ebook img

Fabrication of Nanodot Decorated Sapphire Substrates for Abbreviated Growth Mode Deposition of ... PDF

120 Pages·2015·3.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fabrication of Nanodot Decorated Sapphire Substrates for Abbreviated Growth Mode Deposition of ...

Lehigh University Lehigh Preserve Theses and Dissertations 2013 Fabrication of Nanodot Decorated Sapphire Substrates for Abbreviated Growth Mode Deposition of Gallium Nitride Jeffrey Biser Lehigh University Follow this and additional works at:http://preserve.lehigh.edu/etd Part of theMaterials Science and Engineering Commons Recommended Citation Biser, Jeffrey, "Fabrication of Nanodot Decorated Sapphire Substrates for Abbreviated Growth Mode Deposition of Gallium Nitride" (2013).Theses and Dissertations.Paper 1429. This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please [email protected]. Fabrication of Nanodot Decorated Sapphire Substrates for Abbreviated Growth Mode Deposition of Gallium Nitride by Jeffrey M. Biser Presented to the Graduate and Research Committee of Lehigh University in Candidacy for the Degree of Doctor of Philosophy in Materials Science and Engineering Lehigh University May 2013 DISSERTATION SIGNATURE SHEET Approved and recommended for acceptance as a dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosopy. _______________________ Date _______________________ Accepted Date Committee Members: _______________________ Prof. Richard P. Vinci (Committee Chair) _______________________ Prof. Helen M. Chan _______________________ Prof. Walter Brown _______________________ Prof. Nelson Tansu _______________________ Prof. Volkmar Dierolf ii ACKNOWLEDGEMENTS: First, I would like to thank my advisor, Rick Vinci. It is a weak tautology to simply say that without an advisor, one could not receive a doctorate. But the fact that without this particular person in this particular position, I would not be defending this work, is far less trivial. Through surprising results, fickle equipment, bad luck, better luck, and all the general vicissitudes of scientific endeavor which caused this grad student’s career to extend to a full decade, Rick has been an unflagging source of motivation and mental clarity. I also owe a large debt of gratitude to my committee members, Professors Helen Chan, Nelson Tansu, Walter Brown, and Volkmar Dierolf, for always being available for support and willing to schedule things in a pinch when deadlines loomed large on the horizon. I thank my family, Mom and Dad and Kris and Tony, for being pillars of sanity and ungrudging charity when everything seemed at best crazy and at worst hopeless. For cooperation in the lab on many occasions, I must thank my colleagues in Rick’s group: Nick Barbosa, Paul El-Deiry, Rich Chromik, Seung-Min Hyun, Sreya Dutta, Hongwei Li, Jason Perkins, Wanjun Cao, Kittisun Mongkolsuttirat, and Mark MacLean. I must also thank my co-collaborators Yik-Khoon Ee and Xiaohang Li from Prof. Tansu’s group in ECE. I fought with the sapphire, they fought with the GaN reactor, and somehow we managed to get some nice devices made. Thanks also to Dave Ackland, Rob Keyse, Bill Mushock, Arlan Benscoter, Sam Lawrence, Mike Rex, and Gene Kozma for assistance with all manner of things. Thanks to Maxine, Deanne, Anne Marie, and Katrina for keeping all the paperwork from becoming overwhelming. The faculty and staff at CNF were crucial to this project at the sample fab stage. Thanks are due to Daron Westly, Michael Skvarla, Alan Bleier, Aaron Windsor, Rob Ilic, Meredith Metzler, and Kathy Springer. To The Manhattan Project (Cheers, gentlemen). To Loopers’ and Molly’s and Sandra’s and the Funhouse. To the whole cohort of southsiders and westsiders and northsiders. And to all those whom space prevents me naming here… Thanks! iii TABLE OF CONTENTS: Certificate of Approval .................................................................................................. ii Acknowledgements ..................................................................................................... iii Table of Contents ......................................................................................................... iv List of Figures ............................................................................................................... vii ABSTRACT ...................................................................................................................... 1 CHAPTER 1: REVIEW OF GALLIUM NITRIDE BASED SOLID STATE LIGHTING ................. 2 1.1: Foreword ..................................................................................................................... 2 1.2: LED Luminaires for Solid-State Lighting ...................................................................... 2 1.3: Gallium Nitride Based Optics: LEDs and Quantum Well Lasers .................................. 5 1.4: Architecture of LED Based SSL Luminaires .................................................................. 7 1.5: Critical Factors for Luminaire Efficiency ...................................................................... 8 1.6: Compound Semiconductors and Growth Techniques ............................................... 11 1.7: Threading Dislocation and Defect Reduction Strategies ........................................... 13 CHAPTER 2: ABBREVIATED GROWTH MODE TECHNIQUE FOR III-V SEMICONDUCTORS .............................................................................. 17 2.1: Foreword ................................................................................................................... 17 2.2: Fabrication of Sapphire Nanodots via Conversion of Aluminum .............................. 18 2.3: Preparation of Substrates for GaN Growth ............................................................... 21 2.4: Fabrication of GaN Based MQW-LEDs at Lehigh ....................................................... 23 2.5: Abbreviated Epitaxial Growth Mode (AGM) ............................................................. 26 2.6: Remaining Substrate Fabrication Issues .................................................................... 31 iv CHAPTER 3: A NOVEL TECHNIQUE FOR LARGE AREA PATTERNING VIA POROUS ANODIC ALUMINUM OXIDE ............................................................................ 33 3.1: Foreword ................................................................................................................... 33 3.2: Large Area Patterning Techniques ............................................................................ 34 3.3: New AAO Liftoff Mask for Aluminum on Sapphire ................................................... 38 3.4: Improving Uniformity of AAO Patterned Structures ................................................. 42 CHAPTER 4: SIZE-DEPENDENT SURVIVAL AND MORPHOLOGICAL ALTERATION OF NANODOTS DURING CONVERSION ................................................................. 44 4.1: Foreword ................................................................................................................... 44 4.2: Preliminary Observation of Disappearance and Morphological Change .................. 45 4.3: Survey Of Relevant Properties and Behaviors of Aluminum and its Oxide ............... 50 4.3.1: “Thermal Timeline” ..................................................................................... 50 4.3.2: Phase Transformations and Thermodynamic Considerations .................... 52 4.3.3: Substrate Traction Forces and Hillocking .................................................... 54 4.3.4: Surface Diffusion and Wetting..................................................................... 57 4.3.5: Evaporation ................................................................................................. 60 4.3.6: Oxidation of Aluminum at Elevated Temperatures ..................................... 65 4.4: Experimental Design and Procedure ......................................................................... 71 4.4.1: Rationale ...................................................................................................... 71 4.4.2: Experimental Procedures ............................................................................ 74 4.4.2.1. Fabrication ....................................................................................... 74 4.4.2.2. Oxidation Heat Treatment ............................................................... 78 4.4.2.3. Characterization ............................................................................... 79 4.5: Observations and General Trends ............................................................................. 84 4.5.1: Summary of SEM observations .................................................................... 84 4.5.2: Summary of TEM observations.................................................................... 89 4.6: Analysis of Results ..................................................................................................... 90 4.6.1: Failure Mechanisms ..................................................................................... 90 4.6.2: Optimum Processing Conditions for AGM................................................... 96 v CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS ............................................. 99 5.1: Summary of Impact ................................................................................................... 99 5.2: Suggestions for Future Work ................................................................................... 102 5.2.1: AGM Development .................................................................................... 102 5.2.2: Large-area Substrate Development ........................................................... 103 5.2.3: Aluminum-to-Alumina Conversion ............................................................ 104 LIST OF REFERENCES .................................................................................................. 106 AUTHOR’S BIOGRAPHY .............................................................................................. 110 vi LIST OF FIGURES: FIGURE 1: HISTORICAL AND PREDICTED EFFICIENCY OF LIGHT SOURCES. ................... 4 FIGURE 2: COMPARISON OF THE LIGHT OUTPUT POWER FOR GREEN-EMITTING STAGGERED INGAN QUANTUM WELL LEDS AND CONVENTIONAL INGAN QUANTUM WELL LEDS. .............................................................. 7 FIGURE 3: TILTED SEM IMAGE OF HILLOCKING IN CONTINUOUS 100 NM THICK ALUMINUM FILM ON SAPPHIRE AFTER ANNEALING TO 450 °C. (SCALE BAR IS 10 ΜM) ...................................................................................... 19 FIGURE 4: FIB-CUT CROSS-SECTION OF ALUMINUM METALLIZATION ON SAPPHIRE NESTED WITHIN UNDERCUT PMMA RESIST PRIOR TO LIFTOFF... ........ 22 FIGURE 5: DEVICE SIZED PATCHES OF ALUMINUM NANODOTS ON SAPPHIRE (PRIOR TO CONVERSION). ................................................................................. 24 FIGURE 6: SEM OF NANOPATTERNED SAPPHIRE REGION WITH GAN BUFFER LAYER GROWTH INTERRUPTED AT 15 NM. ..................................................... 27 FIGURE 7: ROOM TEMPERATURE CONTINUOUS WAVE LIGHT OUTPUT POWER AS A FUNCTION OF INJECTION CURRENT OF INGAN QW LEDS GROWN ON THREE COMPARISON GAN TEMPLATES. .............................................. 28 FIGURE 8: TIME RESOLVED PHOTOLUMINESCENCE MEASUREMENTS OF INGAN QW LED DEVICES GROWN ON DIFFERENT GAN FILMS. .............................. 28 FIGURE 9: FIB-CUT CROSS-SECTIONAL TEM IMAGE OF ALUMINA NANODOT ON SAPPHIRE SUBSTRATE COATED WITH AGM-GAN. ............................... 30 FIGURE 10: ROOM TEMPERATURE CW LIGHT OUTPUT POWER AS A FUNCTION OF INJECTION CURRENT OF INGAN QW LEDS GROWN ON THREE COMPARISON TEMPLATES. .................................................................. 30 FIGURE 11: TILTED SEM OF SAPPHIRE NANODOTS USED IN PITCH STUDY................. 31 FIGURE 12: SEM CROSS-SECTION OF AAO FILM FORMED BY SINGLE ANODIZATION TO COMPLETION OF AN ALUMINUM FILM ON GLASS. ............................. 37 FIGURE 13: SEM TOP VIEW OF AAO FILM FROM FIGURE 12. ..................................... 37 FIGURE 14: AAO FILM ON SAPPHIRE AFTER RIE TREATMENT TO OPEN PORE BOTTOMS. ............................................................................................ 40 FIGURE 15: SEM OF UNDERSIDE OF AAO MASK AFTER LIFTOFF, DEMONSTRATING EFFECTIVE PORE OPENING AT PORE BOTTOMS. .................................. 41 FIGURE 16: TILTED SEM IMAGE OF ALUMINUM DOTS ON SAPPHIRE FORMED VIA AAO LIFTOFF TECHNIQUE. .................................................................... 42 FIGURE 17: ALUMINUM NANODOTS OF ~ 80 NM (TOP) AND ~ 120 NM (BOTTOM) DIAMETER AFTER LIFTOFF (LEFT) AND ANNEALING AT 450 °C FOR 24 HOURS (RIGHT). .................................................................................... 47 FIGURE 18: ALUMINUM NANODOTS FROM FIG. 15 AFTER ANNEALING AT 1200 °C FOR 24 HOURS. ..................................................................................... 48 vii FIGURE 19: ALUMINUM NANODOTS AFTER ANNEALING AT 450 °C FOR 24 HR (LEFT), FOLLOWED BY 1200 °C FOR 24 HR (RIGHT). ......................................... 48 FIGURE 20: ALUMINUM NANODOTS WITH VARYING INITIAL DIAMETER AFTER 1300 °C FOR 1 HR. .......................................................................................... 49 FIGURE 21: "THERMAL TIMELINE" OF CRITICAL EVENTS DURING ANNEALING OF ALUMINUM AND ITS OXIDE .................................................................. 50 FIGURE 22: MELTING POINT OF ALUMINUM (CELSIUS) MEASURED VERSUS APPLIED PRESSURE (KG/CM2 = ~ 100 KPA) IN DRY ARGON (1) AND DRY NITROGEN (2). ...................................................................................... 53 FIGURE 23: IN-PLANE STRESS AT FILM EDGE. ............................................................. 56 FIGURE 24: PLOT OF SURFACE DIFFUSIVITY D AND CORRESPONDING S CHARACTERISTIC DIFFUSION LENGTH D FOR 1 HOUR. ........................ 58 FIGURE 25: EVAPORATION FLUX FROM ALUMINUM BASED ON EMPIRICAL VAPOR PRESSURE DATA. ................................................................................... 61 FIGURE 26: LIFETIME OF AN ALUMINUM NANODOT OF A GIVEN SIZE, AT VARIOUS TEMPERATURES (IN °C), BASED ON EVAPORATION DATA. .................. 63 FIGURE 27: ILLUSTRATION OF CONCEPTUAL EVAPORATION MODES. ....................... 65 FIGURE 28: EVAPORATION LIFETIME AT 1082 °C FOR MODES DESCRIBED IN FIG. 27. .............................................................................................................. 65 FIGURE 29: SPMS DATA FROM PARK ET AL. EXHIBITING DEGREE OF COMPLETION OF OXIDATION FOR ALUMINUM NANOPARTICLES AT FOUR TEMPERATURES. ................................................................................... 70 FIGURE 30 SUMMARY OF EXPECTED AL DOT BEHAVIORS AT VARIOUS TEST TEMPERATURES. ................................................................................... 73 FIGURE 31: WAFER LAYOUT FOR EBL AT CNF. ............................................................. 75 FIGURE 32: SEM IMAGE OF ~ 80 NM DIAMETER ALUMINUM NANODOTS AFTER FABRICATION. ....................................................................................... 80 FIGURE 33: SEM IMAGE OF ~ 210 NM DIAMETER ALUMINUM NANODOTS AFTER FABRICATION. ....................................................................................... 81 FIGURE 34: PLATINUM PROTECTIVE LAYER DEPOSITED OVER DOTS TO BE CROSS- SECTIONED (COURTESY OF DR. P. CANTWELL). ................................... 82 FIGURE 35: TEM SAMPLE COUPON ATTACHED TO PLUCKER, READY FOR REMOVAL (COURTESY OF DR. P. CANTWELL). ....................................................... 83 FIGURE 36: PLUCKED AND THINNED COUPON CONTAINING FOUR DOTS IN CROSS- SECTION, THINNED TO 300NM FOR ELECTRON TRANSPARENCY (COURTESY OF DR. P. CANTWELL). ....................................................... 83 FIGURE 37: MAP OF PHENOMENA OBSERVED AFTER ANNEALING AT FOUR PROCESS TEMPERATURES WITH DIAMETERS RANGING FROM 50 TO 240 NM. .............................................................................................................. 85 FIGURE 38: SEM IMAGE, UN-TILTED, EXHIBITING POSSIBLE CAVITATION AND CLEAR FACETING IN ~ 120 NM DOTS ANNEALED AT 1200 °C FOR 1 HOUR. ... 86 viii FIGURE 39: SEM IMAGE EXHIBITING HILLOCKING / LARGE PROTRUSIONS IN ~ 200 NM DOTS ANNEALED FOR 1 HOUR AT 900 °C, TILTED TO 40°. ............ 87 FIGURE 40: SEM EVIDENCE OF "SLUMPING" IN DOTS WITH ~ 80 NM INITIAL DIAMETER.. ........................................................................................... 89 FIGURE 41: BRIGHT-FIELD TEM IMAGE OF HOLLOW DOT AFTER 1 HOUR AT 900 °C (COURTESY OF DR. P. CANTWELL). ....................................................... 90 ix

Description:
simply say that without an advisor, one could not receive a doctorate. I thank my family, Mom and Dad and Kris and Tony, for being pillars of sanity Rick's group: Nick Barbosa, Paul El-Deiry, Rich Chromik, Seung-Min Hyun, (this is the origin of the acronym AGOG: Aluminum deposition, Growth of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.