FactorizationAlgebrasinQuantumFieldTheory Volume1 Factorizationalgebrasarelocal-to-globalobjectsthatplayaroleinclassicalandquan- tum field theory that is similar to the role of sheaves in geometry: they conveniently organizecomplicatedinformation.Theirlocalstructureencompassesexamplessuchas associativeandvertexalgebras;intheseexamples,theirglobalstructureencompasses Hochschildhomologyandconformalblocks. Inthisfirstvolume,theauthorsdevelopthetheoryoffactorizationalgebrasindepth, butwithafocusuponexamplesexhibitingtheiruseinfieldtheory,suchastherecov- eryofavertexalgebrafromachiralconformalfieldtheoryandaquantumgroupfrom Abelian Chern–Simons theory. Expositions of the relevant background in homologi- calalgebra,sheaves,andfunctionalanalysisarealsoincluded,thusmakingthisbook idealforresearchersandgraduatesworkingattheinterfacebetweenmathematicsand physics. KEVIN COSTELLO istheKrembilFoundationWilliamRowanHamiltonChairin TheoreticalPhysicsatthePerimeterInstituteinWaterloo,Ontario. OWEN GWILLIAMisapostdoctoralfellowattheMaxPlanckInstituteforMathe- maticsinBonn. NEW MATHEMATICAL MONOGRAPHS EditorialBoard Be´laBolloba´s,WilliamFulton,FrancesKirwan, PeterSarnak,BarrySimon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversity Press.Foracompleteserieslistingvisitwww.cambridge.org/mathematics. 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.Wu¨stholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionofSymmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.A.MunsonandI.Volic´CubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups(2ndEdition) 27. J.Heinonen,P.Koskela,N.ShanmugalingamandJ.T.TysonSobolevSpacesonMetric MeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII 30. A.BobrowskiConvergenceofOne-ParameterOperatorSemigroups 31. K.CostelloandO.GwilliamFactorizationAlgebrasinQuantumFieldTheoryI 32. J.-H.EvertseandK.Gyo˝ryDiscriminantEquationsinDiophantineNumberTheory Factorization Algebras in Quantum Field Theory Volume 1 KEVIN COSTELLO PerimeterInstituteforTheoreticalPhysics,Waterloo,Ontario OWEN GWILLIAM MaxPlanckInstituteforMathematics,Bonn UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi-110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107163102 10.1017/9781316678626 (cid:2)c KevinCostelloandOwenGwilliam2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-16310-2Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. TO LAUREN AND TO SOPHIE Contents 1 Introduction page 1 1.1 TheMotivatingExampleofQuantumMechanics 3 1.2 APreliminaryDefinitionofPrefactorizationAlgebras 8 1.3 PrefactorizationAlgebrasinQuantumFieldTheory 8 1.4 ComparisonswithOtherFormalizationsofQuantum FieldTheory 11 1.5 OverviewofThisVolume 16 1.6 Acknowledgments 18 PARTI PREFACTORIZATIONALGEBRAS 21 2 FromGaussianMeasurestoFactorizationAlgebras 23 2.1 GaussianIntegralsinFiniteDimensions 25 2.2 DivergenceinInfiniteDimensions 27 2.3 ThePrefactorizationStructureonObservables 31 2.4 FromQuantumtoClassical 34 2.5 CorrelationFunctions 36 2.6 FurtherResultsonFreeFieldTheories 39 2.7 InteractingTheories 40 3 PrefactorizationAlgebrasandBasicExamples 44 3.1 PrefactorizationAlgebras 44 3.2 AssociativeAlgebrasfromPrefactorizationAlgebrasonR 51 3.3 ModulesasDefects 52 3.4 AConstructionoftheUniversalEnvelopingAlgebra 59 3.5 SomeFunctionalAnalysis 62 vii viii Contents 3.6 TheFactorizationEnvelopeofaSheafofLieAlgebras 73 3.7 EquivariantPrefactorizationAlgebras 79 PARTII FIRSTEXAMPLESOFFIELDTHEORIESAND THEIROBSERVABLES 87 4 FreeFieldTheories 89 4.1 TheDivergenceComplexofaMeasure 89 4.2 ThePrefactorizationAlgebraofaFreeField Theory 93 4.3 QuantumMechanicsandtheWeylAlgebra 106 4.4 PushforwardandCanonicalQuantization 112 4.5 AbelianChern–SimonsTheory 115 4.6 AnotherTakeonQuantizingClassicalObservables 124 4.7 CorrelationFunctions 129 4.8 Translation-InvariantPrefactorizationAlgebras 131 4.9 StatesandVacuaforTranslationInvariantTheories 139 5 HolomorphicFieldTheoriesandVertexAlgebras 145 5.1 VertexAlgebrasandHolomorphicPrefactorization AlgebrasonC 145 5.2 HolomorphicallyTranslation-InvariantPrefactorization Algebras 149 5.3 AGeneralMethodforConstructingVertex Algebras 157 5.4 Theβγ SystemandVertexAlgebras 171 5.5 Kac–MoodyAlgebrasandFactorizationEnvelopes 188 PARTIII FACTORIZATIONALGEBRAS 205 6 FactorizationAlgebras:DefinitionsandConstructions 207 6.1 FactorizationAlgebras 207 6.2 FactorizationAlgebrasinQuantumField Theory 215 6.3 VariantDefinitionsofFactorizationAlgebras 216 6.4 LocallyConstantFactorizationAlgebras 220 6.5 FactorizationAlgebrasfromCosheaves 225 6.6 FactorizationAlgebrasfromLocalLieAlgebras 230 7 FormalAspectsofFactorizationAlgebras 232 7.1 PushingForwardFactorizationAlgebras 232 7.2 ExtensionfromaBasis 232 Contents ix 7.3 PullingBackAlonganOpenImmersion 240 7.4 DescentAlongaTorsor 241 8 FactorizationAlgebras:Examples 243 8.1 SomeExamplesofComputations 243 8.2 AbelianChern–SimonsTheoryandQuantumGroups 249 AppendixABackground 273 AppendixBFunctionalAnalysis 310 AppendixCHomologicalAlgebrainDifferentiableVectorSpaces 351 AppendixDTheAtiyah–BottLemma 374 References 377 Index 383