ebook img

Factorization method in quantum mechanics PDF

308 Pages·1998·1.524 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Factorization method in quantum mechanics

Factorization Method in Quantum Mechanics Fundamental Theories of Physics An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application Editor: ALWYN VAN DER MERWE, University of Denver, U.S.A. Editorial Advisory Board: GIANCARLO GHIRARDI, University of Trieste, Italy LAWRENCE P. HORWITZ, Tel-Aviv University, Israel BRIAN D. JOSEPHSON, University of Cambridge, U.K. CLIVE KILMISTER, University of London, U.K. PEKKAJ. LAHTI, University of Turku, Finland FRANCO SELLERI, Università di Bari, Italy TONYSUDBERY, University of York, U.K. HANS-JÜRGEN TREDER, Zentralinstitut für Astrophysik der Akademie der Wissenschaften, Germany Volume150 Factorization Method in Quantum Mechanics by Shi-Hai Dong Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, México AC.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-13 978-1-4020-5795-3 (HB) ISBN-13 978-1-4020-5796-0 (e-book) Published by Springer, P.O. Box 17, 3300 AADordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Thisbookisdedicatedtomy wifeGuo-HuaSun,my lovelychildrenBoDongand JazminYueDongSun. Contents Dedication v ListofFigures xiii ListofTables xv Preface xvii Acknowledgments xix PartI Introduction 1. INTRODUCTION 3 1 Basicreview 3 2 Motivationsandaims 11 PartII Method 2. THEORY 15 1 Introduction 15 2 Formalism 15 3. LIEALGEBRASSU(2)ANDSU(1,1) 17 1 Introduction 17 2 Abstractgroups 19 3 Matrixrepresentation 21 4 PropertiesofgroupsSU(2)andSO(3) 22 5 Propertiesofnon-compactgroupsSO(2,1)andSU(1,1) 23 6 GeneratorsofLiegroupsSU(2)andSU(1,1) 23 7 Irreduciblerepresentations 25 vii viii FACTORIZATIONMETHODINQUANTUMMECHANICS 8 Irreducibleunitaryrepresentations 28 9 Concludingremarks 30 PartIII ApplicationsinNon-relativisticQuantumMechanics 4. HARMONICOSCILLATOR 35 1 Introduction 35 2 Exactsolutions 36 3 Ladderoperators 37 4 Bargmann-Segaltransform 42 5 SinglemoderealizationofdynamicgroupSU(1,1) 42 6 Matrixelements 44 7 Coherentstates 45 8 Franck-Condonfactors 49 9 Concludingremarks 55 5. INFINITELYDEEPSQUARE-WELLPOTENTIAL 57 1 Introduction 57 2 Ladderoperatorsforinfinitelydeepsquare-wellpotential 58 3 RealizationofdynamicgroupSU(1,1)andmatrixelements 60 4 Ladderoperatorsforinfinitelydeepsymmetricwellpotential 61 5 SUSYQMapproachtoinfinitelydeepsquarewellpotential 62 6 Perelomovcoherentstates 63 7 Barut-Girardellocoherentstates 67 8 Concludingremarks 70 6. MORSEPOTENTIAL 73 1 Introduction 73 2 Exactsolutions 78 3 LadderoperatorsfortheMorsepotential 79 4 RealizationofdynamicgroupSU(2) 82 5 Matrixelements 84 6 Harmoniclimit 84 7 Franck-Condonfactors 86 8 Transitionprobability 89 9 RealizationofdynamicgroupSU(1,1) 90 Contents ix 10 Concludingremarks 93 7. PO¨SCHL-TELLERPOTENTIAL 95 1 Introduction 95 2 Exactsolutions 97 3 Ladderoperators 101 4 RealizationofdynamicgroupSU(2) 103 5 Alternativeapproachtoderiveladderoperators 105 6 Harmoniclimit 107 7 Expansions of the coordinate x and momentum p from the SU(2)generators 109 8 Concludingremarks 110 8. PSEUDOHARMONICOSCILLATOR 111 1 Introduction 111 2 Exactsolutionsinonedimension 112 3 Ladderoperators 114 4 Barut-Girardellocoherentstates 117 5 Thermodynamicproperties 118 6 Pseudoharmonicoscillatorinarbitrarydimensions 122 7 Recurrencerelationsamongmatrixelements 129 8 Concludingremarks 135 9. ALGEBRAICAPPROACHTOANELECTRONINAUNIFORM MAGNETICFIELD 137 1 Introduction 137 2 Exactsolutions 137 3 Ladderoperators 139 4 Concludingremarks 142 10.RING-SHAPEDNON-SPHERICALOSCILLATOR 143 1 Introduction 143 2 Exactsolutions 143 3 Ladderoperators 146 4 Realizationofdynamicgroup 147 5 Concludingremarks 149 x FACTORIZATIONMETHODINQUANTUMMECHANICS 11.GENERALIZEDLAGUERREFUNCTIONS 151 1 Introduction 151 2 GeneralizedLaguerrefunctions 151 3 LadderoperatorsandrealizationofdynamicgroupSU(1,1) 153 4 Concludingremarks 155 12.NEWNONCENTRALRING-SHAPEDPOTENTIAL 157 1 Introduction 157 2 Boundstates 158 3 Ladderoperators 161 4 Meanvalues 162 5 Continuumstates 165 6 Concludingremarks 168 13.PO¨SCHL-TELLERLIKEPOTENTIAL 169 1 Introduction 169 2 Exactsolutions 169 3 Ladderoperators 171 4 Realizationofdynamicgroupandmatrixelements 173 5 Infinitelysquarewellandharmoniclimits 174 6 Concludingremarks 176 14.POSITION-DEPENDENTMASSSCHRO¨DINGEREQUATION FORASINGULAROSCILLATOR 177 1 Introduction 177 2 Position-dependent effective mass Schr¨odinger equation for harmonicoscillator 178 3 Singularoscillatorwithaposition-dependenteffectivemass 179 4 Completesolutions 181 5 Anotherposition-dependenteffectivemass 183 6 Concludingremarks 184

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.