ebook img

Failure analysis of composite structures by thermography PDF

143 Pages·2016·12.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Failure analysis of composite structures by thermography

Failure analysis of composite structures by thermography Analiza uszkodzeń struktur kompozytowych metodą termografii Author: Mgr inż. Przemysław Daniel Pastuszak Supervisor: Prof. dr hab. inż. Aleksander Muc Cracow 2015 The author was a holder of a scholarship within the project "Doctus - Małopolska scholarships fund for PhD students" co-financed by the European Union under the European Social Fund. Autor był stypendystą w ramach projektu „Doctus – Małopolski fundusz stypendialny dla doktorantów” współfinansowanego ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. 2 Contents NOMENCLATURE ................................................................................................................. 6 ACRONYMS ............................................................................................................................ 9 1. INTRODUCTION .......................................................................................................... 11 1.1. MOTIVATION .............................................................................................................. 11 1.2. RESEARCH OBJECTIVES .............................................................................................. 12 1.3. THESIS 12 1.4. SCOPE OF THE WORK .................................................................................................. 12 1.5. ORGANISATION .......................................................................................................... 12 2. STATE OF THE ART AND THE LITERATURE SURVEY .................................... 13 2.1. FUNDAMENTAL INFORMATION ON COMPOSITE MATERIALS ........................................ 13 2.1.1. Introduction .................................................................................................. 13 2.1.2. Governing elastic relations for composite structures ................................... 17 2.1.3. Heat transfer ................................................................................................. 21 2.1.3.1. Thermal boundary conditions ....................................................... 24 2.1.3.2. General thermo-elastic formulations for orthotropic composites. 25 2.1.4. Failure modes of composite materials ......................................................... 26 2.1.4.1. Failure criteria .............................................................................. 27 2.1.4.2. Modelling of structural damage ................................................... 28 2.1.5. Destructive and non-destructive tests .......................................................... 28 2.2. INFRARED THERMOGRAPHY (IRT) ............................................................................. 31 2.2.1. Introduction .................................................................................................. 31 2.2.2. Infrared Thermography in the repertoire of NDT methods ......................... 31 2.2.3. Fundamental Concepts of non-contact temperature measurements ............. 33 2.2.3.1. History of IRT .............................................................................. 34 2.2.3.2. Blackbody and Planck’s Law ....................................................... 35 2.2.3.3. Wien’s Law .................................................................................. 36 2.2.3.4. Reflection, absorption and transmission ...................................... 37 2.2.3.5. Emissivity ..................................................................................... 38 2.2.3.6. Factors affecting IRT measurements ............................................ 41 2.2.4. Infrared Thermography for TNDT&E ......................................................... 44 2.2.4.1. Pulsed Thermography .................................................................. 48 2.2.4.2. Lock-in Thermography ................................................................ 48 2.2.4.3. Vibrothermography ...................................................................... 50 2.2.4.4. Pulse Phase Thermography .......................................................... 51 2.2.4.5. Thermal contrast ........................................................................... 51 2.2.4.6. Determining of the thermal properties ......................................... 52 2.2.4.7. Defects detection and characterisation ......................................... 53 2.2.5. Applications of IRT ..................................................................................... 55 3. NUMERICAL ANALYSIS ............................................................................................ 57 3.1. INTRODUCTION ........................................................................................................... 57 3.2. DESCRIPTION OF FE MODELS ..................................................................................... 58 3.2.1. Meshing ........................................................................................................ 60 3.2.2. Initial and boundary conditions ................................................................... 64 3 3.2.3. Heat load ...................................................................................................... 64 3.2.4. Thermal and mechanical properties of investigated constituents ................ 65 3.3. RESULTS..................................................................................................................... 67 3.3.1. Comparison of simulations for selected meshes .......................................... 67 3.3.2. Parametric thermographic analysis .............................................................. 70 3.3.2.1. Influence of supplied energy ........................................................ 70 3.3.2.2. Effects of delamination size and location .................................... 73 3.3.2.3. Effects of a defect’s material properties ....................................... 76 3.4. SUMMARY AND DISCUSSION ....................................................................................... 78 4. EXPERIMENTAL STUDIES ........................................................................................ 80 4.1. INTRODUCTION ........................................................................................................... 80 4.2. MANUFACTURING OF COMPOSITE MULTILAYERED STRUCTURES ................................ 80 4.2.1. Introduction .................................................................................................. 80 4.2.2. Manufacturing methods ............................................................................... 81 4.2.3. Configurations of the examined specimens ................................................. 84 4.2.4. Corrective treatments of emissivity ............................................................. 85 4.3. TEST STATION ............................................................................................................ 86 4.3.1. Software for AIRT analysis ......................................................................... 89 4.3.2. Test conditions ............................................................................................. 92 4.3.3. Experimental procedure of AIRT tests ........................................................ 93 4.4. RESULTS..................................................................................................................... 94 4.4.1. Detection of defects ..................................................................................... 94 4.4.2. Effects of delamination thickness ................................................................ 97 4.4.3. Uniform heating of curved composite structures ......................................... 99 4.4.4. Deformation of the specimens ................................................................... 102 4.4.5. Effects of the damage growth .................................................................... 104 4.5. NOVEL APPROACH TO AIRT: COOLING DOWN THERMOGRAPHY (CDT) .................. 106 4.5.1. Introduction ................................................................................................ 106 4.5.2. Description of the experiment .................................................................... 106 4.5.3. Results and discussion ............................................................................... 107 4.6. SUMMARY AND DISCUSSION ..................................................................................... 109 5. CONCLUSIONS AND FUTURE WORKS ................................................................ 110 5.1. CONCLUSIONS .......................................................................................................... 110 5.2. RECOMMENDATIONS FOR FUTURE RESEARCH ........................................................... 111 6. STRESZCZENIE .......................................................................................................... 112 6.1. WSTĘP 112 6.2. CEL, TEZA I ZAKRES PRACY ...................................................................................... 113 6.2.1. Cel pracy .................................................................................................... 113 6.2.2. Teza pracy .................................................................................................. 113 6.2.3. Zakres pracy ............................................................................................... 113 6.3. STAN WIEDZY I ANALIZA LITERATURY ..................................................................... 114 6.3.1. Termografia w podczerwieni ..................................................................... 115 6.4. OBLICZENIA NUMERYCZNE ...................................................................................... 116 6.4.1. Opis modeli numerycznych ....................................................................... 116 6.4.2. Wyniki ........................................................................................................ 118 4 6.5. BADANIA DOŚWIADCZALNE ..................................................................................... 122 6.5.1. Opis stanowiska badawczego i próbek ...................................................... 122 6.5.2. Wyniki i dyskusja ...................................................................................... 124 6.6. WNIOSKI I KIERUNKI DALSZYCH PRAC ...................................................................... 126 6.6.1. Wnioski ...................................................................................................... 126 6.6.2. Kierunki dalszych prac .............................................................................. 126 ABSTRACT .......................................................................................................................... 127 ACKNOWLEDGEMENTS ................................................................................................. 128 LITERATURE ..................................................................................................................... 129 LIST OF FIGURES ............................................................................................................. 139 LIST OF TABLES ............................................................................................................... 143 5 Nomenclature Scalars α absorptivity a α thermal diffusivity d α thermal expansion e g 0 xy membrane tangential deformations of the middle surface in the x-y plane ε emissivity ε maximum nominal compressive strain c e 0 e 0 x , y membrane deformations of the middle surface in the x and y axis directions θ fibre orientation in the global coordinate system k k x , y curvature change parameters of the mid-plane resulting from bending k xy curvature change parameters of the mid-plane resulting from torsion λ wavelength υ , υ , υ Poisson's ratios for principal directions of the material 12 23 13 ρ the mass density of the material ρ artificial defect density d ρ reflectivity r τ transmissivity φ the angle of incidence and reflection of the light D T temperature difference Φ phase shift d diameter d depth of a defect d f frequency h convection heat transfer coefficient h height of a composite structure c h height of a defect d l length of the test piece q convection heat flux c q conduction heat flux k q radiation heat flux r q internal heat generation w (cid:1)(cid:2) components of vector heat flux density (i=1,2,3), (cid:3) r radius r radius of curvature c r outer radius o t time t time of the analysis an t thickness of a composite structure c t thickness of a defect d 6 t time of maximal contrast occurrence maxC t duration of the heat pulse pd t beginning of the analysis 0 v volume w out of plane displacement w width of a composite structure c w width of a defect d x,y,z global coordinate system x ,x ,x local coordinate system 1 2 3 A area A defective area d A non-defective area nd C absolute thermal contrast a C running thermal contrast r C standard thermal contrast s C maximum absolute thermal contrast max C heat capacity at constant pressure p D standard defect s E energy or Young's modulus E ,E , E Young's modules in principal directions of the material 1 2 3 E : input energy in E : generated internal energy g E : output energy o E : stored internal energy int G , G , G Kirchhoff’s modules for principal directions of the material 12 23 13 G critical energy release rate c K critical stress intensity factor c Q heat Q¢ (k) elements of stiffness matrix for kth-layer in global coordinate system ij R ultimate tensile strength R total blackbody spectral radiance (the total amount of radiated energy) t S part of the surface of the body c S part of the surface in contact with a fluid media cs S front (observed) surface F S rear (heated) surface R S part of the surface exposed to radiation r T temperature in [°C] T ambient temperature amb T temperature of defective region of specimen d Te temperature of body or surface emitting the radiation T final temperature of the analysis fin T initial temperature of the model or the sample in T maximum temperature of front surface maxF 7 T maximum temperature of rear surface maxR T temperature of non-defective region of the specimen nd T absolute temperature of a fluid F T absolute temperature of a surface S T0 temperature of the reference surface T’ temperature gradient in the thickness direction Tensors α components of thermal expansion tensor in the local coordinate system mn a ' components of linear coefficients of thermal expansion tensor in the global ij coordinate system ε components of the strain tensor in the local coordinate system ij e¢ components of total strain tensor in the global coordinate system ij λ components of thermal conductivity tensor in the local coordinate system ij σ components of the stress tensor in the local coordinate system ij s ¢ components of stress tensor in the global coordinate system ij s T components of the thermal stress tensor in the local coordinate system ij C components of stiffness tensor in the local coordinate system ijkl J components of second order transformation tensor in the local coordinate ij system P components of second order transformation tensor ij Q components of stiffness tensor in the local coordinate system ij Q' components of stiffness tensor for plane strain state in the global coordinate ij system S components of compliance tensor in the local coordinate system ijkl Constants σ Stefan-Boltzmann’s constant, σ = 5.6697 x 10-8 [W/m2K4] c speed of light, c = 2.9979 x 108 [m/s] b Wien's displacement constant, b = 2.8977729(17)×10−3 [mK] W W h universal (or Planck’s) constant, h = 6.6256 x 10-34 [Js] pc pc k Boltzmann constant, k = 1.38064852(79) x10-23 [J/K] B B 8 Acronyms 2D: Two-dimensional 3D: Three-dimensional AIRT: Active Infrared Thermography AOI: Area of Interest APDL: ANSYS Parametric Design Language CDT: Cooling Down Thermography CFRP: Carbon Fibre Reinforced Plastic CM: Composite Material CMC: Ceramic Matrix Composite CMOS: Complementary Metal Oxide Semiconductor BC: Boundary Conditions DFT: Discrete Fourier Transform EM: Electromagnetic FDM: Finite Difference Method FEM: Finite Element Method FFT: Fast Fourier Transform FOV: Field of View FPA: Focal Plane Array FPF: First Play Failure FT: Flash Thermography FT: Fourier Transform FWHM: Full-width at half-maximum GFRP: Glass Fibre Reinforced Plastic GUI: Graphical User Interface IFOV: Instantaneous Field of View IR: Infrared IRT: Infrared Thermography LOI: Line of interest, temperature profile LPT: Long Pulse Thermography LT: Lock-In Thermography LWIR: Long-wavelength infrared MMC: Metal Matrix Composite MRTD: Minimum Resolvable Temperature Difference NDT: Non-Destructive Testing PIRT: Passive Infrared Thermography PMC: Polymer Matrix Composite PT: Pulsed Thermography PPT: Pulsed Phase Thermography PTFE: Polytetrafluoroethylene (also known as Teflon or Tarflen) SH: Step Heating SNR: Signal-to-Noise Ratio TBC Thermal Boundary Conditions 9 TLC: Thermochromic Liquid Crystals TNDT&E: Thermal Non-Destructive Testing and Evaluation TPs: Thermographic Phosphors TSA: Thermal Stress Analysis TSR: Thermographic Signal Reconstruction VT: Vibro Thermography 10

Description:
Thermal and mechanical properties of investigated constituents . AOI: Area of Interest. APDL: ANSYS Parametric Design Language. CDT: . seen from the viewpoint of the development of our civilisation because only on the advanced composite materials (both at the micro and nano scale), and not
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.