ebook img

fabrication of antibacterial composite from bacterial cellulose and betel leaves PDF

26 Pages·2011·0.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview fabrication of antibacterial composite from bacterial cellulose and betel leaves

THE FABRICATION OF ANTIBACTERIAL COMPOSITE FROM BACTERIAL CELLULOSE AND BETEL LEAVES NOOR IZYANNISA’ BINTI SARJUNI A thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Chemical Engineering (Biotechnology) Faculty of Chemical & Natural Resources Engineering Universiti Malaysia Pahang DECEMBER 2010 ABSTRACT Wound healing was a complicated process that needs to be take care from infection and inflammation. Infection that occurs on wound will slow down the healing process. Therefore the objectives of this research were to produce antibacterial biocomposite from bacterial cellulose with betel leaves. The films were prepared by mixing the bacteria cellulose, betel leaves and gelatin in four different samples that contain from 0% to 70% composition of betel leaves extract. These biocomposite films were characterized by using Universal Testing Machine, Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscope (SEM), Gas Pycnometer, Antibacterial Effect Testing, water absorption testing and Biodegradable Testing. The biocomposite film that contains 70% Betel Leaves extract displayed better antibacterial properties, biodegradability and optimum water absorption for wound healing process. The film showed high effectiveness antibacterial activity towards gram positive bacteria rather than gram negative bacteria where the inhibition area was 0.20 cm2 and the effectiveness activity was 100%. There was about 343.87 mg/L of phenolic content in this sample. The film also showed the highest rate water absorption value which was 1.812 x 10-12 cm2/s and the film completely degraded in 24 days. The addition of betel leaves extracts and bacteria cellulose can be a promising source to produce biocomposite film that contains antibacterial effect which was suitable for wound healing and also can shorten the wound healing process. ABSTRAK Penyembuhan luka adalah satu proses yang rumit yang memerlukan penjagaan yang rapi daripada sebarang jangkitan dan radang. Jangkitan yang berlaku pada luka akan melambatkan proses penyembuhan.Oleh itu, objektif kajian ini adalah untuk menghasilkan antibakteria biokomposit daripada selulosa bakteria dan daun sireh. Biokomposit filem dihasilkan dengan campuran selulosa bakteria, daun sireh dan gelatin dalam 4 sampel yang berbeza dengan mengandungi 0% hingga 70% kandungan perahan daun sireh. Bio-komposit filem ini di kenal pasti dengan menggunakan, Fourier Transform Infrared (FTIR) Spectroscopy, Mikroskop Elektron Imbasan, Gas Piknometer, ujian antibakteria, ujian serapan air dan ujian biodegradasi. Biokomposit yang dihasilkan daripada selulosa bakteria dan 70% kandungan perahan daun sireh menunjukkan sifat antibakteria dan biodegradasi yang baik serta mempunyai kadar penyerapan air yang optimum untuk penyembuhan luka. Filem ini menunjukkan tahap keberkesanan antibakteria yang tinggi kepada Gram positif dan Gram negative bakteria dimana kawasan yang terbantut adalah 0.20 cm2 dan keberkesanan aktiviti antibakteria adalah 100 % dengan kehadiran 343.87 mg/L kandungan fenolik. Filem ini turut menunjukkan kadar serapan air yang tinggi sebanyak 1.812 x 10-12 cm2/s dan boleh terurai sepenuhnya dalam masa 24 hari. Campuran daun sireh dan selulosa bakteria akan menjanjikan penghasilan bio- komposit yang mempunyai kesan antibakteria serta sesuai bagi merawat luka dalam masa yang singkat. TABLE OF CONTENT CHAPTER TITLE PAGE DECLARATION ii DEDICATION iii ACKNOWLEDGEMENTS iv ABSTRACT v ABSTRAK vi TABLE OF CONTENT vii LIST OF FIGURES x LIST OF TABLES xi LIST OF SYMBOL/ABBREVIATIONS xii LIST OF APPENDICES xiii 1 INTRODUCTION 1.1 Background of Study 1 1.2 Problem Statement 3 1.3 Research Objectives 3 1.4 Scopes of Study 4 1.5 Significance of Study 4 2 LITERATURE REVIEW 2.1 Bacterial Cellulose 5 2.2 Acetobacter Xylinum 6 2.3 Betel Leaves 7 2.4 Biocomposite 7 2.5 Wound 9 2.6 Fourier Transform Infrared Spectroscopy 10 (FTIR) 2.7 Scanning Electron Microscopy (SEM) 11 2.8 Gas Pycnometer 12 3 METHODOLOGY 3.1 Introduction 13 3.2 Material 14 3.3 Experimental Procedure 14 3.3.1 Preparation of Bacteria Cellulose 15 3.3.2 Preparation of Betel Leaves Extract 15 3.3.3 Preparation of Biocomposite Film 16 3.3.4 Film Characterization 16 3.3.4.1 Antibacterial Testing 16 3.3.4.2 Phenolic Content Analysis 17 3.3.4.3 Biodegradable Testing 18 3.3.4.4 Fourier Transform Infrared 18 Spectroscopy (FTIR) 3.3.4.5 Scanning Electron Microscopy 18 (SEM) 3.3.4.6 Water Absorption Testing 18 3.3.4.7 Density Analysis 19 4 RESULT AND DISCUSSION 4.1 Antibacterial Testing 21 4.1.1 Disc Diffusion Assay 21 4.1.2 Diffusion and Spread Plate Technique 24 4.2 Phenolic Content Analysis 25 4.3 Fourier Transform Infrared Spectroscopy (FTIR) 26 4.4 Scanning Electron Microscopy (SEM) 27 4.5 Biodegradable Testing 28 4.6 Water Absorption Testing 29 4.7 Density Analysis 31 5 CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion 32 5.2 Recommendations 33 REFERENCES 34 APPENDICES 39 LIST OF FIGURES FIGURE NO. TITLE PAGE 3.1 Experimental Procedures for fabrication of 14 antibacterial composite film 4.1 The inhibition zone of film sample against 22 S.aureus 4.2 The inhibition zone of film sample against 23 E.coli 4.3 The graph of percentage EAA against S.aureus 24 and E.coli 4.4 FT-IR spectra 26 4.5 Scanning Electron micrograph 27 4.6 Plot percentage weight loss for each sample 28 4.7 Plot of the water uptake ratio, M/M versus 30 t m time, t 1/2 LIST OF TABLES TABLE NO. TITLE PAGE 4.1 Zone of inhibition area for S.Aureus 22 4.2 Zone of inhibition area for E.coli 22 4.3 Percentage of EAA against S.aureus and 24 E.coli 4.4 The phenolic concentration for each sample 25 4.5 Weigh of sample every 6 day 28 4.6 The maximum water uptake, M and diffusion 30 m coefficient, D 4.7 The experimental and true density value 31 LIST OF SYMBOLS/ ABBREVIATIONS 0 - Degree % - Percent C - Celcius g - gram cm - centimeter Kg - Kilogram L - Liter mL - mililiter min - minute s - second BC - Bacterial Cellulose BL - Betel Leaves EAA - Effectiveness Antibacterial Activity CPU - Number of colony forming unit LIST OF APPENDICES TABLE NO. TITLE PAGE A Data of standard calibration curve for 39 phenolic content analysis B Data of CFU in dilution and spread plate 40 technique C Data of density analysis by experimental 41 D FTIR spectra for bacterial cellulose 43

Description:
Poor healing wounds may slow down the healing process due to the There are a few herbs that can be used as a home remedy for wound infection.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.