytheUniversityoranyotherinstitution,exceptbywayofbackgroundinformation and duly acknowledged in the esis, and to the best of my knowledge and belief nomaterialpreviouslypublishedorwrittenbyanotherpersonexceptwheredueac- knowledgement is made in the text of the esis, nor does the esis contain any materialthatinfringescopyright. AuthorityofAccessandStatementregardingpub- lished work contained in the Thesis Chapter 5 has been sent in a reduced form for potential publication in the journal SemigroupForum,thoughatthiswritingithasnotyetbeenaccepted. Atsuchtime thatajournalholdsthecopyrightforcontent,accesstothematerialshouldbesought fromtheminaccordancewiththeirpolicies. e remaining non-published content of the esis may be made available for loanandlimitedcopyingandcommunicationinaccordancewiththeCopyrightAct 1968. …………………………………… ………………… JoshuaomasDeprez Date iii Acknowledgements Firstlyandmostimportantly,aheartfeltthank-youtomysupervisorDrDesFitzGer- aldforhiscontinuedpatienceandwisdomduringtheproject,thecoffeesandlunches attheStaffClub,andhisveryforgivingnature. I thank the Head of School Professor John Dickey, and Mathematics head Pro- fessorLarryForbes,forhelpingtogreasethewheelsoftheGraduateResearchOffice. anksalsotoDrBarryGardnerforhisparticipation. I thank those responsible for my participation in the Australian Postgraduate Awardscheme: (cid:277)rstly,theAustralianGovernmentforfundingthescholarship,and theUniversityScholarshipsOfficeforacceptingmyapplication. ankstotheGraduateResearchOffice,andalsoapologies: forputtingupwith mypassive-aggressiveemailsandsomewhatnon-standardpaperwork. IthanktheSchoolofMathematics&Physicsasawholeforfurnishingmewith anofficethatIcouldsafelyignoreforlongperiodsoftime. Ashout-outtomymost excellent office mates: Stephen Walters and Melissa Humphries, and the extremely occasionalTonyFitzpatrick. A huge thanks to my friends Paris Butt(cid:277)eld-Addison and Jon Manning, whose officeintowntendedtobemoreconvenientthanmyuniversityoffice(bothforin- ternetaccessandproximitytoqualitycoffee). I thank the Victorian Algebra Group and Australian Mathematical Society for thricesubsidisingmytravelcoststoandfromtheannualVictorianAlgebraConfer- ence. In a way, this work is the culmination of much more than just three-and-a-half yearsofreasearch,butadditionallymanyyearsofschoolingandundergraduatestudy aswell. Itisatestamenttothequalityofthepubliceducationsystem. Iwouldliketo thankallthemotivatingandengagingteachersIhavehadovertheyears. Finally,to anyonewhosuggestedIcouldhavedonebetterifIhadaprivateschoolbackground instead: Iwouldn’thavechangedathing. iv Contents Abstract i Declarations iii Acknowledgements iv ListofTables viii ListofFigures ix 1 Introduction 1 1.1 Whatisamenability? . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Aremarkaboutproofs . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Semigroups,groups,self-actions . . . . . . . . . . . . . . . 3 1.2.3 Functionspaces . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.4 Ultra(cid:277)ltersandultralimits . . . . . . . . . . . . . . . . . . . 7 2 AmenabilityandGroups 11 2.1 Finitely-additivemeasures . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Invariantmeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Almost-invariant(cid:277)nitemeans . . . . . . . . . . . . . . . . . . . . . 21 2.4 Følnercriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 VariationsonFølnercriteria . . . . . . . . . . . . . . . . . 25 2.5 Amenabilityandgrowth . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Classicalamenabilityresultsforgroups . . . . . . . . . . . . . . . . 33 2.6.1 ompson’sgroupF . . . . . . . . . . . . . . . . . . . . . . 36 2.7 Topologicalgroupamenability . . . . . . . . . . . . . . . . . . . . . 40 v CONTENTS vi 2.7.1 TopologicalFølnercriterion . . . . . . . . . . . . . . . . . 41 3 AmenabilityandBanachalgebrasandC*-algebras 43 3.1 Banachalgebraamenability . . . . . . . . . . . . . . . . . . . . . . 43 3.2 C*-algebraicamenability . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Banachalgebrasagain . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 eweakcontainmentproperty . . . . . . . . . . . . . . . . . . . . 48 4 AmenabilityandSemigroups 50 4.1 Semigroupswith(cid:277)nitely-additivemeasures . . . . . . . . . . . . . . 50 4.2 Semigroupswithmeans . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Breakdownbetweende(cid:277)nitions . . . . . . . . . . . . . . . . 54 4.3 Classicalamenabilityresultsforsemigroups . . . . . . . . . . . . . 55 4.3.1 FølnerconditionsandatheoremofFrey . . . . . . . . . . . 55 4.3.2 Semigroupsand(cid:277)nitemeans . . . . . . . . . . . . . . . . . 58 4.3.3 Morestandardresults . . . . . . . . . . . . . . . . . . . . . 59 4.3.4 Cancellativeandreversiblesemigroups . . . . . . . . . . . . 61 4.4 Amenableinversesemigroups . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 Weakcontainmentandinversesemigroups . . . . . . . . . 66 5 FairlyAmenableSemigroups 71 5.1 De(cid:277)nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 GroupsandFølnercriteria . . . . . . . . . . . . . . . . . . 75 5.2.2 Basicconsequences . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Subsemigroups . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.4 Green’srelations . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.5 Directproducts . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.6 Quotientsofsemigroups . . . . . . . . . . . . . . . . . . . 84 5.2.7 Completely0-simplesemigroups . . . . . . . . . . . . . . . 85 5.2.8 Semigroupswithinvolution . . . . . . . . . . . . . . . . . . 94 5.2.9 Cliffordsemigroups . . . . . . . . . . . . . . . . . . . . . . 95 5.2.10 Directedunionsofsemigroups . . . . . . . . . . . . . . . . 97 5.3 Furtherexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.1 Graphinversesemigroups . . . . . . . . . . . . . . . . . . . 99 5.3.2 eBaer-Levisemigroup . . . . . . . . . . . . . . . . . . . 104 CONTENTS vii 5.3.3 Freeinversesemigroups . . . . . . . . . . . . . . . . . . . . 106 5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Motivationsforfairamenability . . . . . . . . . . . . . . . . . . . . 108 5.4.1 Measureratios . . . . . . . . . . . . . . . . . . . . . . . . . 110 6 FairlyInvariantMeansforSemigroups 112 6.1 econvolutionpartialaction . . . . . . . . . . . . . . . . . . . . . 113 6.2 Integratings(cid:3)f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3 Modi(cid:277)edconvolution . . . . . . . . . . . . . . . . . . . . . . . . . 122 ⊛ 6.4 -invariantmeans . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5 Generalisedconvolution . . . . . . . . . . . . . . . . . . . . . . . . 134 6.5.1 Generalisedsemigroupconvolution . . . . . . . . . . . . . 135 6.5.2 Restrictedmeansandfunctions . . . . . . . . . . . . . . . . 135 7 MakingOtherConditionsFair 140 7.1 Preimageinvariance . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.2 Inneramenability . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ⊛ (cid:3) 7.2.1 Inner -and -invariance . . . . . . . . . . . . . . . . . . 145 7.3 Resultsyettobeshown . . . . . . . . . . . . . . . . . . . . . . . . 148 (cid:3) 7.3.1 Bi- -invariantmeans? . . . . . . . . . . . . . . . . . . . . . 149 7.3.2 Almostfairlyinvariant(cid:277)nitemeans? . . . . . . . . . . . . . 150 7.3.3 FairlyamenableAbeliansemigroups? . . . . . . . . . . . . 152 7.3.4 Otheroutstandingquestions . . . . . . . . . . . . . . . . . 153 IndexofSymbols 160 List of Tables 2.1 Othernotationsforthenaturalordualactions. . . . . . . . . . . . . 18 2.2 Summary of the variations on Følner criteria for discrete groups. ϵ;ϵ > 0,thea :::a ;gareelementsofG,andF;F ;K;Sare(cid:277)nite 0 1 n i subsetsofG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Examplesofgroupsindifferentgrowthclasses . . . . . . . . . . . . 31 2.4 Importantexamplesof(cid:277)nitely-generatedgroups. . . . . . . . . . . . 39 5.1 Amenabilityversusfairamenabilityondifferentsemigroups. . . . . 108 viii List of Figures 1.1 Anultra(cid:277)lter((cid:277)lledpoints)onthe(cid:277)nitesetfa;b;cg. . . . . . . . . . 8 2.1 ejourneyofthe(cid:277)rsthalfofthischapter. . . . . . . . . . . . . . . 11 2.2 An overview of the sets mentioned in the functional approach to topologicalamenability. We(cid:277)ndameaninM(G)asaweak*cluster pointofasequenceinP(G)^,andcanusevariousanalyticmachin- eryalongtheway. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 ImplicationsthathavebeenshownbetweentheleFølner-typecon- ditions and le amenability (A) of a semigroup. Additionally, (FC) ̸) ̸) (A)and(A) (WFC)ingeneral. (Yang,1987) . . . . . . . . . . 57 5.1 ForeverysetAandelementsthereissomesubsetBsuchthatsA = sBandsactsinjectivelyonB. . . . . . . . . . . . . . . . . . . . . . 75 5.2 If s acts injectively on A, then it also does so on A \ F , and so n jA\F j = jsA\sF j. . . . . . . . . . . . . . . . . . . . . . . . . . 76 n n 5.3 e right Cayley graph for the free semigroup on two generators fa;bg+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 PartoftheleCayleygraphofthebicyclicmonoidB. . . . . . . . . 100 (cid:12) (cid:12) 5.5 Deriving(cid:12)qjpk□ △□ (cid:12)inthebicyclicmonoid. . . . . . . . . . . . 100 n n 5.6 From the le, the 1-rose, 2-rose, and 10-rose. e free categories overthesearesimplythefreemonoidson1generator,2generators, and10generators,respectively. . . . . . . . . . . . . . . . . . . . . 103 5.7 earrowsx,y,u,andvformacommutativesquare. Ifforanyother ′ ′ pairofarrowsx andy withcommondomainformacommutative squarewithuandvthereexistsauniquearrowfromd(x′) ! d(x) (dashed),thenxandyareapullbackofuandv. . . . . . . . . . . . 103 ix
Description: