ebook img

Fabrication of IDAs for biosensors by advances mask aligner lithograhy PDF

153 Pages·2016·12.72 MB·English
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fabrication of IDAs for biosensors by advances mask aligner lithograhy

Fabrication of interdigitated electrode arrays for biosensors by advanced mask aligner lithography Dipl.-Ing.(FH) Stefan Partel, MSc. A dissertation submitted for the fulfillment of the requirements for the doctoral degree at the Technical Faculty, University of Freiburg Laboratory for Sensors Doctoral adviser Prof. Dr. Gerald Urban Laboratory for Sensors, Department of Microsystems Engineering – IMTEK, University of Freiburg Laboratory for Sensors Department of Microsystems Engineering – IMTEK University of Freiburg Disputation Freiburg im Breisgau, 13.05.2016 Dean Prof. Dr. Georg Lausen, Freiburg im Breisgau, Germany Doctoral committee Chair: Prof. Dr. Jürgen Wöllenstein, University of Freiburg, Germany Co-chair: Prof. Dr.-Ing. Ulrike Wallrabe, University of Freiburg, Germany 1st referee: Prof. Dr. Gerald Urban, University of Freiburg, Germany 2st referee: PD. Dr. rer. nat. Andreas Erdmann, Friedrich-Alexander University of Erlangen-Nürnberg, Germany ii Abstract This research is directed towards development and fabrication of a highly sensitive electrochemical biosensor. The amperometric sensor is based on redox cycling at interdigitated electrode arrays (IDA) with gap distances in nano or submicron regime. The focus is on the fabrication of IDAs with conventional mask aligner lithography. For highest sensitivity the crucial dimension is in the nanometer or submicron range which is below the diffraction limit of the light. For economic usage, other substrate materials other than silicon were implemented. A dissolution rate monitor (DRM) based on interferometry was built. With the collected data from DRM measurements the photoresist behavior at the development step was studied and simulations were investigated to optimize the lithography process. Due to simulations a biosensor with a 1 µm electrode gap on a transparent substrate (Gen1) was realized by adding a thin titanium layer, which prevents backside reflections from substrate and enhances the resolution. The electrochemical characterization of the chip shows an amplification factor of 14 (for PAP). The second fabricated biosensor is based on a multilayer stack (Gen2) and focuses on electrode gap reduction towards nanometers. It has been demonstrated that electrode gaps down to 140 nm are possible. This fabrication approach has the ability to adjust the gap size in the thermal oxidation step rather than with lithography. The gap distance can be controlled by the oxidation step. The electrochemical measurements have proven that this fabrication method is suitable for IDA biosensors fabrication. A third sensor design (Gen3) was developed which meets the requirements for mass production of nano IDAs. Furthermore, the process eliminates both the lift-off process and the thermal oxidation process steps and allows a further simplification in tuning of the electrode gap. The requirements on the lithography process are not as high as for the Gen2 chip and an initial structure of 1 µm is sufficient for electrode gaps in the nanometer range. This process approach has the ability to use polymers as a substrate due to relative low process temperatures. The gap distance can be controlled by the deposition process rather than by lithography. The undercut which is formed during deposition guarantees a separation of the electrodes. With the introduction of assistant features (AsFe) the yield can be increased by forming a larger undercut profile and is reducing the linewidth variation in i lithography. Electrochemical measurements have demonstrated the potential of this fabrication technique. Amplification factors of 116 at a collection efficiency of 99.5 % for ferrocenemethanol are achieved at an electrode gap distance of 160 nm (to our knowledge, this is the highest published amplification factor for IDA biosensors so far). The fabrication process allows an economic mass production where the initial pattern can be fabricated by hot embossing or injection molding and the subsequent forming of the undercut by a deposition process. The design was optimized with the help of simulation and verifies that advanced mask aligner lithography can be utilized to fabricate gap sizes down to sub 100 nm. ii Zusammenfassung Die Arbeit beschäftigt sich mit der Entwicklung und Herstellung eines hoch sensitiven elektrochemischen Biosensors. Der amperometrische Sensor basiert auf Redoxreaktionen an ineinandergreifenden Elektrodenstrukturen (IDAs) mit Elektrodenabständen im Submikrometer – bzw. Nanometer-Bereich. Die Herstellung der Initialstrukturen erfolgte dabei durch Mask Aligner Lithographie. Der Lithographieprozess wurde unter Zuhilfenahme von Simulationen optimiert. Dazu wurde ein Dissolution Rate Monitor (DRM) angefertigt, der den Fotolackabtrag während des Entwicklungsprozesses misst. Die somit erhaltenen Daten ermöglichen es ein parameterbasiertes Fotolackmodell zu entwickeln. Mithilfe der Simulation konnte ein erster Biosensor (Gen1) mit einem Elektrodenabstand von einem Mikrometer auf einem transparenten Substrat hergestellt werden. Dies wurde mithilfe einer dünnen Titanschicht realisiert, die die Rückseitenreflektion am Substrat unterdrückt. Die elektrochemische Auswertung zeigte eine Signalverstärkung von 14 (PAP). Der zweite hergestellte Biosensor (Gen2) basiert auf einem mehrschichtigen Substrataufbau und ermöglicht eine weitere Reduktion des Elektrodenabstandes. Elektrodenabstände bis 140 nm wurden mit dieser Fertigungsmethode realisiert. Der Elektrodenabstand wird primär durch den thermischen Oxidationsprozess definiert. Somit können mit nur einer Lithographiemaske die Elektrodenabstände im Nachhinein angepasst werden. Elektrochemische Messungen haben gezeigt, dass auch diese Herstellungsmethode für Biosensoren geeignet ist. Der dritte hergestellte Biosensor (Gen3) verzichtet komplett auf einen lift-off Prozess und lässt ebenfalls eine Anpassung des Elektrodenabstandes nach der Lithographie zu. Die Anforderungen an den Lithographieprozess sind hierbei relative gering, eine Initialstruktur von 1 µm ist ausreichend, um effektive Elektrodenabstände im Nanometerbereich zu erzielen. Dabei wird der Abstand primär durch einen Beschichtungsprozess gesteuert und die Lithographie spielt eine untergeordnete Rolle. Durch die Beschichtung wird ein negativer Flankenwinkel erreicht, der nötig ist um die Elektroden elektrisch zu separieren. Mittels Hilfsstrukturen (AsFe) kann der Flankenwinkels bei kritischen Strukturen optimiert werden, was zu einer präzisieren Linienbreite führt und somit die Prozessstabilität verbessert. Mit dieser Herstellungsmethode konnten Verstärkungsfaktoren von 116 (ferrocenemethanol) erreicht werden. Unseres Wissens ist dies die bisher höchste dokumentierte Verstärkung, die mittels IDAs erzielt wurde. Der Herstellungsprozess ist hervorragend für die iii Massenfertigung geeignet, die Initialstruktur kann beispielsweise mittels Spritzguss oder Heißprägen erstellt werden. Der negative Flankenwinkel und die Elektroden werden mittels Beschichtung hergestellt. Das Maskendesign wurde mit Hilfe von Simulation optimiert. Durch die Prozesskombination und die Strukturoptimierung ist es möglich, mit Mask Aligner Belichtung Strukturen unter 100 nm zu erzeugen. iv Authors bibliography Publications associated to the thesis: Peer reviewed Journals S. Partel, C. Dincer, S. Kasemann, J. Kieninger, J. Edlinger, G. Urban, “Lift-off free fabrication approach for periodic structures with tunable nano gaps for interdigitated electrode arrays”, ACS Nano, vol. 10, no. 1, pp. 1086–1092, Jan. 2016. DOI: 10.1021/acsnano.5b06405 S. Partel, S. Kasemann, P. Choleva, C. Dincer, J. Kieninger, G. Urban, “Novel fabrication process for sub-μm interdigitated electrode arrays for highly sensitive electrochemical detection”, Sensors and Actuators B: Chemical, vol. 205, pp. 193-198, Aug, 2014. DOI: 10.1016/j.snb.2014.08.065 Peer reviewed conference papers S. Partel, G.A. Urban;” Innovative method to suppress local geometry distortions for fabrication of interdigitated electrode arrays with nano gaps” Proc. SPIE 9780, vol. 9780, pp. 978015–978015–8, San Jose, 2016. DOI: 10.1117/12.2218527 S. Partel, G.A. Urban, K. Motzek, “Simulation model validation of two common i-line photoresists”, Microelectronic Engineering, vol. 110, pp. 75-79, 2013. DOI:10.1016/j.mee.2013.01.054 K. Motzek, S. Partel, U. Vogler, A. Erdmann, “Numerical optimization of illumination and mask layout for the enlargement of process windows and for the control of photoresist profiles in proximity printing”, Proc. SPIE 8171, Physical Optics, 81710K, Marseille, 2011. DOI:10.1117/12.896755 K. Motzek, A. Erdmann, U. Hofmann, N. Ünal, M. Hennemeyer, M. Hornung, P. Hudek, S. Partel, A. Heindl, M. Ruhland, “Mask Aligner Lithography Simulation – From Lithography Simulation to Process Validation”, Microelectronic Engineering, vol. 98, pp. 121-124, Berlin, 2011. DOI:10.1016/j.mee.2012.07.076 S. Partel, M. Mayer, P. Hudek, C. Dinçer, J. Kieninger, G. A. Urban, K. Motzek, L. Matay, “Fabrication process development for a high sensitive electrochemical IDA sensor”, Microelectronic Engineering, vol. 97, pp. 235-240, Berlin, 2011. DOI:10.1016/j.mee.2012.03.028 K. Motzek, A. Bich, A. Erdmann, M. Hornung, M. Hennemeyer, B. Meliorisz, U. Hofmann, N. Unal, R. Voelkel, S. Partel, P. Hudek, “Optimization of illumination pupils and mask structures for proximity printing”, Microelectronic Engineering, vol. 87, no. 5–8, pp. 1164-1167, Ghent, 2009. DOI:10.1016/j.mee.2009.10.038 v S. Partel, S. Zoppel, P. Hudek, A. Bich, U. Vogler, M. Hornung, R. Voelkel, “Contact and Proximity Lithography using 193nm Excimer Laser in Mask Aligner”, Microelectronic Engineering, vol. 87, no.5–8, pp. 936-939, Ghent, 2009. DOI:10.1016/j.mee.2009.11.171 B. Meliorisz, S. Partel, T. Schnattinger, T. Fühner, A. Erdmann, and P. Hudek, “Investigation of high- resolution contact printing”, Microelectron. Eng., vol. 85, no. 5–6, pp. 744–748, Copenhagen, 2008. DOI: 10.1016/j.mee.2007.12.012 Conferences S. Partel, G. Urban, “Innovative method to suppress local geometry distortions for fabrication of interdigitated electrode array with nano gaps”. Poster at SPIE Advanced Lithography, Optical Microlithography, San Jose, 2016. S. Partel, S. Kasemann, P. Choleva, C. Dincer, J. Kieninger G. Urban, “Novel fabrication process for sub-µm interdigitated electrode arrays for highly sensitive electrochemical detection” In proceedings of the 23nd Anniversary World Congress on Biosensors - Biosensors 2014, Melbourne, Australia, 2014. S. Partel, “Resolution enhancement for Mask-Aligner lithography by using 193 nm ArF excimer laser”, Ultra optics status seminar, Fraunhofer IOF, Mar. 27, 2014, Jena, (Invited talk) K. Motzek, S. Partel, “Modeling photoresist development and optimizing resist profiles for mask aligner lithography”, Talk at “9th IISB Lithography Simulation Workshop 2011” in Hersbruck M. Mayer, S. Partel, P. Hudek, R. Schneider, “A new flexible development Rate Monitor (DRM)”, talk at 8th IISB Lithography Simulation Workshop 2010 in Hersbruck Reviewed online article S. Partel, M. Mayer, K. Motzek, “In-situ measurement and characterization of photoresists during development”, SPIE Newsroom, May 2012. DOI: 10.1117/2.1201204.004198 Patent: S. Partel, S. Kasemann, J. Edlinger, C. Dincer, J. Kieninger, G. Urban : STRUCTURE AND METHOD OF MANUFACTURING AN ELECTRODE STRUCTURE. 2015, Patent submission number 800418726, 19. Jun 2015 vi Acknowledgement First of all, I would like to thank my supervisor Prof. Dr. Gerald Urban, who gave me the opportunity to write this thesis. Without him I would not have made this journey. I also would like to thank him for his guidance during my research and writing of this thesis. I would like to thank PD Dr. Andreas Erdmann for his readiness to co-examine this thesis and for his helpful remarks but also for the productive discussions about resist calibration and simulation. Many thanks go to the lecturer Günther Stangl, who was initiating the link to Prof. Dr. Gerald Urban at IMTEK. Without Günther I would not have started my thesis. His advices were also very helpful for my research. Many thanks go to Dr. Peter Hudek for all his fruitful advices and inputs about simulation during the project. A number of individuals have been very helpful to me. I would first like to thank Dr. Johannes Edlinger for giving me the opportunity to work at the Research Centre for Microtechnology and doing my thesis at the same time, and also Dr. Robert Merz who was initiating this constellation. I also want to thank Dr. Pavlina Choleva for her support on thermal diffusion and wet etching processes. Markus Mayer MSc. for the great software development for the dissolution rate monitor. Dr. Lenka Gajdosova for her patience with taking over thousand SEM images for photoresist profile analysis. Dr. Sandra Stroj for the support on deep UV experiments and meaningful discussions about light propagation. Matthias Domke MSc. for his help on dicing the biosensors with the fs-laser. Special thanks go to Dr. Stephan Kasemann for his help on deposition processes as well as dry etching techniques. I would also like to thank him for numerous technical discussions about process development. I would also like to acknowledge Dr. Kristian Motzek for his great discussions about lithography simulation and resist calibration. Also for the rigorous simulations he was performing to verify my simulations. I would also thank Dr. Jochen Kieninger for his driving support at the beginning of my thesis as well as the constructive discussions during my thesis. Special thanks go to Dipl.-Ing. Can Dincer who helped me with the electrochemical characterization. It has always been pleasant and enjoyable to visit Freiburg because of him. Finally, I thank my better half Petra, for her endless faith and support. vii Table of Contents Abstract.......................................................................................................................................... i Zusammenfassung ...................................................................................................................... iii Authors bibliography .................................................................................................................. v Acknowledgement ...................................................................................................................... vii Table of Contents ......................................................................................................................... 1 List of Abbreviations ................................................................................................................... 4 1. Introduction and scientific problem ................................................................................. 6 1.1 Motivation ........................................................................................................................ 6 1.2 Background on analytical devices .................................................................................... 7 1.3 Scientific problem ............................................................................................................ 9 1.4 Scope of work ................................................................................................................... 9 2. Fundamentals of fabrication technologies and sensor design ...................................... 11 2.1 Photolithography ............................................................................................................ 11 Lithography processing .......................................................................................... 13 Photoresist tone and different photoresists ............................................................. 15 2.2 Photolithography simulation basics ................................................................................ 17 Simulation of light propagation .............................................................................. 18 Existing photoresist models .................................................................................... 18 Data acquisition of photoresist during development .............................................. 20 2.3 Thermal oxidation and growth of silicon dioxide .......................................................... 26 2.4 Dry Etching of silicon and silicon dioxide ..................................................................... 27 2.5 Physical vapor deposition (PVD): sputtering and evaporation ...................................... 29 2.6 Electrochemical sensing techniques ............................................................................... 34 The electrochemical cell ......................................................................................... 34 1

Description:
This fabrication approach has the ability to adjust the gap size in the achieved at an electrode gap distance of 160 nm (to our knowledge, this is the of simulation and verifies that advanced mask aligner lithography can be . of the 23nd Anniversary World Congress on Biosensors - Biosensors 2014,
See more

The list of books you might like