ebook img

Fairly amenable semigroups PDF

173 Pages·2014·0.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fairly amenable semigroups

University of Tasmania School of Mathematics and Physics Fairly Amenable Semigroups Joshua Thomas Deprez, BComp-BSc (Hons) May 21, 2014 Supervisor: Dr Des FitzGerald Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy Abstract Amenabilitydevelopedalongsidemodernanalysis,asitisacentralpropertylacking in a group used to show, for example, the Banach-Tarski paradox (Wagon, 1993). e(cid:277)rstworkingde(cid:277)nitionwasgivenbyvonNeumann(1929),intermsof(cid:277)nitely- additive measures. A number of useful theorems are capable of being shown using thisbasicde(cid:277)nition. e(cid:277)rstmodernde(cid:277)nitionofamenabilitywasgivenbyM.M.Day(1957),whose concept involved invariant means. For groups this coincides exactly with the von Neumanncondition: eachinvariantmeancorrespondstoaninvariant(cid:277)nitely-additive measure,correspondingviaLebesgueintegration. isadvancewassigni(cid:277)cantasit opened thedoortothe applicationofabstract harmonicanalysis, (cid:277)xed-pointtheo- rems,andanindustryofconsequences. Amenablegroupssupportalmost-invariant (cid:277)nite means, and via decomposition this is culminated as the Følner condition, a statementabout(cid:277)nitesets. Abeliangroupsareamenableasasimpleconsequenceof the Markov-Kakutani (cid:277)xed-point theorem. A theorem of B. E. Johnson (1972) led to the development of amenable Banach algebras and C*-algebras, neatly encoding amenabilityinthemechanicsofcohomologytheory. While amenability is directly generalisable from groups to semigroups, the two keyde(cid:277)nitionsdonotcorrespondinthesamewayastheydoforgroups: extracting a(cid:277)nitely-additivemeasurefromale-invariantmeanyieldswhatmightbecalleda le preimage-invariant measure, and for groups these merely correspond to the in- verseelements. AsimplebutsurprisingconsequenceofDay’sde(cid:277)nitionofamenabil- ity is that semigroups with a zero element are both le and right amenable (Day, 1957). Yet they cannot support a (totally) invariant (cid:277)nitely-additive measure (van Douwen, 1992, p231). On the other hand, all semigroups with more than one dis- tinctlezeroarenotleamenable(Paterson,1988),andinparticulartherearemany non-amenable(cid:277)nitesemigroups,whichisanothercontrasttothegroupcase: all(cid:277)- nite groups are amenable. is standard de(cid:277)nition of amenability for semigroups i ABSTRACT ii is therefore unintuitive and, perhaps, unsatisfactory. Restricting to better-behaved classesofsemigroups,suchastheinversesemigroups,doeslittletoimprovethis. e (cid:277)rst new result of the present work is that there is a weakening of invari- ancethatcanbeusedinthecontextof(cid:277)nitely-additivemeasurestogeneralisegroup amenabilitytosemigroupsinadifferentway. ForasemigroupS, a(cid:277)nitely-additive measure (cid:22) 2 [0;1]P(S) will be called le fairly invariant if, for all s 2 S andA (cid:18) S such that (cid:21) j is an injection, (cid:22)(sA) = (cid:22)(A). When a semigroup supports such s A a (cid:277)nitely-additive measure, then it is le fairly amenable. Fair amenability is a gen- eralisation of group amenability, and retains some of the useful theorems. Some of theresultsshownusingthisformulationinclude: asemigroupislefairlyamenable whenitsatis(cid:277)esaweakenedStrongFølnerCondition,(cid:277)nitesemigroupsareallfairly amenable,semigroupswithinvolutionareeitherfairlyamenableonboththeleand the right or not at all, adjoining a zero does not cause a non-fairly amenable semi- grouptobecomefairlyamenable,directedunionsoffairlyamenablesemigroupsare fairly amenable, and a variety of examples which are fairly amenable or not fairly amenable. ename“amenable”is,asthestorygoes,supposedtobeapun,sinceamenable groupssupportinvariantmeans. usanimportantquestionforfairamenabilityis, what condition for a mean is equivalent to the fair invariance of the corresponding (cid:277)nitely-additivemeasure? Oneapproachisto(cid:280)ipthedualitybetweentheconvolu- tionactioninℓ1(S)andthedualactioninℓ1(S)upside-down: attemptconvolution in ℓ1(S) and the dual action in ℓ1(S). In this scenario, the curious will consider suchill-de(cid:277)nedexpressionsas0(cid:3)(cid:31) . Fortunately,wherevertheconvolutionpartial S actionofsonϕ 2 ℓ1(S),i.e. s(cid:3)ϕ,iswell-de(cid:277)nedandbounded,thentheintegral with respect to a le fairly-invariant measure can be readily computed. It is shown thatasemigroupSlefairlyamenableif,andonlyif,thereexistsameanmsuchthat m(ϕ) = m(s(cid:3)ϕ) for all s 2 S and ϕ 2 ℓ1(S) such that s(cid:3)ϕ 2 ℓ1(S). Hence thenomenclature“fairlyamenable”isjusti(cid:277)edasapunalso. Some variations on fair amenability and related results are also explored. As a variation on the (cid:3) partial action, an operator ⊛ is introduced on ℓ1(S), which in- ducesafullactionofS. Onedrawbackof⊛comparedto(cid:3)isthat,inordertoexpress fairamenability,anadditionalconditionisrequiredtolimitthescopeofinvariance ⊛ appropriately. Finally,inner invarianceandits“fair”variantarebrie(cid:280)yexplored. Declarations Declaration of Originality is esis contains no material which has been accepted for a degree or diploma bytheUniversityoranyotherinstitution,exceptbywayofbackgroundinformation and duly acknowledged in the esis, and to the best of my knowledge and belief nomaterialpreviouslypublishedorwrittenbyanotherpersonexceptwheredueac- knowledgement is made in the text of the esis, nor does the esis contain any materialthatinfringescopyright. AuthorityofAccessandStatementregardingpub- lished work contained in the Thesis Chapter 5 has been sent in a reduced form for potential publication in the journal SemigroupForum,thoughatthiswritingithasnotyetbeenaccepted. Atsuchtime thatajournalholdsthecopyrightforcontent,accesstothematerialshouldbesought fromtheminaccordancewiththeirpolicies. e remaining non-published content of the esis may be made available for loanandlimitedcopyingandcommunicationinaccordancewiththeCopyrightAct 1968. …………………………………… ………………… JoshuaomasDeprez Date iii Acknowledgements Firstlyandmostimportantly,aheartfeltthank-youtomysupervisorDrDesFitzGer- aldforhiscontinuedpatienceandwisdomduringtheproject,thecoffeesandlunches attheStaffClub,andhisveryforgivingnature. I thank the Head of School Professor John Dickey, and Mathematics head Pro- fessorLarryForbes,forhelpingtogreasethewheelsoftheGraduateResearchOffice. anksalsotoDrBarryGardnerforhisparticipation. I thank those responsible for my participation in the Australian Postgraduate Awardscheme: (cid:277)rstly,theAustralianGovernmentforfundingthescholarship,and theUniversityScholarshipsOfficeforacceptingmyapplication. ankstotheGraduateResearchOffice,andalsoapologies: forputtingupwith mypassive-aggressiveemailsandsomewhatnon-standardpaperwork. IthanktheSchoolofMathematics&Physicsasawholeforfurnishingmewith anofficethatIcouldsafelyignoreforlongperiodsoftime. Ashout-outtomymost excellent office mates: Stephen Walters and Melissa Humphries, and the extremely occasionalTonyFitzpatrick. A huge thanks to my friends Paris Butt(cid:277)eld-Addison and Jon Manning, whose officeintowntendedtobemoreconvenientthanmyuniversityoffice(bothforin- ternetaccessandproximitytoqualitycoffee). I thank the Victorian Algebra Group and Australian Mathematical Society for thricesubsidisingmytravelcoststoandfromtheannualVictorianAlgebraConfer- ence. In a way, this work is the culmination of much more than just three-and-a-half yearsofreasearch,butadditionallymanyyearsofschoolingandundergraduatestudy aswell. Itisatestamenttothequalityofthepubliceducationsystem. Iwouldliketo thankallthemotivatingandengagingteachersIhavehadovertheyears. Finally,to anyonewhosuggestedIcouldhavedonebetterifIhadaprivateschoolbackground instead: Iwouldn’thavechangedathing. iv Contents Abstract i Declarations iii Acknowledgements iv ListofTables viii ListofFigures ix 1 Introduction 1 1.1 Whatisamenability? . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Aremarkaboutproofs . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Semigroups,groups,self-actions . . . . . . . . . . . . . . . 3 1.2.3 Functionspaces . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.4 Ultra(cid:277)ltersandultralimits . . . . . . . . . . . . . . . . . . . 7 2 AmenabilityandGroups 11 2.1 Finitely-additivemeasures . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Invariantmeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Almost-invariant(cid:277)nitemeans . . . . . . . . . . . . . . . . . . . . . 21 2.4 Følnercriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 VariationsonFølnercriteria . . . . . . . . . . . . . . . . . 25 2.5 Amenabilityandgrowth . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Classicalamenabilityresultsforgroups . . . . . . . . . . . . . . . . 33 2.6.1 ompson’sgroupF . . . . . . . . . . . . . . . . . . . . . . 36 2.7 Topologicalgroupamenability . . . . . . . . . . . . . . . . . . . . . 40 v CONTENTS vi 2.7.1 TopologicalFølnercriterion . . . . . . . . . . . . . . . . . 41 3 AmenabilityandBanachalgebrasandC*-algebras 43 3.1 Banachalgebraamenability . . . . . . . . . . . . . . . . . . . . . . 43 3.2 C*-algebraicamenability . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Banachalgebrasagain . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 eweakcontainmentproperty . . . . . . . . . . . . . . . . . . . . 48 4 AmenabilityandSemigroups 50 4.1 Semigroupswith(cid:277)nitely-additivemeasures . . . . . . . . . . . . . . 50 4.2 Semigroupswithmeans . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Breakdownbetweende(cid:277)nitions . . . . . . . . . . . . . . . . 54 4.3 Classicalamenabilityresultsforsemigroups . . . . . . . . . . . . . 55 4.3.1 FølnerconditionsandatheoremofFrey . . . . . . . . . . . 55 4.3.2 Semigroupsand(cid:277)nitemeans . . . . . . . . . . . . . . . . . 58 4.3.3 Morestandardresults . . . . . . . . . . . . . . . . . . . . . 59 4.3.4 Cancellativeandreversiblesemigroups . . . . . . . . . . . . 61 4.4 Amenableinversesemigroups . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 Weakcontainmentandinversesemigroups . . . . . . . . . 66 5 FairlyAmenableSemigroups 71 5.1 De(cid:277)nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 GroupsandFølnercriteria . . . . . . . . . . . . . . . . . . 75 5.2.2 Basicconsequences . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Subsemigroups . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.4 Green’srelations . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.5 Directproducts . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.6 Quotientsofsemigroups . . . . . . . . . . . . . . . . . . . 84 5.2.7 Completely0-simplesemigroups . . . . . . . . . . . . . . . 85 5.2.8 Semigroupswithinvolution . . . . . . . . . . . . . . . . . . 94 5.2.9 Cliffordsemigroups . . . . . . . . . . . . . . . . . . . . . . 95 5.2.10 Directedunionsofsemigroups . . . . . . . . . . . . . . . . 97 5.3 Furtherexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.1 Graphinversesemigroups . . . . . . . . . . . . . . . . . . . 99 5.3.2 eBaer-Levisemigroup . . . . . . . . . . . . . . . . . . . 104 CONTENTS vii 5.3.3 Freeinversesemigroups . . . . . . . . . . . . . . . . . . . . 106 5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Motivationsforfairamenability . . . . . . . . . . . . . . . . . . . . 108 5.4.1 Measureratios . . . . . . . . . . . . . . . . . . . . . . . . . 110 6 FairlyInvariantMeansforSemigroups 112 6.1 econvolutionpartialaction . . . . . . . . . . . . . . . . . . . . . 113 6.2 Integratings(cid:3)f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3 Modi(cid:277)edconvolution . . . . . . . . . . . . . . . . . . . . . . . . . 122 ⊛ 6.4 -invariantmeans . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5 Generalisedconvolution . . . . . . . . . . . . . . . . . . . . . . . . 134 6.5.1 Generalisedsemigroupconvolution . . . . . . . . . . . . . 135 6.5.2 Restrictedmeansandfunctions . . . . . . . . . . . . . . . . 135 7 MakingOtherConditionsFair 140 7.1 Preimageinvariance . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.2 Inneramenability . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ⊛ (cid:3) 7.2.1 Inner -and -invariance . . . . . . . . . . . . . . . . . . 145 7.3 Resultsyettobeshown . . . . . . . . . . . . . . . . . . . . . . . . 148 (cid:3) 7.3.1 Bi- -invariantmeans? . . . . . . . . . . . . . . . . . . . . . 149 7.3.2 Almostfairlyinvariant(cid:277)nitemeans? . . . . . . . . . . . . . 150 7.3.3 FairlyamenableAbeliansemigroups? . . . . . . . . . . . . 152 7.3.4 Otheroutstandingquestions . . . . . . . . . . . . . . . . . 153 IndexofSymbols 160 List of Tables 2.1 Othernotationsforthenaturalordualactions. . . . . . . . . . . . . 18 2.2 Summary of the variations on Følner criteria for discrete groups. ϵ;ϵ > 0,thea :::a ;gareelementsofG,andF;F ;K;Sare(cid:277)nite 0 1 n i subsetsofG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Examplesofgroupsindifferentgrowthclasses . . . . . . . . . . . . 31 2.4 Importantexamplesof(cid:277)nitely-generatedgroups. . . . . . . . . . . . 39 5.1 Amenabilityversusfairamenabilityondifferentsemigroups. . . . . 108 viii List of Figures 1.1 Anultra(cid:277)lter((cid:277)lledpoints)onthe(cid:277)nitesetfa;b;cg. . . . . . . . . . 8 2.1 ejourneyofthe(cid:277)rsthalfofthischapter. . . . . . . . . . . . . . . 11 2.2 An overview of the sets mentioned in the functional approach to topologicalamenability. We(cid:277)ndameaninM(G)asaweak*cluster pointofasequenceinP(G)^,andcanusevariousanalyticmachin- eryalongtheway. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 ImplicationsthathavebeenshownbetweentheleFølner-typecon- ditions and le amenability (A) of a semigroup. Additionally, (FC) ̸) ̸) (A)and(A) (WFC)ingeneral. (Yang,1987) . . . . . . . . . . 57 5.1 ForeverysetAandelementsthereissomesubsetBsuchthatsA = sBandsactsinjectivelyonB. . . . . . . . . . . . . . . . . . . . . . 75 5.2 If s acts injectively on A, then it also does so on A \ F , and so n jA\F j = jsA\sF j. . . . . . . . . . . . . . . . . . . . . . . . . . 76 n n 5.3 e right Cayley graph for the free semigroup on two generators fa;bg+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 PartoftheleCayleygraphofthebicyclicmonoidB. . . . . . . . . 100 (cid:12) (cid:12) 5.5 Deriving(cid:12)qjpk□ △□ (cid:12)inthebicyclicmonoid. . . . . . . . . . . . 100 n n 5.6 From the le, the 1-rose, 2-rose, and 10-rose. e free categories overthesearesimplythefreemonoidson1generator,2generators, and10generators,respectively. . . . . . . . . . . . . . . . . . . . . 103 5.7 earrowsx,y,u,andvformacommutativesquare. Ifforanyother ′ ′ pairofarrowsx andy withcommondomainformacommutative squarewithuandvthereexistsauniquearrowfromd(x′) ! d(x) (dashed),thenxandyareapullbackofuandv. . . . . . . . . . . . 103 ix

Description:
a finitely-additive measure, then it is left fairly amenable. Fair amenability is a and a good introduction was posted by Tao (2010). Certain unnamed
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.