ebook img

Facets of Combinatorial Optimization: Festschrift for Martin Grötschel PDF

510 Pages·2013·7.696 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Facets of Combinatorial Optimization: Festschrift for Martin Grötschel

Facets of Combinatorial Optimization Michael Jünger (cid:2) Gerhard Reinelt Editors Facets of Combinatorial Optimization Festschrift for Martin Grötschel Editors MichaelJünger GerhardReinelt Dept.ofComputerScience Dept.ofComputerScience UniversityofCologne UniversityofHeidelberg Cologne,Germany Heidelberg,Germany ISBN978-3-642-38188-1 ISBN978-3-642-38189-8(eBook) DOI10.1007/978-3-642-38189-8 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013942544 MathematicsSubjectClassification(2010): 90,90-06,90C ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) We dedicatethisbooktoMartinGrötschel on theoccasion ofhis65thbirthday. Preface Wereceivedourdoctoraldegreesintheyears1983and1984;wearetheoldestdoc- toraldescendantsofMartinGrötschelwhocelebratedhis65thbirthdayonSeptem- ber10,2013. Inthesummerof2011,withthishappyoccasionstillmorethantwoyearsinthe future, we wondered what would be a nice birthday present for Martin. We knew thatwewerejustthefirsttwoinalonglistofdoctoraldescendants,butlittledidwe knowthenhowmanytherewere.(Nowwedo,seePartIII.) Wecameupwiththeideaoforganizingacelebrationwithhisdoctoraldescen- dantsandhisclosestscientificfriends.Westartedseriousworkontheprojectdur- ingtheOberwolfachWorkshoponCombinatorialOptimizationinNovember2011, where we also decided to organize a colloquium in his honor at the University of CologneonSeptember13,2013,andtoeditthisbookthatwillbepresentedtohim andallparticipantsduringthecolloquium. Many of Martin Grötschel’s doctoral descendants still work in research, in and outsideacademia.WhenweissuedacallforcontributionsonNovember24,2011, includingthesentence“Weaimatthehighestquality,sopleasededicateyourbest workinhonorofMartinGrötschel!”,wehadanoverwhelminglypositiveresponse. The result is Part IV, the core of this book.It is preceded by a personal tribute by the editors to our mentor (Part I), a contribution by a very special “predecessor” (PartII),andthedoctoraldescendanttree1983–2012(PartIII). Cologne,Germany MichaelJünger Heidelberg,Germany GerhardReinelt September2013 vii Acknowledgements Preparing this book and organizing the Festkolloquium have been intertwined tasks that turnedouttobemuchmoredemandingthanwehadanticipatedwhenwesketchedtheideas abouttwoyearsago.Manypeoplehelpedus.Wewouldliketoexpressourgratitudeto • IrisGrötschelforadvice,photos,andforkeepingthesecret, • BernhardKorteforvaluableinformationontheearlydaysattheInstitutfürÖkonometrie undOperationsResearchoftheUniversityofBonn, • DirkjeKeiperandSimonaSchöneweißforexploringthearchivesoftheForschungsinstitut fürDiskreteMathematikattheUniversityofBonnforus, • TeodoraUngureanuforhelpingusrefreshourmemoriesofthedaysattheMathematics DepartmentoftheUniversityofAugsburg, • Uwe and Renate Zimmermann for turning scans of blurred photographs into reasonable pictures, • BillPulleyblankforreadingapreliminaryversionofthefirstchapterandprovidingvery helpfulfeedback, • ManfredPadbergforcontinuous“grandparental”advicebeforeandduringthepreparation ofthisbookandhisimmediateagreementtocontributehislatestarticletothisbook, • SvenMallachforhishelpintypesettingManfredPadberg’scontribution, • thedoctoraldescendantswhohelpedgettingthedoctoraldescendanttreeright, • ThomasMöllmannwhodidnothesitatewhenweapproachedhimwiththedemandingtask ofturningamathematician’streeintoarealtree, • theauthorsofPartIIandPartIV,whopatientlydealtwithourmanyrequestsandstrict deadlines, • theanonymousrefereeswhosupporteduswiththeirexpertknowledgeandgavevaluable advicetotheauthors, • MartinPetersofSpringerVerlagwhosupportedthisbookprojectfromtheverybeginning, • RuthAlleweltofSpringerVerlagwhoaccompaniedusallthewayfromtheearlystagesto thefinalbook, • FrankHolzwarthofSpringerVerlagwhoprovided“quickLATEXhacks”wheneverneeded inthetechnicalediting, • GöntjeTeuchertforcoordinatingtheorganizationoftheFestkolloquium,and • MartinGronemann,ThomasLange,SvenMallach,DanielSchmidt,andChristianeSpisla forproofreadingthebookandfortheirhelpintheorganizationoftheFestkolloquium. ix Contents PartI MartinGrötschel—ActivistinOptimization MartinGrötschel—TheEarlyYearsinBonnandAugsburg . . . . . . . . 5 MichaelJüngerandGerhardReinelt 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Bonn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Augsburg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Part II Contribution by a Very Special Predecessor of Martin Grötschel FacetsandRankofIntegerPolyhedra . . . . . . . . . . . . . . . . . . . . 23 ManfredW.Padberg 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 NormalFormandClassificationofFacets. . . . . . . . . . . . . . 26 3 IrreducibleRepresentationsofFacets . . . . . . . . . . . . . . . . 30 4 SymmetryofVertexFigures . . . . . . . . . . . . . . . . . . . . . 31 5 SymmetryofEdgeFigures . . . . . . . . . . . . . . . . . . . . . 35 6 RankofFacetsandIntegerPolyhedra . . . . . . . . . . . . . . . . 37 7 TheFacialStructureof“Small”STSPolytopes . . . . . . . . . . . 45 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 PartIII MartinGrötschel’sDoctoralDescendants MartinGrötschel’sDescendantsandTheirDoctoralTheses1983–2012 . 63 MichaelJüngerandGerhardReinelt PartIV ContributionsbyMartinGrötschel’sDoctoralDescendants ConstructingExtendedFormulationsfromReflectionRelations . . . . . 77 VolkerKaibelandKanstantsinPashkovich 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 xi xii Contents 2 PolyhedralRelations . . . . . . . . . . . . . . . . . . . . . . . . . 80 3 ReflectionRelations . . . . . . . . . . . . . . . . . . . . . . . . . 87 4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1 ReflectionGroups . . . . . . . . . . . . . . . . . . . . . . 89 4.2 HuffmanPolytopes . . . . . . . . . . . . . . . . . . . . . 94 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Mirror-DescentMethodsinMixed-IntegerConvexOptimization . . . . . 101 MichelBaes,TimmOertel,ChristianWagner,andRobertWeismantel 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 2 AnAlgorithmBasedonan“ImprovementOracle” . . . . . . . . . 103 3 Two-DimensionalIntegerConvexOptimization . . . . . . . . . . 109 3.1 MinimizingaConvexFunctioninTwoIntegerVariables . . 110 3.2 Findingthek-thBestPoint . . . . . . . . . . . . . . . . . 114 4 ExtensionsandApplicationstotheGeneralSetting . . . . . . . . . 120 4.1 Mixed-IntegerConvexProblemswithOneIntegerVariable 121 4.2 Mixed-IntegerConvexProblemswithTwoIntegerVariables 127 4.3 A Finite-Time Algorithm for Mixed-Integer Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 129 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 BeyondPerfection:ComputationalResultsforSuperclasses . . . . . . . . 133 ArnaudPêcherandAnnegretK.Wagler 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 2 BeyondPerfection . . . . . . . . . . . . . . . . . . . . . . . . . . 138 2.1 OnComputingtheCliqueNumber . . . . . . . . . . . . . 141 2.2 OnComputingtheChromaticNumber . . . . . . . . . . . 146 2.3 OnComputingtheCircular-CliqueandCircular-Chromatic Number . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 3 ExtendingtheThetaFunctiontoLargerConvexSetsofMatrices . 156 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 FromVertex-TelecenterstoSubtree-Telecenters . . . . . . . . . . . . . . 163 ZawWinandChoKyiThan 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 2 Vertex-CentroidsandVertex-TelecentersofaTree . . . . . . . . . 164 3 Subtree-CentroidsandSubtree-TelecentersofaTree . . . . . . . . 166 4 ACharacterizationofSubtree-Telecenters . . . . . . . . . . . . . 168 5 RelationBetweenSubtree-CentroidsandSubtree-Telecenters . . . 171 5.1 ASolutionMethodforFindingaSubtree-Telecenterofa GivenTree . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Contents xiii AlgorithmsforJunctionsinAcyclicDigraphs . . . . . . . . . . . . . . . . 175 CarlosEduardoFerreiraandÁlvaroJunioPereiraFranco 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2 ConceptsandNotation . . . . . . . . . . . . . . . . . . . . . . . . 176 3 ProblemDefinition,LiteratureOverview,andMainResults . . . . 178 4 PolynomialTimeAlgorithmsforthes-Junction-k-PairsProblem . 179 5 AnO(m+k)TimeAlgorithmforthes-Junction-k-PairsProblem 180 6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 AlgorithmsforSchedulingSensorstoMaximizeCoverageTime . . . . . 195 RafaeldaPonteBarbosaandYoshikoWakabayashi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 2 TheProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 3 TheApproximationAlgorithmforRSCandItsAnalysis . . . . . . 199 3.1 ApproximationRatiooftheAlgorithm . . . . . . . . . . . 199 4 ILPFormulationfortheRSCProblemandComputationalResults . 208 5 TheRSCPProblem,thePreemptiveVariant . . . . . . . . . . . . 210 6 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . . 213 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 HowManySteinerTerminalsCanYouConnectin20Years? . . . . . . . 215 RalfBorndörfer,Nam-Du˜ngHoang,MarikaKarbstein,ThorstenKoch, andAlexanderMartin 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 2 TheSteinerConnectivityProblem . . . . . . . . . . . . . . . . . . 216 2.1 TheAll-TerminalCaseandtheGreedyAlgorithm . . . . . 217 2.2 The2-TerminalCaseandtheCompanionTheoremto Menger’sTheorem . . . . . . . . . . . . . . . . . . . . . . 224 3 TheSteinerTreePackingProblem . . . . . . . . . . . . . . . . . 228 3.1 ValidInequalities . . . . . . . . . . . . . . . . . . . . . . 231 3.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 233 3.3 ComputationalResults . . . . . . . . . . . . . . . . . . . . 236 4 ConclusionandOutlook . . . . . . . . . . . . . . . . . . . . . . . 242 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 TheMaximumWeightConnectedSubgraphProblem . . . . . . . . . . . 245 EduardoÁlvarez-Miranda,IvanaLjubic´,andPetraMutzel 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 2 TheMaximumWeightConnectedSubgraphProblem . . . . . . . 247 3 MIPFormulationsfortheMWCS . . . . . . . . . . . . . . . . . . 249 3.1 ThePrize-CollectingSteinerTreeModel . . . . . . . . . . 249 3.2 ModelofBackesetal.2011 . . . . . . . . . . . . . . . . . 251 3.3 AModelBasedon(k,(cid:2))Node-Separators . . . . . . . . . 252

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.