Factors Affecting the Optimal Sizing of Generators and Storage in a Stand-Alone Hybrid Renewable Energy System Mohammad Shafiqur Rahman Tito A thesis submitted to Auckland University of Technology in fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) 2015 School of Engineering Abstract Thereisaneedtoprovidelowcostelectricpowersystemsinanumberoflocationsaroundthe world. However,thesizeandcostofrenewableenergygeneratorsandstorageincreasewhen they are used alone, due to the stochastic nature of sources. Reliability similar to the grid powersupplycanonlybeachievedbycombiningmorecomplementaryenergysourcesin thepresenceofstoragedevices;thuscreatingahybridrenewableordistributedenergysystem. The optimal sizing of a hybrid renewable energy system (HRES) is important in order to keep the system reliable with low investment cost and with adequate or full use of resources. In this work, the stochastic nature of renewable generation and demand and non-linear system characteristics are explored in the process of optimizing the size of a HRES.Inachievingthis,ahybridoptimizationmethodologywasdevelopedfortheintention of matching the renewable generation with the demand of a site. The results showed that thedemandprofiledictatesthesizeofaHRESandisasimportantastheoptimizationmethod. Inpreviousstudies,averagehourlydemandprofilesforaday,totalmonthlyload,seasonal daily load profile, average hourly demand profile repeated throughout the year have been iv examined,however,thisworkdemonstratesthatthesedemandprofilesfailtorepresentreal life electrical demand. As such, this work extends our understanding of the influence of demand,usingmultiple“realworld”demandprofiles,onsizingaHRESthatresultinvarying temporalpositionofloadsandthepeakenergydemand. Itshowsthatthetotaldailydemand ofasitecanvarysignificantlyduetosocio-demographicfactorsandthatinsizingaHRES, thevariationoftheannualdemandprofileduetothesefactorsmustbeconsidered. Moreover, it furthers this by exploring the random day to day variations of peak demand bothinmagnitudeand temporal positionthroughouttheyearthatoccurdue tothevarying weatherconditionsandhabitsoftheuser. Itwasdeterminedthattheeffectofthisrandom variation ofelectricalloadonthe optimalsizeofa HRESwassignificant and anadvanced methodforsizingaHRESundertheseconditionswasdevelopedanddemonstrated. Finally,aseriesofdemandsidemanagement(DSM)optionswereproposedfortheHRES and incorporated with the sizing method. It was shown that the investment costs could be significantly reduced with the introduction of each of the DSM options, in particular, by utilizingexcessenergygeneratedbytheHREStoheatathermalstoragesystem. Table of contents Listoffigures ix Listoftables xiii Listofsymbolsandabbreviations xv 1 Introduction 1 1.1 Importanceofusingrenewableenergysources . . . . . . . . . . . . . . . . 1 1.2 Renewableenergysources . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Geothermalenergy . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Solarenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Windenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Hydroandmicro-hydro . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Stand-alonehybridrenewableenergysystem . . . . . . . . . . . . . . . . . 7 1.4 Energystoragesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 SizingmethodforHRES . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Electricaldemand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 vi Tableofcontents 1.7 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.8 Scopeofresearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SystemModel 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Systemconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Objectivefunctionformulation . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Modelingofthesystemforoptimization . . . . . . . . . . . . . . . . . . . 27 2.4.1 Windturbinegeneratormodel . . . . . . . . . . . . . . . . . . . . 30 2.4.2 Photovoltaicmodulemodel . . . . . . . . . . . . . . . . . . . . . 32 2.4.3 Batterymodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Reliabilitymodelbasedonlossofpowersupplyprobability(LPSP) . . . . 38 2.6 OptimizationMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.6.1 Geneticalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.6.2 Exhaustive(iterative)searchmethod . . . . . . . . . . . . . . . . . 42 2.6.3 Hybrid(GA-exhaustivesearch)optimizationmethod . . . . . . . . 44 2.7 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.7.1 OptimalsizeofaHRESfortypicalannualdemandprofile . . . . . 46 2.8 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 OptimalSizingofaHRESConsideringSocio-Demographicfactors 51 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Tableofcontents vii 3.2 Demandprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3 Resultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Optimalsizeconsideringsocio-demographicfactors . . . . . . . . 59 3.3.2 Reliabilityandsystemcostanalysis . . . . . . . . . . . . . . . . . 63 3.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 OptimalSizingofaHRESunderTimeVaryingLoad 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Demandprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 SizingMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.1 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 OptimalSizeIntegratingDemandSideManagement 79 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Demandprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3 DSMOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.4 OptimizationMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.5 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.5.1 Excessenergyusedforhotwaterandspaceheating . . . . . . . . . 84 5.5.2 Peakdemandreducedthroughouttheyear . . . . . . . . . . . . . . 88 5.5.3 PeakdemandreducedwhenSOCislow . . . . . . . . . . . . . . . 90 5.5.4 Fractionofpeakloadshiftedtooffpeakhours . . . . . . . . . . . 93 viii Tableofcontents 5.6 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 ConclussionandFutureWork 97 References 101 AppendixA 115 A.1 InvestigationonTimeVaryingload . . . . . . . . . . . . . . . . . . . . . . 115 List of figures 1.1 Solarradiationthatreachestheearthsurface. . . . . . . . . . . . . . . . . 5 1.2 Hourlywinterandsummerloadoftypicalhouseofaday. . . . . . . . . . 16 1.3 Classifiedsixdifferentprofilesofasitebasedonsocio-demographicfactors 17 2.1 AWind-Photovoltaic-Batteryhybridrenewableenergysystem . . . . . . . 25 2.2 Hourlywindspeed(m/s)ofayearinAuckland,NewZealand. . . . . . . . 28 2.3 Hourlyglobalhorizontalradiation(W/m2)ofayearinAuckland,NewZealand. 28 2.4 Hourlytemperature(°C)ofatypicalyearinAuckland,NewZealand. . . . 29 2.5 Averagehourlyelectricalloadprofileofaday. . . . . . . . . . . . . . . . . 29 2.6 Powercharacteristicofatypicalwindturbinegenerator(WG). . . . . . . . 30 2.7 Flowchartoftheimplementedgeneticalgorithm(GA). . . . . . . . . . . . 41 2.8 Flowchartoftheimplementedexhaustivesearch(iterative)method . . . . 43 2.9 Flow-chartofhybridoptimizationmethod . . . . . . . . . . . . . . . . . . 45 3.1 DemandprofileofClass#1(highnightuse). . . . . . . . . . . . . . . . . . 54 3.2 Demand profile of Class #2 (Similar morning and evening peak with low middayuse). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 x Listoffigures 3.3 DemandprofileofClass#3(highdayusewithmorningpeak). . . . . . . . 56 3.4 DemandprofileofClass#4(extendedeveningpeak). . . . . . . . . . . . . 57 3.5 DemandprofileofClass#5(mediumflatdayusewithearlyeveningpeak). 58 3.6 DemandprofileofClass#6(lowdayusewitheveningpeak). . . . . . . . . 59 3.7 Levelanddurationofthedemandofaday. . . . . . . . . . . . . . . . . . . 64 3.8 VariationofbatterySOCandgeneratedrenewableenergyfrom4000hrsto 5000hrsofayear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.9 TotalsystemcostvariationwiththechangeofLPSP. . . . . . . . . . . . . 66 3.10 VariationofbatterySOCforLPSPof0.25percent. . . . . . . . . . . . . . 66 4.1 Hourlyelectricalloadprofileofaday. . . . . . . . . . . . . . . . . . . . . 71 4.2 Flowchartforgeneratingapproximatecriticalcombinationofannualdemand profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1 Hourlywinterandsummerloadofaday. . . . . . . . . . . . . . . . . . . . 82 5.2 ThevariationoftheSOCthroughouttheyearforsummeronlydemand. . . 86 5.3 The additional energy demand in winter session as compared to summer demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4 Theexcessenergygenerationfromthesystemoptimizedonlyforsummerload. 88 5.5 Themodifiedwinterloadfrom4140hrsto4280hrofayear. . . . . . . . . 89 5.6 ElectricalloadismodifiedasperminimumSOC. . . . . . . . . . . . . . . 91 5.7 Modifiedloadfromhours4140to4280ofayear. . . . . . . . . . . . . . . 92
Description: