Failure analysis of composite structures by thermography Analiza uszkodzeń struktur kompozytowych metodą termografii Author: Mgr inż. Przemysław Daniel Pastuszak Supervisor: Prof. dr hab. inż. Aleksander Muc Cracow 2015 The author was a holder of a scholarship within the project "Doctus - Małopolska scholarships fund for PhD students" co-financed by the European Union under the European Social Fund. Autor był stypendystą w ramach projektu „Doctus – Małopolski fundusz stypendialny dla doktorantów” współfinansowanego ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. 2 Contents NOMENCLATURE ................................................................................................................. 6 ACRONYMS ............................................................................................................................ 9 1. INTRODUCTION .......................................................................................................... 11 1.1. MOTIVATION .............................................................................................................. 11 1.2. RESEARCH OBJECTIVES .............................................................................................. 12 1.3. THESIS 12 1.4. SCOPE OF THE WORK .................................................................................................. 12 1.5. ORGANISATION .......................................................................................................... 12 2. STATE OF THE ART AND THE LITERATURE SURVEY .................................... 13 2.1. FUNDAMENTAL INFORMATION ON COMPOSITE MATERIALS ........................................ 13 2.1.1. Introduction .................................................................................................. 13 2.1.2. Governing elastic relations for composite structures ................................... 17 2.1.3. Heat transfer ................................................................................................. 21 2.1.3.1. Thermal boundary conditions ....................................................... 24 2.1.3.2. General thermo-elastic formulations for orthotropic composites. 25 2.1.4. Failure modes of composite materials ......................................................... 26 2.1.4.1. Failure criteria .............................................................................. 27 2.1.4.2. Modelling of structural damage ................................................... 28 2.1.5. Destructive and non-destructive tests .......................................................... 28 2.2. INFRARED THERMOGRAPHY (IRT) ............................................................................. 31 2.2.1. Introduction .................................................................................................. 31 2.2.2. Infrared Thermography in the repertoire of NDT methods ......................... 31 2.2.3. Fundamental Concepts of non-contact temperature measurements ............. 33 2.2.3.1. History of IRT .............................................................................. 34 2.2.3.2. Blackbody and Planck’s Law ....................................................... 35 2.2.3.3. Wien’s Law .................................................................................. 36 2.2.3.4. Reflection, absorption and transmission ...................................... 37 2.2.3.5. Emissivity ..................................................................................... 38 2.2.3.6. Factors affecting IRT measurements ............................................ 41 2.2.4. Infrared Thermography for TNDT&E ......................................................... 44 2.2.4.1. Pulsed Thermography .................................................................. 48 2.2.4.2. Lock-in Thermography ................................................................ 48 2.2.4.3. Vibrothermography ...................................................................... 50 2.2.4.4. Pulse Phase Thermography .......................................................... 51 2.2.4.5. Thermal contrast ........................................................................... 51 2.2.4.6. Determining of the thermal properties ......................................... 52 2.2.4.7. Defects detection and characterisation ......................................... 53 2.2.5. Applications of IRT ..................................................................................... 55 3. NUMERICAL ANALYSIS ............................................................................................ 57 3.1. INTRODUCTION ........................................................................................................... 57 3.2. DESCRIPTION OF FE MODELS ..................................................................................... 58 3.2.1. Meshing ........................................................................................................ 60 3.2.2. Initial and boundary conditions ................................................................... 64 3 3.2.3. Heat load ...................................................................................................... 64 3.2.4. Thermal and mechanical properties of investigated constituents ................ 65 3.3. RESULTS..................................................................................................................... 67 3.3.1. Comparison of simulations for selected meshes .......................................... 67 3.3.2. Parametric thermographic analysis .............................................................. 70 3.3.2.1. Influence of supplied energy ........................................................ 70 3.3.2.2. Effects of delamination size and location .................................... 73 3.3.2.3. Effects of a defect’s material properties ....................................... 76 3.4. SUMMARY AND DISCUSSION ....................................................................................... 78 4. EXPERIMENTAL STUDIES ........................................................................................ 80 4.1. INTRODUCTION ........................................................................................................... 80 4.2. MANUFACTURING OF COMPOSITE MULTILAYERED STRUCTURES ................................ 80 4.2.1. Introduction .................................................................................................. 80 4.2.2. Manufacturing methods ............................................................................... 81 4.2.3. Configurations of the examined specimens ................................................. 84 4.2.4. Corrective treatments of emissivity ............................................................. 85 4.3. TEST STATION ............................................................................................................ 86 4.3.1. Software for AIRT analysis ......................................................................... 89 4.3.2. Test conditions ............................................................................................. 92 4.3.3. Experimental procedure of AIRT tests ........................................................ 93 4.4. RESULTS..................................................................................................................... 94 4.4.1. Detection of defects ..................................................................................... 94 4.4.2. Effects of delamination thickness ................................................................ 97 4.4.3. Uniform heating of curved composite structures ......................................... 99 4.4.4. Deformation of the specimens ................................................................... 102 4.4.5. Effects of the damage growth .................................................................... 104 4.5. NOVEL APPROACH TO AIRT: COOLING DOWN THERMOGRAPHY (CDT) .................. 106 4.5.1. Introduction ................................................................................................ 106 4.5.2. Description of the experiment .................................................................... 106 4.5.3. Results and discussion ............................................................................... 107 4.6. SUMMARY AND DISCUSSION ..................................................................................... 109 5. CONCLUSIONS AND FUTURE WORKS ................................................................ 110 5.1. CONCLUSIONS .......................................................................................................... 110 5.2. RECOMMENDATIONS FOR FUTURE RESEARCH ........................................................... 111 6. STRESZCZENIE .......................................................................................................... 112 6.1. WSTĘP 112 6.2. CEL, TEZA I ZAKRES PRACY ...................................................................................... 113 6.2.1. Cel pracy .................................................................................................... 113 6.2.2. Teza pracy .................................................................................................. 113 6.2.3. Zakres pracy ............................................................................................... 113 6.3. STAN WIEDZY I ANALIZA LITERATURY ..................................................................... 114 6.3.1. Termografia w podczerwieni ..................................................................... 115 6.4. OBLICZENIA NUMERYCZNE ...................................................................................... 116 6.4.1. Opis modeli numerycznych ....................................................................... 116 6.4.2. Wyniki ........................................................................................................ 118 4 6.5. BADANIA DOŚWIADCZALNE ..................................................................................... 122 6.5.1. Opis stanowiska badawczego i próbek ...................................................... 122 6.5.2. Wyniki i dyskusja ...................................................................................... 124 6.6. WNIOSKI I KIERUNKI DALSZYCH PRAC ...................................................................... 126 6.6.1. Wnioski ...................................................................................................... 126 6.6.2. Kierunki dalszych prac .............................................................................. 126 ABSTRACT .......................................................................................................................... 127 ACKNOWLEDGEMENTS ................................................................................................. 128 LITERATURE ..................................................................................................................... 129 LIST OF FIGURES ............................................................................................................. 139 LIST OF TABLES ............................................................................................................... 143 5 Nomenclature Scalars α absorptivity a α thermal diffusivity d α thermal expansion e g 0 xy membrane tangential deformations of the middle surface in the x-y plane ε emissivity ε maximum nominal compressive strain c e 0 e 0 x , y membrane deformations of the middle surface in the x and y axis directions θ fibre orientation in the global coordinate system k k x , y curvature change parameters of the mid-plane resulting from bending k xy curvature change parameters of the mid-plane resulting from torsion λ wavelength υ , υ , υ Poisson's ratios for principal directions of the material 12 23 13 ρ the mass density of the material ρ artificial defect density d ρ reflectivity r τ transmissivity φ the angle of incidence and reflection of the light D T temperature difference Φ phase shift d diameter d depth of a defect d f frequency h convection heat transfer coefficient h height of a composite structure c h height of a defect d l length of the test piece q convection heat flux c q conduction heat flux k q radiation heat flux r q internal heat generation w (cid:1)(cid:2) components of vector heat flux density (i=1,2,3), (cid:3) r radius r radius of curvature c r outer radius o t time t time of the analysis an t thickness of a composite structure c t thickness of a defect d 6 t time of maximal contrast occurrence maxC t duration of the heat pulse pd t beginning of the analysis 0 v volume w out of plane displacement w width of a composite structure c w width of a defect d x,y,z global coordinate system x ,x ,x local coordinate system 1 2 3 A area A defective area d A non-defective area nd C absolute thermal contrast a C running thermal contrast r C standard thermal contrast s C maximum absolute thermal contrast max C heat capacity at constant pressure p D standard defect s E energy or Young's modulus E ,E , E Young's modules in principal directions of the material 1 2 3 E : input energy in E : generated internal energy g E : output energy o E : stored internal energy int G , G , G Kirchhoff’s modules for principal directions of the material 12 23 13 G critical energy release rate c K critical stress intensity factor c Q heat Q¢ (k) elements of stiffness matrix for kth-layer in global coordinate system ij R ultimate tensile strength R total blackbody spectral radiance (the total amount of radiated energy) t S part of the surface of the body c S part of the surface in contact with a fluid media cs S front (observed) surface F S rear (heated) surface R S part of the surface exposed to radiation r T temperature in [°C] T ambient temperature amb T temperature of defective region of specimen d Te temperature of body or surface emitting the radiation T final temperature of the analysis fin T initial temperature of the model or the sample in T maximum temperature of front surface maxF 7 T maximum temperature of rear surface maxR T temperature of non-defective region of the specimen nd T absolute temperature of a fluid F T absolute temperature of a surface S T0 temperature of the reference surface T’ temperature gradient in the thickness direction Tensors α components of thermal expansion tensor in the local coordinate system mn a ' components of linear coefficients of thermal expansion tensor in the global ij coordinate system ε components of the strain tensor in the local coordinate system ij e¢ components of total strain tensor in the global coordinate system ij λ components of thermal conductivity tensor in the local coordinate system ij σ components of the stress tensor in the local coordinate system ij s ¢ components of stress tensor in the global coordinate system ij s T components of the thermal stress tensor in the local coordinate system ij C components of stiffness tensor in the local coordinate system ijkl J components of second order transformation tensor in the local coordinate ij system P components of second order transformation tensor ij Q components of stiffness tensor in the local coordinate system ij Q' components of stiffness tensor for plane strain state in the global coordinate ij system S components of compliance tensor in the local coordinate system ijkl Constants σ Stefan-Boltzmann’s constant, σ = 5.6697 x 10-8 [W/m2K4] c speed of light, c = 2.9979 x 108 [m/s] b Wien's displacement constant, b = 2.8977729(17)×10−3 [mK] W W h universal (or Planck’s) constant, h = 6.6256 x 10-34 [Js] pc pc k Boltzmann constant, k = 1.38064852(79) x10-23 [J/K] B B 8 Acronyms 2D: Two-dimensional 3D: Three-dimensional AIRT: Active Infrared Thermography AOI: Area of Interest APDL: ANSYS Parametric Design Language CDT: Cooling Down Thermography CFRP: Carbon Fibre Reinforced Plastic CM: Composite Material CMC: Ceramic Matrix Composite CMOS: Complementary Metal Oxide Semiconductor BC: Boundary Conditions DFT: Discrete Fourier Transform EM: Electromagnetic FDM: Finite Difference Method FEM: Finite Element Method FFT: Fast Fourier Transform FOV: Field of View FPA: Focal Plane Array FPF: First Play Failure FT: Flash Thermography FT: Fourier Transform FWHM: Full-width at half-maximum GFRP: Glass Fibre Reinforced Plastic GUI: Graphical User Interface IFOV: Instantaneous Field of View IR: Infrared IRT: Infrared Thermography LOI: Line of interest, temperature profile LPT: Long Pulse Thermography LT: Lock-In Thermography LWIR: Long-wavelength infrared MMC: Metal Matrix Composite MRTD: Minimum Resolvable Temperature Difference NDT: Non-Destructive Testing PIRT: Passive Infrared Thermography PMC: Polymer Matrix Composite PT: Pulsed Thermography PPT: Pulsed Phase Thermography PTFE: Polytetrafluoroethylene (also known as Teflon or Tarflen) SH: Step Heating SNR: Signal-to-Noise Ratio TBC Thermal Boundary Conditions 9 TLC: Thermochromic Liquid Crystals TNDT&E: Thermal Non-Destructive Testing and Evaluation TPs: Thermographic Phosphors TSA: Thermal Stress Analysis TSR: Thermographic Signal Reconstruction VT: Vibro Thermography 10
Description: