ebook img

Fabrication of TiO2-embedded PVDF membranes and their Application in Algae Membranes ... PDF

74 Pages·2013·2.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fabrication of TiO2-embedded PVDF membranes and their Application in Algae Membranes ...

FABRICATION OF TIO -EMBEDDED PVDF 2 MEMBRANES AND THEIR APPLICATION IN ALGAE MEMBRANE BIOREACTOR SYSTEMS A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science By Weiming Hu Dr. Zhiqiang Hu, Dr. Baolin Deng, Thesis Supervisor December 2013 APPROVAL The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled FABRICATION OF TIO2-EMBEDDED PVDF MEMBRANES AND THEIR APPLICATION IN ALGAE MEMBRANE BIOREACTOR SYSTEMS presented by Weiming Hu, a candidate for the degree of master of Science, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Zhiqiang Hu Professor Baolin Deng Professor Christine Costello i | Page ACKNOWLEDGEMENTS First and most importantly, I would like to express my thanks to my advisors Dr. Zhiqiang Hu and Dr. Baolin Deng, in the Department of Civil and Environmental Engineering for all the time and effort they dedicated in providing me with constant guidance, numerous advices and generous encouragement and support throughout my graduate studies. I also need to extend my gratitude to Dr. Christine Costello in the Department of Bioengineering for being my graduation thesis committee, her guidance will always been appreciated. I would like to extend my thanks to PhD candidate Jun Yin, also in the Department of Civil and Environmental Engineering for sharing his expert experience in membrane technology and general lab work aspects. Also, my I am grateful for having known and been working with all my wonderful colleagues from both Dr. Deng and Dr. Hu’s group throughout these years, especially for Tianyu Tang, Shengnan Xu, Shashikanth Gajaraj, Chiqian Zhang, Peng Wan, Qi Shen, Jialiang Guo, Jingjing Dai whose cooperation and help really carried me. At last, I want to thank my parents for being my backbone and harbor through this two years of study and the first twenty five years of my life. ii | Page TABLE OF CONTENTS APPROVAL .......................................................................................................................................................... i ACKNOWLEDGEMENTS .................................................................................................................................. ii LIST OF TABLES ................................................................................................................................................ v LIST OF FIGURES ............................................................................................................................................. vi ABSTRACT ...................................................................................................................................................... viii CHAPTER ONE ................................................................................................................................................... 1 LITERATURE REVIEW ..................................................................................................................................... 1 1.1. Microalgae and Algae Cultivation............................................................................................................ 1 1.1.1. Microalgae ........................................................................................................................................... 2 1.1.2. Additional Benefits of Microalgae Cultivation .................................................................................... 5 1.1.3. Cultivation Conditions ......................................................................................................................... 5 1.2. Microalgae for Wastewater Treatment ..................................................................................................... 7 1.2.1. Advances in Algae-based Wastewater Treatment ................................................................................ 8 1.3. Promising of Algae-based MBR for Wastewater Polishing and Water Reuse ......................................... 9 1.4. Membrane Technology........................................................................................................................... 10 1.4.1. Membrane Materials .......................................................................................................................... 12 1.4.2. Membrane Modules ........................................................................................................................... 13 1.4.3. Membrane Fouling ............................................................................................................................. 17 1.4.4. Membrane Fouling Mechanisms ........................................................................................................ 18 1.4.5. Membrane Fouling Control ................................................................................................................ 22 iii | Page CHAPTER TWO ................................................................................................................................................ 27 METHODOLOGY ............................................................................................................................................. 27 2.1. Membrane Modification and Module Fabrication .................................................................................. 27 2.1.1. Membrane Fabrication materials ........................................................................................................ 27 2.1.2. Fabrication of PVDF/PVDF+TiO Hollow Fiber Membranes ........................................................... 28 2 2.1.3. Assembly of PVDF/PVDF+TiO Hollow Fiber Membrane Modules ............................................... 30 2 2.2. Algal Cultivation .................................................................................................................................... 31 2.3. High-density Algae MBR System Set-up ............................................................................................... 33 CHAPTER THREE ............................................................................................................................................ 39 RESULTS AND DISCUSSION ......................................................................................................................... 39 3.1. High-density algae cultivation ..................................................................................................................... 39 3.2. Nitrogen and phosphorus removal by algae ................................................................................................. 40 3.3. Invasion of filamentous species during algae MBR operation .................................................................... 41 3.4. Membrane fouling monitoring and resistance change before and after cleaning ......................................... 45 3.5. Hollow Fiber Membrane Characterization by SEM and EDS Analysis. ..................................................... 48 CHAPTER FOUR............................................................................................................................................... 52 DISCUSSION ..................................................................................................................................................... 52 CHAPTER FIVE ................................................................................................................................................ 54 CONCLUSION ................................................................................................................................................... 54 REFERENCES ................................................................................................................................................... 56 iv | Page LIST OF TABLES Table 1. A comparison of land use and biofuel productivity between microalgae and other biodiesel feedstocks (Mata et al. 2010) .................................................................................................................................................. 3 Table 2. Classification of membrane processes (Van Der Bruggen et al. 2003). ............................................... 11 Table 3. Models developed to describe membrane fouling (modified after (Meng et al. 2009)). ...................... 19 Table 4. Membrane modification methods.(Pinnau et al. 1999) ......................................................................... 25 Table 5. Membrane fabrication parameters. ....................................................................................................... 29 Table 6 Hollow fiber membrane module parameters. ......................................................................................... 31 Table 7. Bold’s basal medium (Bold 1949). ....................................................................................................... 32 Table 8. Chemical composition of the feeding solutions. ................................................................................... 33 Table 9. Operating conditions of the high-density algae MBR systems. ............................................................ 34 Table 10. Recovery of membrane total resistance after membrane cleaning. ..................................................... 46 Table 11. Reversible and irreversible resistance calculation after cleaning........................................................ 46 Table 12. Permeance recovery calculation after cleaning. .................................................................................. 47 v | Page LIST OF FIGURES Figure 1. Plate-and-frame design for the separation of helium from natural gas (Stern et al. 1965). ................. 14 Figure 2. Tubular Membrane Configuration for ultrafiltration from Koch Membrane Systems Inc. (Courtesy Koch Membrane Systems Inc.). .......................................................................................................................... 15 Figure 3. Spiral membrane module configuration and its cross section view (Courtesy from Koch Membrane Systems Inc.). ...................................................................................................................................................... 16 Figure 4. Diagram of hollow fiber membrane module (Courtesy Pall Corporation.). ........................................ 17 Figure 5. A schematic of membrane fouling due to: (a) pore blockage, (b) and cake layer formation (Meng et al. 2009). .................................................................................................................................................................. 18 Figure 6. Fabricated hollow fiber membranes. ................................................................................................... 29 Figure 7. Two hollow fiber membrane module designs, complex design (top) and simple design (bottom). .... 30 Figure 8. Experimental set-up of two parallel high-density algal MBR systems................................................ 34 Figure 9 Biomass concentration monitoring for high-density algae cultivation in two identical bioreactors: MBR#1 (●), and MBR#2 (●). .......................................................................................................................... 39 Figure 10. Influent (■) and effluent NO --N concentrations of the high-density algae cultivation systems: 3 MBR#1 (●), and MBR#2 (●). .......................................................................................................................... 40 Figure 11. Influent (■) and effluent phosphorus concentrations of the high-density algae cultivation systems: MBR#1 (●), and MBR#2 (●). .......................................................................................................................... 41 Figure 13. Settling of contaminated algae mix, (1) algae suspension right after string, (2) at 1 min settling, (3) at 1 min 40 s settling. .............................................................................................................................................. 43 Figure 14. Change in algae floc size during the study period. ............................................................................ 44 Figure 15 Fluorescence light source spectrum for algae cultivation tested by Ocean Optics PC2000 PC plug-in Spectrometer. ...................................................................................................................................................... 44 vi | Page Figure 16. The change in total membrane resistance during the study period between the two types of membranes, PVDF (●) and PVDF+TiO membranes (●). ................................................................................................... 45 2 Figure 17. SEM images of the surfaces of (a), (c) clean PVDF hollow fiber membranes; (b), (d) clean PVDF+TiO membranes. .................................................................................................................................... 48 2 Figure 18. SEM images of the surfaces of (a), (c) fouled PVDF hollow fiber membranes; (b), (d) fouled PVDF+ TiO membranes after 112 days of operation. .................................................................................................... 49 2 Figure 19. SEM images of the surfaces of (a), (c) cleaned PVDF hollow fiber membranes; (b), (d) cleaned PVDF+TiO membranes after complete cleaning. ............................................................................................. 50 2 vii | Page FABRICATION OF TIO -EMBEDDED PVDF 2 MEMBRANES AND THEIR APPLICATION IN ALGAE MEMBRANE BIOREACTOR SYSTEMS Weiming Hu ABSTRACT Polyvinylidene difluoride (PVDF) membranes with and without TiO (5% by mass) were 2 fabricated and applied for high-density algae cultivation in membrane algae bioreactors (MBR). Microalgae species Chlorella Vulgaris was cultivated in the MBR systems fed with artificial wastewater at a target solids retention time (SRT) of 25 days. Under steady-state conditions, the MBR systems had an average algae biomass concentration of 2350 mg/L (COD unit) with simultaneous removal of about 78% of phosphorus and 34% of nitrogen form wastewater. The anti-fouling characteristics of membranes were evaluated based on the measurement of intrinsic, reversible and irreversible resistances, and the scanning electron spectroscopy (SEM) study. Total resistance of TiO -embedded membranes was 65% lower than the control (membranes without 2 TiO impregnation) during 90 days of operation. This research demonstrated that embedding TiO 2 2 into the PVDF membranes resulted in membranes with better antifouling properties for high- density algae cultivation. viii | Page CHAPTER ONE LITERATURE REVIEW 1.1. Microalgae and Algae Cultivation The emission of greenhouse gases including carbon dioxide (CO ), nitrous oxide (N O), and 2 2 methane (CH ) is increasing with the growth of global economy which could lead to an average 4 global temperature increase of 3.6 °C (IEA 2012). Greenhouse gases emissions can also contribute to other environmental problems. For instance, oceans as one of the biggest consumer of CO 2 absorb approximately 30% of CO emitted by human activities each year, and absorption of CO 2 2 in oceans will lower the pH of water, which can cause the loss of aquatic life and further damage the marine ecosystem. In 2006 alone, the amount of CO emissions to the atmosphere were 29 Gt, 2 and the estimated removal of CO by natural environment was about 12 Gt (EIA 2006). Hence, 2 mitigation strategies are required to remove excess CO . Finding the solution toward the use of 2 clean and renewable energy sources that produce less greenhouse gases is now one of the most important and challenging issues facing human societies. Many renewable energy options are being studied and each has a different degree of success and challenges for implementation. These options include biofuel, solar energy, wind, and geothermal applications. For global warming control, techniques such as carbon sequestration have been proposed. Biofuel production development has shown rapid growth globally, because of its potential for reducing greenhouse gases and achieving energy security (IEA 2007). Most common biofuels are biodiesel and bioethanol, both of which can replace fossil fuels such as diesel and gasoline. 1 | Page

Description:
IN ALGAE MEMBRANE BIOREACTOR SYSTEMS The traditional feedstocks for biodiesel production are vegetable oils or animal fats. Low-cost.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.