ebook img

Faculty of Engineering and Physical Sciences Department of Civil and Environmental Engineering PDF

321 Pages·2015·10.08 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Faculty of Engineering and Physical Sciences Department of Civil and Environmental Engineering

Faculty of Engineering and Physical Sciences Department of Civil and Environmental Engineering Patterns of corroded rebar surfaces and their impact on tensile mechanical properties A thesis submitted for the degree of Doctor of Philosophy By Leticia Llano Trueba August 2015 Acknowledgments I would like to express my most sincere gratitude to my main supervisor, Professor Marios Chryssanthopoulos, for his assistance throughout my research. His support, specifically through hours of meetings where he would help with useful advice and expert knowledge, constant encouragement throughout, pragmatic checking of written work and wise vital counsels assisted me along my journey to this submission of my PhD thesis. I would also want to thank my co-supervisor, Dr Alex Hagen-Zanker, who, although joining half-way through this study, has always provided valuable suggestions and advice. Many thanks must be given for the financial support to the Marie Curie Initial Training Network ‘SmartEN Project’ founded by the European Commision under the FP7 Framework and to the University of Surrey for providing me with the necessary facilities for undertaking this research. I also take this opportunity to acknowledge the British Spanish Society and Ferrovial Aeropuertos for providing financial assistance in the form of a joint scholarship that enabled me to finish the writing of this thesis. My gratitude is extended to research colleagues and senior researchers in the University of Surrey including Alex, Helder, Nurul, Hooi and Imran and others for providing with valuable advice and a very enjoyable working environment. Also, I would like to thank fellow PhD researchers and senior researchers at SmartEN Project for all the interesting knowledge exchange and the very pleasant project meetings. To my friends in Santander, who I have known for so long and have always been there for me and to the great people I have met in the course of this study in Guildford with whom I have shared so many adventures. Thank you. And finally, my deepest gratitude goes to my family. To my parents, Merche and Felipe, thank you for your love and support throughout my life, I owe you everything. To my grandmothers, Asun and Maria, thank you for your love and for being my inspiration to work hard to achieve my goals. And to Marc, thank you for your encouragement, patience and for always making me smile through the ups and downs of this work. ¡Muchas gracias a todos! 2 Abstract Chloride-induced corrosion is regarded as one of the most important sources of deterioration in reinforced concrete (RC) structures, whose maintenance during their service life is of foremost importance in order to avoid unnecessary human risks and economic losses. The availability of effective mechanisms for quantifying the condition and performance of these structures is, therefore, indispensable. The search for improved methods to assess this type of corrosion and its impact on tensile mechanical properties is the main objective of this research. Time variant non-spatial models are currently the methods of choice for the assessment of the effect of corrosion on the mechanical properties of reinforcing bars. Although these models, based on the relationship between mechanical properties and critical points in the geometry, give fairly good predictions, they still leave room for improvement. The consideration of the spatial component of corrosion has barely been addressed in relation to reinforcing bars embedded in concrete. Thus, the present study focuses on the spatial structure of chloride- induced corrosion on steel reinforcing bars and its effects on mechanical properties using a variety of approaches. The use of innovative techniques, originating from different disciplines and applications, has offered new possibilities in tackling this problem. First, based on the application of anodic current to steel reinforcing bars embedded in concrete from an external power source, a set of artificially corroded bars, at different degrees of severity, was produced. The use of a three-dimensional (3D) computerized imaging methodology was utilised to characterise these rebars in terms of a grid of corrosion depth measurements. After the acquisition of these measurements, use was made of a variety of surface metrology and image analysis techniques, through which a number of intensity, texture and shape corrosion quantifiers have been proposed for the spatial characterisation of corrosion patterns. Surface-metrological based parameters and image analysis-based features were found to yield useful metrics to investigate the corrosion structure of corroded rebars. The lack of an objective definition for a pit could be overcome with the characterisation of corrosion defects in terms of their depth and size using image segmentation. 3 All the corroded bars were subjected to a uniaxial tension test and the relevant tensile mechanical properties throughout the strain-stress response were recorded. It was confirmed that traditional non-spatial corrosion models had limitations in terms of identifying and utilising a single corrosion quantifier, and, as a result, the introduction of different possible spatial corrosion quantifiers was investigated, in order to improve the model performance. It was concluded that the addition of spatial quantifiers as predictors, resulted in improved predictions of mechanical properties, compared to the currently used non-spatial models. However, for the range of corrosion levels examined in this study, the improvement in the prediction was relatively modest (circa 10% on the coefficient of determination), confirming the maximum corrosion depth or the minimum cross-sectional area as the pre-eminent quantifiers. The range of techniques developed in this thesis can be implemented in other applications where spatial corrosion characteristics need to be explored. 4 Table of Contents Acknowledgments .............................................................................................................. 2 Abstract .............................................................................................................................. 3 Table of contents ................................................................................................................ 5 Symbols and Abbreviations .............................................................................................. 10 List of figures ................................................................................................................... 14 List of tables ..................................................................................................................... 22 1. Introduction ............................................................................................................... 24 1.1 Preamble ............................................................................................................ 24 1.2 Problem description ............................................................................................ 25 1.3 Scope and Objectives .......................................................................................... 27 1.4 Thesis organisation ............................................................................................. 28 2. Background and Literature Review ............................................................................ 30 2.1 Introduction ........................................................................................................ 30 2.2 Corrosion Process in Reinforced Concrete Structures ......................................... 30 2.2.1 Main causes of corrosion ............................................................................. 31 2.2.1.1 Chloride attack ..................................................................................... 31 2.2.1.2 Carbonation .......................................................................................... 33 2.2.2 Transport mechanisms leading to corrosion ................................................. 33 2.2.2.1 Chloride transport ................................................................................. 33 2.2.2.2 Carbonation .......................................................................................... 34 2.2.3 The process of reinforcement corrosion ....................................................... 35 2.2.4 Local and uniform corrosion and their effect on performance of RC structures ……………………………………………………………………………… 38 2.3 Modelling of corrosion deterioration ................................................................... 40 2.3.1 Initiation models .......................................................................................... 41 2.3.2 Propagation models ..................................................................................... 43 2.3.2.1 Uniform corrosion ................................................................................ 44 2.3.2.2 Localized corrosion .............................................................................. 46 2.3.2.3 Spatial characteristics ........................................................................... 50 2.3.3 Corrosion uncertainty .................................................................................. 54 2.3.3.1 Pit depth parameters ............................................................................. 54 5 2.3.3.2 Area loss parameters ............................................................................. 59 2.3.3.3 Spatial variability ................................................................................. 60 2.4 Corrosion measuring techniques ......................................................................... 62 2.5 Summary and conclusions .................................................................................. 64 3. Experimental Work.................................................................................................... 66 3.1 Introduction ........................................................................................................ 66 3.2 Laboratory-based corrosion testing ..................................................................... 67 3.2.1 Choice of accelerated corrosion technique ................................................... 67 3.2.1.1 Admixed chlorides ............................................................................... 68 3.2.1.2 Impressed voltage/current ..................................................................... 68 3.2.1.3 Wet and drying cycles .......................................................................... 71 3.2.1.4 Selected method ................................................................................... 72 3.2.2 Geometry of the reinforced concrete specimens ........................................... 72 3.2.2.1 Type of rebar ........................................................................................ 75 3.3 Casting of Corrosion Specimens ......................................................................... 76 3.4 Experimental set-up ............................................................................................ 78 3.5 Test results ......................................................................................................... 81 3.5.1.1 Scanning of the rebars .......................................................................... 85 3.5.1.2 Grid size selection ................................................................................ 87 3.5.1.3 Measurement Accuracy ........................................................................ 89 3.5.1.3.1 Accuracy test using artificial pits ....................................................... 89 3.5.1.3.2 Accuracy test using real pits .............................................................. 90 3.5.1.4 Comparison between Mass Loss and Average Corrosion Depth ............ 90 3.6 Non-spatial analysis of corrosion depths ............................................................. 91 3.7 Representation and visualization of the data ........................................................ 95 3.7.1 Pictorial ....................................................................................................... 96 3.7.2 Graphical ..................................................................................................... 97 3.7.2.1 Two dimensional plots .......................................................................... 97 3.7.2.2 Three dimensional plots ........................................................................ 98 3.8 Summary and conclusions .................................................................................. 98 4. Corrosion Characterisation based on Intensity and Texture Quantifiers: Surface Metrological Parameters and Image Analysis .................................................................. 100 4.1 Introduction ...................................................................................................... 100 4.2 Surface metrology ............................................................................................ 101 6 4.2.1 Applicability to corroded surfaces ............................................................. 101 4.2.2 Overview and selection of surface metrological parameters ....................... 103 4.2.3 Application to corrosion surfaces ............................................................... 110 4.3 Image analysis .................................................................................................. 116 4.3.1 Image features ........................................................................................... 118 4.3.2 Texture features ......................................................................................... 119 4.3.3 Wavelet-based method for texture characterisation .................................... 121 4.3.4 Theoretical background ............................................................................. 121 4.3.4.1 Continuous Wavelet Transform .......................................................... 126 4.3.4.2 Discrete Wavelet Transform ............................................................... 127 4.3.4.3 Two-dimensional Wavelet Analysis.................................................... 128 4.3.4.4 Review of Wavelet-based Methods for Corrosion Images ................... 130 4.3.4.5 Selection of the mother wavelet .......................................................... 134 4.3.4.6 Description of corrosion image decomposition ................................... 135 4.3.4.7 Application of wavelet analysis to corrosion surfaces ......................... 137 4.3.5 Analysis of spatially continuous data ......................................................... 142 4.3.5.1 Kernel estimation ............................................................................... 142 4.3.5.2 Spatial Autocorrelation ....................................................................... 147 4.4 Summary and conclusions ................................................................................ 150 5. Corrosion Characterization using Shape Features: Segmentation Analysis ............... 151 5.1 Introduction ...................................................................................................... 151 5.2 Segmentation applied to corrosion images ........................................................ 152 5.2.1 What is segmentation? ............................................................................... 152 5.2.2 Segmentation of corrosion images ............................................................. 154 5.3 Global threshold-based segmentation ................................................................ 155 5.3.1 Effect of threshold level in pit definition .................................................... 157 5.3.2 Probability distribution function for the surface area of pits ....................... 162 5.3.3 Probability distribution function for the volume of pits .............................. 166 5.4 Watershed-based segmentation ......................................................................... 168 5.4.1 Watershed algorithm applied to corrosion images ...................................... 171 5.4.2 Probability distribution function for the surface area of pits ....................... 177 5.4.3 Probability distribution function for the volume of pits .............................. 180 5.5 Multi-spectral thresholding ............................................................................... 182 5.5.1 Multi-spectral thresholding for corrosion images ....................................... 183 5.6 Summary and conclusions ................................................................................ 188 7 6. Mechanical Properties of Corroded Rebars .............................................................. 189 6.1 Introduction ...................................................................................................... 189 6.2 Effect of corrosion on behaviour of RC beams and slabs ................................... 189 6.2.1 Effect of corrosion on bond ....................................................................... 189 6.2.2 Corrosion-induced cracking ....................................................................... 190 6.2.3 Effect of corrosion on flexural strength ...................................................... 191 6.2.4 Effect of corrosion on post-ultimate behaviour .......................................... 192 6.3 Effect of corrosion on tensile mechanical properties of steel rebars ................... 193 6.3.1 Overview of available studies .................................................................... 193 6.3.1.1 Classification of previous studies ........................................................ 193 6.3.1.2 Discussion of previous studies ............................................................ 197 6.3.2 Inter-group comparison of available studies ............................................... 200 6.3.3 Mechanical models .................................................................................... 206 6.4 Experimental Set up .......................................................................................... 209 6.5 Experimental results ......................................................................................... 213 6.5.1 Elastic modulus ......................................................................................... 214 6.5.2 Yield and ultimate strengths ...................................................................... 215 6.5.3 Yield plateau ............................................................................................. 219 6.5.4 Ductility .................................................................................................... 220 6.5.5 Study of critical points ............................................................................... 224 6.5.6 Conclusions ............................................................................................... 234 7. Influence of Surface Pattern on Mechanical Properties............................................. 237 7.1 Introduction ...................................................................................................... 237 7.2 Relationship between intensity features and tensile properties ........................... 238 7.2.1 Strength properties..................................................................................... 238 7.2.2 Strain properties ........................................................................................ 242 7.3 Relationship between texture features and tensile properties ............................. 245 7.4 Relationship between spatially continuous metrics and tensile properties .......... 248 7.4.1 Relationship between kernel estimation-based metrics and tensile properties ……………………………………………………………………………. 248 7.4.2 Relationship between spatial autocorrelation-based metrics and tensile properties ................................................................................................................. 251 7.5 Relationship between shape features and tensile properties ............................... 252 7.6 Effect of corrosion pattern on tensile mechanical properties .............................. 253 7.7 Summary and conclusions ................................................................................ 257 8 8. Conclusions and Future work ................................................................................... 259 8.1 Introduction ...................................................................................................... 259 8.2 Conclusions ...................................................................................................... 261 8.3 Recommendations for future work .................................................................... 262 Appendix A.1 : Corrosion digital images of all rebars .................................................... 264 Appendix A.2 : Corrosion photographic images of representative rebars ......................... 283 Appendix B : Methods for analysis of statistical relationships of variables ...................... 297 References ...................................................................................................................... 300 9 Symbols and Abbreviations Abbreviations RC Reinforced concrete Rebars Reinforcing bars 1D One-dimensional 2D Two-dimensional 3D Three-dimensional CTL Chloride threshold level REDOX Reduction-oxidation FT Fourier Transform FFT Fast Fourier Transform PSD Power Spectral Density PC Portland Cement CAD Computer Assisted Design ACF Autocorrelation function LISA Local Indicator of Spatial Association LVDT Linear variable differential transformer Symbols (in order of appearance) Chapter 2 𝑝𝐻 Measure of the acidity or basicity of an aqueous solution (chem.) 𝐶 Chloride concentration 𝐶𝑠 Surface chloride concentration 𝐷 Chloride diffusion coefficient 𝑀𝑡ℎ Theoretical mass of rust per unit of surface area 𝑊 Equivalent weight of steel 𝐼𝑐𝑜𝑟𝑟 Corrosion rate or current density t Time since corrosion initiation 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.