ebook img

F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft PDF

2.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft

F rotary motor of ATP synthase is driven by the 1 torsionally-asymmetric drive shaft O. Kulish, A. D. Wright , and E. M. Terentjev CavendishLaboratory,UniversityofCambridge,CambridgeCB30HE,U.K. ABSTRACT 6 F1F0 ATP synthase (ATPase) either facilitates the synthesis of ATP in the mitochondrial membranes and bacterial inner 1 membranesinaprocessdrivenbytheprotonmovingforce(pmf),orusestheenergyfromATPhydrolysistopumpprotons 0 againsttheconcentrationgradientacrossthemembrane. ATPaseiscomposedoftworotarymotors,F andF ,whichgenerate 0 1 2 the opposing torques and compete for control of their shared central γ-shaft. Here we present a self-consistent physical n modeloftheF1motorasasimplifiedtwo-stateBrownianratchetbasedontheasymmetryoftorsionalelasticenergyofthe a coiled-coilγ-shaft. Thisstochasticmodelunifiesthephysicaldescriptionoflinearandrotarymotorsandexplainsthestepped J unidirectionalrotationoftheγ-shaft,inagreementwiththe‘binding-change’ideasofBoyer. Substitutingthemodelparameters, 9 allindependentlyknownfromrecentexperiments,ourmodelquantitativelyreproducestheATPaseoperation,e.g. the‘no-load’ 2 angularvelocityisca. 400rad/santiclockwiseat4mMATP,incloseagreementwithexperiment. Increasingthepmftorque exertedbyF canslow,stopandovercomethetorquegeneratedbyF ,switchingfromATPhydrolysistosynthesisataverylow 0 1 ] valueof‘stalltorque’. Wediscussthemattersofthemotorefficiency,whichisverylowifcalculatedfromtheusefulmechanical C workitproduces-butisquitehighwhenthe‘usefuloutcome’ismeasuredinthenumberofH+pushedagainstthechemical S gradientintheF ATP-drivenoperation. 1 . o i b - Introduction q [ Adenosinetriphosphate(ATP),theuniversalfuelofthecell,issynthesizedinthemembranesofmitochondria,chloroplastsand 1 bacteriabytheATPsynthasecomplex. Alreadyinitsabbreviation,F0F1-ATPase,onecanseeitsdualfunctionality,1which v arisesfromthetwocompetingrotarymotors(F andF )thatsitontheoppositeendsoftheshareddriveshaft.2,3 Inoneof 0 1 8 itsoperationmodes,thismulti-subunitenzymeusesfreeenergystoredinatransmembraneelectrochemicalgradient(pmf) 7 todrivethesynthesisofATPbytheF motor. Intheothermode,itreversesthereaction,hydrolyzingATPandutilizingthe 0 0 chemicalenergytodrivetheF motorandpumpprotonsagainsttheirconcentrationgradient.4 Whichofthetwocompeting 8 1 0 motors“wins”,andconsequentlyinwhichmodetheATPasecomplexwilloperate,isdeterminedbytheratiooftheATP/ADP . availabletotheF part,andthetorqueexertedbythepmf-drivenF . 1 1 0 0 Inengineering,iftworotarymotorssharethesamedriveshaftandarenotattachedtoanysupport,theoutcomedependson 6 theirrelativemass(inertiamoments);thiswouldbeimpossibleinaheavilyoverdampedmolecularsystem. Thankfully,inits 1 naturalsetting,ATPaseisanchoredinthemembranebythea-subunitofitsstator;thisconstraintisthenpassedthroughtheb- : v andδ-subunitstoimmobilizetheα3β3hexamercomplexoftheF1motor. Sotheonlyrelevantmovingpartsinthecomplexare i thecentralγ-shaft,whichismadeofacoiled-coilproteinα-helix,andthedisc-likec-subunit,whichisrigidlyattachedtoit X andwhichcanrotaterelativetothea-subunitanchoredinthemiddleofmembranebilayerplane,seeFig.1(a). Theotherend r a oftheγ-shaftisinsertedintothecentralcavityoftheα3β3complex,withthreeidenticalequilibriumpositionsseparatedby 120◦representingthecatalyticsitesontheβ-subunits. The“cam”endoftheγ-shaft: theoff-axiseccentricbulgeregionofthe γ-subunit,5–7isabletodockintothiscavityinthreeequivalentorientations,whenitfitsinoneoftheindentations,Fig.1(b). ThesearethedistilledstructuralfeaturesofATPasethatweshallneedtodevelopourphysicalmodeloftheBrownianratchet F motor;thesestructuraldetailsareextensivelycharacterizedinmanyfamouspapers.1,3,8,9 1 ThemechanismoftheF motorisrelativelywellunderstood,inbothitsphysicalprinciplesandquantitativepredictions, 0 followingtheoriginalworkofG.Osteretal.,10 whereitisshownhowanasymmetryofH+ ionchannelsinthea-subunit canselectivelyprotonatetheAsp61siteonthec-rotorandthusconstrainitsrotationalBrownianmotionpreferentiallyinthe clockwisedirectionasseenfromthemembraneside(assumingthenaturalH+concentrationgradientonthetwosidesofthe membrane). Thepmfarisingfromthisconcentrationgradientisabletodeliverthesufficienttorqueonthec-ring,whichisthen passedviatheγ-shaftintothecavityoftheα β complexandforcesthe3-stagesequentialstructuralisomerization(opening) 3 3 oftheβ-subunitstofacilitatethecaptureofADPandphosphateion,theenzymaticreactionADP+Pi,andthereleaseofATP. TheactionmechanismoftheF motorisunknown,inspiteofmanyattemptstoexplainit. Itisknowntobepowered 1 bytheATPhydrolysisintheβ-subunitsoftheα β complex(i.e. thereverseoftheADPphosphorilationsequence)and 3 3 Figure1. ATPasestructureanditscoiledcoilconfinement. (a)Thevolume-fillingatomicmodel,withcoloursandlabels indicatingtherelevantsubunits,adaptedfrom.3 (b)Theschemeofthe“cam”nestingofthecoiledcoilγ-shaftinoneofthe threeequivalentslotsintheα β complex,alsoshowingthedirectionofF motorrotationΘ. Ourmodelreliesonthecamlock 3 3 1 beingreleasedbyβ-subunitconformationalchangeonATPhydrolysis. producestheopposite(anticlockwise)rotationofthec-ring,whichisthereforeforcedtorotateinspiteoftheenergybarrier ofnon-protonatedAsp61,andthusdeliverH+ ionsintothehigh-concentrationchannel,whiletakingthemawayfromthe low-concentrationvolume. InthiswayATPasecanpumpprotonsandbuildupthetransmembranepHgradientusingtheenergy storedinATP.Therearemanyinterestingpapersintheliterature,attemptingtodiscernhowthisanticlockwisetorquecanbe generatedinthejunctionbetweentheγ-shaftandα β complex,butnonearesatisfactory. Theyoftenstartfromtheoriginal 3 3 mechanistic“bindingchange”ideasofP.Boyer11anddeveloptowardsthepower-strokemechanismofWangandOster.12,13 Thelattermodelsinthisveinareverycomplex,withupto64statesandmanycoupledstochasticvariables.12,14 Withmany freeparameterstheydosucceedatmatchingthephenomenologyoftheF motor. Therenonethelessremainsaneedtoproduce 1 aconceptmodelwhichexplainsthephysicaloriginoftheeffectivetorquegeneratedbyF ,andmanyanalogousATP-driven 1 rotarymotors,andthedirectionofrotationintermsofthemicroscopicconfigurationandthephysicsofthesystem.Thereisalso anoften-quoted“100%efficiency”oftheF -ATPasemotor,3,15,16aphenomenonthatwouldcontradictbasicthermodynamics. 1 Theoriginofsuchaconfusionisthatonecanmeasuretheusefulpowerthemotorproduces(fromthevelocityanddrag,or fromthecounter-torquedeliveredbypmf)andtherateofATPhydrolysis,whichoneassumesistheenergysourceforthemotor –andthusestimatethemotorefficiencyfromtheirratio. WeshallshowbelowthattheenergyinfluxfromtheATPhydrolysis onlyservestoswitchbetweenthestatesofthesystem,whilethedrivingpowerarisesfromtheBrownianmotionitself. State of the art OfthelargeliteratureontheATP-drivenrotarymotorssuchasF -ATPase,themostrecentandmostusefuloverviewisfound 1 inpapersbyOkazakiandHummer17andbyMukherjeeandWarshel.18 Inthefirst,thedetailedreviewofkeyexperimental observationsaboutthemotorisassembledandtheatomic-levelresolutionoftheα β complex–γ-shaftinteractionispresented. 3 3 Thesecondpaper18 givesacarefulcomparisonofvariousmodelsoftorquegeneration. Thepaperitselfextendstheideaof chemical-rotationalfreeenergylandscapethatshouldgeneratethetorqueonone120◦legoftherotationcycle. Inrelationtotheideasoftorquegeneration,wewouldliketopointoutthatinthecaseoflinearmotors,itisnowwell establishedthatitisnotthechemical-mechanicalcouplingthatproduceswhatpeopleoftencallthe“powerstroke”,butthe wholeprocessisdiffusive(notdynamic,drivenbytheBrownianmotion),andtheswitchingbetweenconformationalstates maintainstheout-of-equilibriumconditionsthatallowunidirectionaltransport.19 Thislastpointneedstobeemphasizedsince itisawidelyspreadissueintheliterature. Normally,inadynamicalsystem,ifthereisafrictiondragopposingthemotion (rotationalfrictioninourcase,expressedviathecoefficientoffrictionandangularvelocity: −ξω),thentherehastobean externalforceapplied(torqueormomentofforceinourcase: M)inordertosustaintheconstant-speedmotioninwhatis calledthe‘terminalvelocity’regime: M=ξω. ThenthepowerlossagainstfrictionistheproductP=Mω,andthesource ofthisenergyiscomingfromtheagentthatdeliversthetorque. Thesituationisdifferentonthemolecularscale,whenthe physicsisdominatedbytheBrownianmotion,i.e. thethermalstochasticforceactingonallelementsofthesystem. Laterin thetextwewillderivetheexpressionfortheaverageangularvelocityofrotationofthemotor,whichisstronglyaffectedbythe rotationalfriction–butviathediffusionconstantD=k T/ξ. Intheoverdampedregimethereisnomomentumtransfer!20 It B isincorrecttoassumethatthefreerotationintheoverdampedviscousenvironmentrequiresexternalpowerP=ξ(cid:104)ω(cid:105)2,which 2/15 isafrequentlypresentedestimatethatusuallyleadstoastatementaboutthehighefficiencyofF -ATPasemotorbecauseit 1 givesapproximatelythesamevalueastherateofATPhydrolysisenergysupply. Itisequallyincorrecttoassumethatthemotor generatesatorquemerelybecausethereisaconstantaveragevelocityobserved. Themotionoccursduetothethermalmotion, whiletheATPhydrolysisisneededtotakethesystemoutofthedetailed-balanceconditions. Inordertogenerateusefulwork therehastobeacounter-torqueagainstwhichthestochasticmotorhastowork,asitiscarefullystudiedbyProstetal.21 Later inthetextwewillcalculatetheaveragevelocityoftheF motorworkingagainstsuchacounter-torque(arisingfromF inthe 1 0 realATPase,butnotamerefrictionalresistance)andthusbeabletoestimatetheefficiency,whichdependsonconditions(e.g. becomeszeroatthestalltorque)butiscertainlymuchlessthan100%inallsituations. Theefficiencyisalsozerowhenthereis noexternaltorque(freerotationofthemotoragainstfriction)sincethereisnoworkdone. Among the large amount of experimental work, recently there have been two very important studies of the F motor, 1 examiningtheroleoftheγ-shaft,bothextremelydelicateandsophisticatedintheirtechniques: thegroupofK.Kinosita22 havesequentiallychoppedoffthelengthoftheγ-shaftandmonitoredthechangeinthemotoraction,ineachcaseattachinga markertotheshorterandshortershaft. ThegroupofH.Noji23havemanagedtoremovetheγ-shaftaltogetherandmonitored the unidirectional rotation of the hydrolysis site on the α β complex by imaging in a fast AFM. The latter paper claims 3 3 disagreementwiththeformer(andmanyothers),pointingattheapparentunidirectionalmotoractionwithoutanyrotor–a remarkable observation in itself. Yet, on careful analysis, we conclude that there is no discrepancy and the results are in fact consistent. It was found that by making the γ-shaft sequentially shorter, the average speed of the motor has become consistentlylower(inspiteofthefrictionresistanceoftherotatingmarkerbeingkeptthesame): changingfromwellover 100rps(revolutionspersecond)forthewildtypedownto∼0.8rpsfortheshortestmutantatahighATPconcentrationof2 mM.22Theexperimentwithγ-shaftrotorremoveddidnothaveanyfriction,andrecordedanaverageunidirectionalsequence ofbindingonβ subunitswithaspeed∼0.4rpsat2µMATP.Thisneedstobecomparedwiththespeedof2−5rpsinthe wild-type F motor observed at the same 2 µM ATP with an actin filament creating high friction drag15 or ∼20 rps with 1 alow-draggoldbead.24 Itisclearfrombothexperimentsonγ-shaftreductionthatthereisacomplicated(andnotknown) machineryintheα β complexthatmaintainsthetransferofthehydrolysissite,slowlybutconsistentlyincounterclockwise 3 3 direction. Butitisequallyclearthattheγ-shaftplaysacrucialroleinachievingtherequiredspeedsandthemotorefficiency, anditsreductiondramaticallyreducesboth. Wealsonotethatacoiled-coilfilamentisadefinitivecommonfeatureofallother rotarymotorsdrivenbyATPhydrolysis(incontrasttopmf-drivenmotorslikeF orflagellar). Inthispaperwedevelopa 0 conceptofsucharotarymotorradicallydifferentfromwhatwasconsideredpreviously: amodelthatisbasedonthevery genericasymmetrictorsionalelasticityofthecoiledcoilγ-shaft. Wedemonstratethatthemotormechanismisrobustand generic,notmuchinfluencedbythedetailsofmolecularstructure(exceptthe120◦periodicityandtheparametersoftheγ-shaft, whicharebothcrucial). Ourideaofatwo-stateBrownianratchetmotorisnotoriginal(onlyitsrotaryaspectis): alongtimeagoitwasdeveloped by Ju¨licher, Ajdari and Prost, and is now an accepted standard for linear motors such as myosin on actin, or kinesin on microtubules.21,25 Forsuchamotor,atthemostbasicleveloneneedsjusttwoelements: aperiodicprofileoftheground-state potentialenergywithleft-rightasymmetry(whichisthesourceofsymmetrybreakingforunidirectionalmotion), andthe externalenergyinputtodisturbtheequilibriumdetailedbalanceandbringthemechanicalsystemintotheuppershort-lived ‘excited’state(whichiswhattheATPhydrolysisprovidesinallcases). ForF ATPasetherelevantpotentialenergyisthe 1 torsionalelasticenergyoftwistingofthecoiled-coilγ-shaftaboutitsaxis, Fig.1(c). Thelineartorsionalelasticityofthe γ-subunithasbeenstudiedingreatdetailbymonitoringthethermalfluctuationsoftheangleofthec-ringfreelyrotatingwith respecttotheα β compleximmobilizedonasubstrate. However,thefactthatitcostsmoreenergytounder-twistthecoiled 3 3 coil,thantoover-twistit,isnotaprioriobvious. Herewemodeltheα-helicalcoiledcoilandproducethedistinctlyasymmetric non-lineartorsionalpotentialenergyE(θ),showninFig.3below. The3-fold,120◦periodicityisinherentintheα β structure, 3 3 andweplotthispotentialenergyagainsttheangleθ withrespecttotheneutralequilibriumpositionofitscamdockedin agivenslot,asillustratedinFig.1(b,c). Forthemodeloftorsionalelasticityofthecoiledcoiltomatchthegeometryand themeasuredtorsionalmodulusoftheγ-shaft,13,26,27 thereisverylittlefreedominitschoiceofparameters. Notethatthis physicalreasonfortherotationsymmetrybreakingoftheF -ATPasemotorisdifferentfromtheasymmetrysuggestedbyOster 1 etal.,28wherethe‘culprit’wasproposedtobetheshapeoftheβ-subunitconfiningthebulge-endoftheγ-shaft. Wedonot argueagainstsuchanasymmetryofthe‘lock’shape(infact,experimentsofNojietal.23 ontheunidirectionalbindingwith norotorsurelyproveitsvalidity),merelypointoutthatitcannotproduceapowerstrokeinoverdampedconditionswhereno momentumtransfercanoccur. Thenextsectiongivesabriefdescriptionoftheasymmetrictorsionofthecoiledcoil. Wethenshowhowtherotarymotion isinducedinsuchanasymmetricperiodicpotential,whenasecond‘excited’state(correspondingtotheundockedcamandthe unrestrictedrotationaldiffusionofthec-ring)canbereachedbyanATPenergyinflux. Thefinalsectiondemonstrateshowsuch arotarymotorwouldoperateagainstacounter-torquearisingfromthepmf-drivenF motor,andfindthestallconditions. Atthe 0 endwecomparetheoreticalpredictionswithexperimentalmeasurementdataonATPsynthaseF motoraction,24,29,30 andfind 1 3/15 aremarkablelevelofagreementgiventhatwehavepracticallynofittingparameters(meaningthatmostofthemodelparameters areinfactdeterminedfromindependentexperiments). Thekeyobservationsthatwewishtomatchare: (1)Atlow[ATP]there isanalmostlineardependenceofaveragerotationvelocitywithATPconcentration,practicallyindependentonthedegreeof frictionalresistance,withaslope∼6·106rps/M.24,31(2)Athigh[ATP]therotationratesaturatesatavaluedeterminedbythe frictionresistance,inmanydifferentexperimentsthisrotationalfrictioncoefficienthasspannedtherange10−4-102pN.nm.s.24 NodoubtmotivatedbyMichaelis-Menten,peoplefrequentlyuseafittingfunction(cid:104)ω(cid:105)=(1/v +2πξ/M)−1 whereM noload isthe“assumedtorque”generatedbythemotor. Atahigh[ATP]=2mMandlowfriction,thevalueofv wasfoundto noload be∼130rps.24 (3)Thevalueofthe“assumedtorque”isfrequentlyquotedas∼40pN.nm,16,31althoughtheearlierworkof Jungeetal. produced∼56pN.nm.3 Wealreadyexplainedtheerrorininterpretingaproductξ(cid:104)ω(cid:105)ofastochasticmotorasan actualtorquegenerated,nevertheless,theactualexperimentalvaluesofξ and(cid:104)ω(cid:105)needtobematched. Allofthishappenson ATPhydrolysisandthebindingratesarequotedintherange2-6·107M−1s−1byanumberofdifferentgroups.24,30–32 These valuesareourinitial‘target’inthispaper. Asymmetric torsional energy of the coiled coil Thecentralγ-shaftisaleft-handedcoiledcoiloftwoα-helicalproteins. Herewecalculatehowtheelasticenergyincreasesasa functionoftheangleoftwistofsuchacoiledcoilfilament. Notethatthereareother,sometimesmoresophisticated(andalways morecomplex)elasticmodelsofhelicalfilaments,33,34butwechoosetostaywithverysimple,qualitativelycleardescription. Wecanregardtheα-helixasanelasticfilamentwithknowncharacteristics. Itsouterdiameteris1.2nm;itspersistence lengthhasbeenextensivelystudied,providingareasonablyaccuratevalueforthebendingmodulusB≈570pN·nm2(equivalent toapersistencelengthof∼100nmatroomtemperature35,36). Surprisinglyforacylindricalelasticfilament,thetorsional elasticityofanα-helixisgreater:C≈(3/2)Bwiththecorrespondingtorsionalpersistencelengthof∼150nm. The‘surprise’ isbecauseinahomogeneouscylindermadeofanisotropicelasticmaterial,thetorsionalmodulusisrelatedtothebending modulusbyanequationC=B/(1+σ),whereσ isthePoissonratioofthematerial.37 Soforanincompressiblematerialone expectsC=(2/3)BandforatypicalPoissonratioofcrystallinesolids(σ=0.3)wewouldhaveC=0.77B,whiletheobserved factorof3/2impliesanegativePoissonratioσ =−1/3. Thisisaveryunusualcaseinelasticityoftenreferredtoasan“auxetic material”.38,39 Ontheotherhand,itmaynotbesosurprisingifweconsiderthemainelasticelementsintheα-helixarethe hydrogenbondsintheoutershellofthecylinder,whicharealignedwiththehelixaxis: suchaconfigurationhasallthemakings ofalocallyauxeticmaterial. ThesefactsandadiscussionarewellpresentedinapaperbySunetal.36 Whenapairofα-helicesiswoundintoatwo-strandcoiledcoiltertiarystructure,theaxisofeachoftheα-helicesmakes a helical curve of its own, with a radius R=0.46 nm and a pitch p in the range between 11 nm40 and 14 nm.41 For our calculationsweshalltake p=11nm. Thereisanextensiveknowledgeofthecoiledcoilgeometry,goingbacktotheworkof PaulingandCrickinthe1950s;42,43 thisgeometryanditsparametersarewellsummarizedinrecentpapersbySunetal.44,45 Wemighttakeaviewthattheα-helixisanelasticfilamentthatisstraightinequilibrium,butisforcedtomakealeft-handed helicalcurveinspacewhenitistwistinginthecoiledcoilconfiguration. Incalculatingtheelasticenergyweusetheapproach ofYamakawa,46byexpressingthegeometryofahelicalcurveviathetwocharacteristicparameters: curvatureandtorsion(κ andτ),whicharedirectlyrelatedtotheradiusRandpitch pofthecoiledcoil,Fig.2: R p/2π κ = , τ =− . (1) R2+(p/2π)2 R2+(p/2π)2 Inequilibriumeachα-helicalfilamenthasκ =0andτ =0,butwhentheyaretwistedintothecoiledcoil,thetwospacecurves r andr representthecenterlinesofeachfilament: 1 2     Rsinωs −Rsinωs r1= Rcosωs , r2= −Rcosωs , (2) qs qs wheresisthearclengthalongthecurvesofα-helixcenterline,ω =2π/pistherateofhelicalwindingandq=pω/2π isthe √ rateofadvanceofthecurvealongz-axis. Notethatsincetheα-helixisessentiallyinextensible,36theconstraintq= 1−R2ω2 (cid:112) orω =1/ R2+(p/2π)2isinplace. Thewindingangleattopofthecoiledcoiliswhathasbeenacquiredwhens=L,thatis, θ =ωL. TheFrenet-Serretequationsallowcalculatingthecurvatureandtorsionforagivenhelixconfiguration: (cid:113) κ =R(θ/L)2, τ =−(θ/L) 1−R2(θ/L)2, (3) (cid:112) whichshowsthatforsuchoverconstrainedspacecurvesthecurvatureandtorsionarenotindependent: τ =− κ/R−κ2. Theelasticenergyofeachsuchfilament(asitisforcedtowindintoacoiledcoil)asafunctionofdeviationfromitsnatural equilibriumismeasuredbyκ andτ: E =L(cid:2)1Bκ2+1Cτ2(cid:3). α 2 2 4/15 Figure2. Geometryofthetwo-strandedcoiledcoil. (a)Thedimensionsoftheγ-shaft(from5). (b)Thetwoelastic α-helicalfilamentswoundaroundeachotherinatertiaryhelixwiththepitch p. (c)Anillustrationofbondingbetweenthetwo nearly-parallelα-helicesviathe‘heptadrepeat’residues,whichinducestheequilibriumtwist. Thereasonthecenterlineofanα-helixformsahelicalcurveinthetertiarystructureofcoiledcoilisbecauseamechanical frustrationisimposedonitbythehydrophobicbondingofresidueswiththeparallelsecondα-helix.42,44,47 Atypicalα-helix hasahelicalpitchof0.6nmand3.6residuesperturn,makingthestepalongitsaxisofh=0.6/3.6≈0.167nmperresidue. Hencethelengthoftheα-helicalfilamentwithNresidueshasafixedvalueofL=Nh,andwealreadystatedthatitisessentially inextensible.36 However,whenasecondα-helixisalignedparalleltoit,thehydrophobicpairingofapolarresiduesofthe so-calledheptadrepeat(7:2pairs)43,48 formsacontactlineor“seam”betweentwoα-helices, whichhas3.5residuesper turn,bondingthetworesidues(a,d)ofeachheptad(thestudyofcoiledcoilelasticity33callsthislinethe“interfacecurve”). Sincethelengthalongthiscontactlineofpairedresiduesonthesideofthecylindricalα-helicalfilamentisshorterthanthe naturallengthofthecenterlineofthiselasticfilament,therestofthefilamentcoilsintoahelix–aphenomenonfamiliarin telephonecords,planttendrilsandcurlyhair. Thekeytotheresultinggeometryisthattheheightofthecoiledcoil(definedas (cid:112) H inFig.2: thelengthalongtheseamline)isshorterthanthecontourlengthL= H2+(Rθ)2,andtheirobservedratiois H/L=3.5/3.6=0.97. SincetheheightH oftheγ-shaftisknownfromexperiment5(H≈6.5nm),theserelationsdetermine theequilibriumpitch(p=11nm)ortheequilibriumtwist(θ =2πH/p=3.71rad,or210◦)ofthecoiledcoilpairinthe 0 γ-shaft. Theelasticallyactivelengthofα-helicesisL≈6.72nm,whichmakesapproximatelym=2(6.72/0.167)/7≈15 hydrophobicbondsalongtheseamlineoftheγ-shaft,assumingthattworesidues(a,d)ofeachheptadarepaired. However,wecannotassumethehydrophobically-bondedpairsofmatching(a,d)heptadmembersexperienceaharmonic potentialwithrespecttostretching/compressingtheseamline. Thislineismadeofasequenceofpairsofhydrogenbondsin eachα-helix,linkedbythematching(a,d)heptadmembersandnearlyparalleltothelineitself: itismuchhardertostretch thesequenceofbondedpairsthantocompressit. Instretching,orelongatingthedistancebetweenresiduesalongtheaxisof theα-helix,theexistinghydrogenbondsthatarealignedalongtheaxisoftheα-helixneedtobestretched,whichisahard proposition. Incontrast,theshorteningofthislinecanbemuchmoreeasilyaccommodatedbytiltingoftheα-helicalbonds awayfrombeingparalleltothehelicalcenterline. OnecanseeananalogywiththeclassicalEulerproblemofstrutelasticity: itishardtostretchanelasticrod,butoncompressionitcaneasilybuckleandthusrespondwithamuchlowerforce. The expressionforsuchastretching/compressingenergy,asfunctionofthelengthofinterfacecurve,x,givenitsequilibriumlength H ,andtheoveralllengthofthefilamentL,shouldtaketheformanalogoustothegeneralenergyofastifffilament:49 0 (cid:20) 1−(x/L)2 1−(H /L)2(cid:21) E =mε + 0 . (4) seam 1−(H /L)2) 1−(x/L)2) 0 ThisstretchingenergyE isplottedinFig.3(a),illustratingatypicalresponseofastifffilament,whichishardtostretchbut seam easytobuckle. TheexperimentallyobservedcoiledcoilheightH=6.5 nm(orthecorrespondingtwistingangleθ =3.71 rad) 0 (cid:112) areobtainedbyconvertingfromtheseamlinelengthxtothecoiledcoiltwistingangleθ (viax= L2−(Rθ)2)andadding thestretchingenergyE (θ)tothetwistingenergyoftwoα-helices2E (θ),whichisplottedasatotalinFig.3(b). The seam α minimumofthisenergydefinestheequilibriumshapeofthecoiledcoil: apairofnaturallystraightelasticfilaments(α-helices) frustrated(contorted)bytheaddedelasticenergyoftheseamline. It may seem that there are many unknown (free) parameters in this simple elastic model, but in fact the published experimentalresultsconstrainthemveryaccurately. Jungeetal. havemeasuredthelineartorsionalmodulusoftheγ-shaft byobservingfreethermalfluctuationsofitsend.6,26,29 Awiderangeofvaluesisreported,dependingonwhichsectionof thefilamentoneistrackinginelaborateanddelicateexperiments,buttheorderofmagnituderemainswelldefined. Abigger 5/15 Figure3. Seamlinecontortstwoα-helicesintoacoiledcoil. (a)Plotofthestretchingenergyofseamline,Eq. (4)forthe parmetersoutlinedinthetext. (b)Plotsofthetotalelasticenergyofthetwofilamentsboundalongtheseamline,forincreasing valuesofthebondingenergyε. Theminimumofthisenergygivestheequilibriumtwistoftheleft-handedcoiledcoil θ ≈3.71[rad]forthecurvewithmε =250k T (withm=15thisgivesthecharacteristicparameterε =16k T). 0 B B Figure4. Asymmetryoftorsionalelasticityofcoiledcoil. TheenergyE (θ)isplottedforthechoiceofparametersleading 1 totheobservedcoiledcoilgeometry(H,θ andtorsionalmodulusaroundtheequilibrium). Theanglestounwindandto 0 over-windthecoiledcoilaredifferent: thevaluesa≈1.197andb≈0.898arechosenforthetotalwindowofvariationtobe 120◦. Theenergybarreirthenis∆E ≈136k T. 0 B 6/15 problemisthatthetorsionalmodulushastobepresentedintheunitsof[energy/angle2]whileallthereportedvaluesforthe ‘modulus’aregiveninthedimensionsofenergyalone[pN.nm]. TheMDsimulationstudyofγ-shaftelasticity27alsohasatypo, presentingthemodulusin[pN.nm/rad].Inspiteofallthat,thecoreexperimentalresultofJungeetal.isclearandunambiguous: theyhavemappedtheprobabilitydistributionofangleθ ofthefreelyrotationalklyfluctuatingγ-shaftandobtainedaGaussian shape,whichallowstodeterminethemodulusdirectly,givingavalue∼0.4pN.nm/deg2=1300pN.nm/rad2(infact,arange ofvalueswithinthisorderofmagnitude,dependingonwhichsegmentofγ-shaftisexamined). Acombinationofthismodulus (i.e. thecurvatureofthetorsionalenergyneartheminimumθ ,andthepositionofthisminimumatθ =3.71rad,areenough 0 0 todeterminetheparametersmε ≈250k T (or147kcal/mol,i.e. ε =9.8kcal/mol=69pN.nmperbondedpairoftheheptad), B andH ≈6.33nm. Soinequilibrium,theseamlineisslightlystretched(to6.5nm)attheexpenseofcoilingthetwoα-helix 0 filaments. Figure4zoomsintotheregionneartheminimumofthistorsionalenergy,whichwelabelasE (θ)asthefirstlevel 1 ofthetwo-statemodelforthemotor,andwecanclearlyseetheasymmetry: theenergyrisessteeperforunwindingthecoiled coil(i.e. attemptingtostretchtheseamline). Thetorsionalfluctuationsofthecoiledcoilaboutthisminimumaremarkedly asymmetric,whichisthekeyingredientofourmodelofrotarymotor. Itisremarkableinthehindsightthattheexperimental resultsofJungeetal. areinfactshowingtheslightasymmetryoftheirprobabilitydistributions! Theanalysisinthissectionprovidesthevaluesofasymmetryabouttheminimumoftorsionalelasticenergy. Aswehave discussedearlierandillustratedinFig. 1(b),thereisa120◦-periodicityofthecamendoftheγ-shaftconfinementinsidethe α β cavity. Takingthis‘window’of120◦=2π/3foreachcycle,theasymmetryofthetorsionalpotentialmakestheangular 3 3 intervals: a≈1.197andb≈0.898[rad],asillustratedinFig. 4. Ofcourse,thesuma+b=2π/3,butthecrucialparameteris thedifference: a−b≈0.3rad,or17◦. Theheightofenergybarrierattheboundariesofeachangularcycleis∆E ≈136k T 0 B withinthismodel. Thisisahighenergybarrier,soonecanbeassuredthatnospontaneous‘slippage’oftheoftheγ-shaftcan occurwhileitscamisconfinedinsidetheα β cavity. 3 3 Two-state stochastic Brownian ratchet motor Inthissectionwere-writetheoriginalmodelofJu¨licher,AjdariandProst21,25forthecaseofrotarymotion,inthesimplest possibleform. Inthermodynamicequilibrium,withoutexternaltorque,theasymmetryofpotentialenergyE (θ)isirrelevant: 1 thedetailedbalanceensuresthatthediffusionfluxinbothdirectionsmustbeequal. Soinspiteoftherotationalsymmetry brokenbytheslantedpotentialenergyineachperiod,thethermalmotionalonecannotproduceunidirectionalrotation. Inthis 120◦-periodiclow-energystateE (θ)thebulgeintheγ-shaft(thecamtooth)islockedinoneofthethreepositionsaroundthe 1 circle–andthec-ringonlyfluctuatesconfinedneartheminimumofthistorsionalelasticenergy. Thesearethefluctuations measuredbyJungeetal.6,26,29 andsimulatedbyCzubandGrubmu¨ller,27whichwediscussedintheprevioussection. WhenanATPmoleculeishydrolyzedintheα β complex(withthebindingratek ),theconfinementoftheγ-shaftcam 3 3 on changes: hereweassumeitisreleasedandbecomesfreetorotateinsidetheα β cavity. Thismeansthatthesystementers 3 3 the“excitedstate”E withnorotationalconfinement–thisassumptionisanobviouslimitationmadetosimplifythemodel 2 andmakeiteasilytractable,andweshalldiscusslaterinthetexthowrelevantitis(itturnsoutthatitisnot). Freerotational diffusionofthec-ringandγ-shaftoccursthen,withtheGaussiandistributionofprobability p(∆θ)∼exp[−(θ−θ )2/4Dt]. In 0 thewildtypeATPaseembeddedinitspropermembrane,therotationaldiffusionconstantofthec-ringrotorwasmeasuredby severalauthorsandreported,e.g.,byElstonetal.:10 D≈2·104rad2/s. InmanyfamousexperimentsobservingtheF rotation 1 invitro,peoplewereattachingeitheranactinfilamentoragoldbeadinplaceofthec-ring–andobservingtherotationofsuch amarkeragainstviscousfrictioninsolution.15,24,31 ThediffusionconstantD=k T/ξ hasbeenvariedovernearly6ordersof B magnitude,dependingonthegeometryofthemarker.24 Forinstance,atroomtemperaturethe40-nmgoldbeadofYasudaet al.24 hasξ =2·10−4pN.nm.s,givingthediffusionconstantD≈2.1·104rad2/s: andalmostexactmatchwiththemembrane frictionofthec-ring. Usinga1-µmlongactinfilamentasamarkergivesξ ≈2pN.nm.s,15 producingD≈2.1rad2/s. The authorsinthepasthaveincorrectlyusedtheideaof“no-load”velocityatverylowfriction,butweseethatalltheincreasing frictiondoesistoslowdownthefreerotationaldiffusionintheupperunconstrainedstateR . Weshallexaminetheeffectof 2 changingfrictiononthemotorvelocitylaterinthetext. Afteracharacteristiclife-timeτ ofthisisomerizedstatewheretheγ-shaftcouldfreelydiffuse,theα β complexreturns 2 3 3 toitsnaturalstateandthecamreturnsbacktoalockedposition;thismaybethesamepositionaswhenitwasreleased–but duetothefreerotationaldiffusionintheE state,itwillmorefrequentlydropintotheneighboringpositiontotheleft(the 2 closesttotheoriginal,asb<a). Wecanestimatetheaverageangularvelocityoftheresultingrotationastheratioofangular step(a+b=120◦)andthetotaltimeofthiscycle(∆t =1/k [ATP]+τ ),giving(cid:104)ω (cid:105)=(a+b)(p −p )/∆t,wherethe on 2 0 + − probabilitiesofdroppingintotheright-andleft-sidepocketsofE aredeterminedbythecorrespondingerrorfunctionsfromthe 1 limitedintegralsof p(∆θ). Inthelimitwhenthetorsionalasymmetry(a−b)issmall,thisvelocitytakesamoresimpleform: a+b (cid:18) (cid:20) b (cid:21) (cid:20) a (cid:21)(cid:19) k [ATP] a2−b2 (cid:104)ω (cid:105)≈ Erf √ −Erf √ ≈ on √ e−a2/4Dτ2, (5) 0 1/kon[ATP]+τ2 2 Dτ2 2 Dτ2 1+τ2kon[ATP] 4πDτ2 7/15 Figure5. Aschemeoftwo-stateBrownianratchetmotor. Inthelow-energystatethebulgeintheγ-shaftislockedinone ofthethreepositions120◦aroundthecircle–andthec-ringonlyfluctuatesconfinedneartheminimumofthistorsionalelastic energy. Inthermalequilibrium,therecanbenounidirectionalmotioninspiteofthechiralanisotropy. Anenergyinputfrom ATPhydrolysiscausesα β isomerizationandcandisengagetheconfinement,allowingthec-ringtofluctuatefreelywhilein 3 3 thisunconstrainedexcitedstate. TherateofE →E transitionisk [ATP],whichisanactivationfunctionofATPchemical 1 2 on potential∆µ,whiletherateofthereverseE →E transitioniscontrolledbythelife-timeoftheisomerizedstateofβ-subunit 2 1 (τ ). Onreturntoitscam-engagedstate,thecoiledcoilhasahigherprobability(p )toendupat−120◦fromtheoriginalstate, 2 − thaninthe+120◦state(p ),whichresultsintheaverageanticlockwiserotation. + wherethesubscriptin(cid:104)ω (cid:105)indicatestheabsenceofanexternaltorque: atrue“no-load”conditionofthemotor. Thisrotation 0 velocityisnominallymeasuredin[rad/s]; toconvertitinto[rps]onehastodivideitby2π. HeretherateofATPbinding k [ATP]=κ exp[∆µ /k T]canbeexpressedviathechemicalpotential∆µ =k Tln[ATP]. Takingthespecificrateof on 0 ATP B B ATPbindingk =4·107M−1s−1allowsconvertingtheATPconcentrationof2mMtotheactualrateofbindinggivenbythe on productk [ATP]≈8·104s−1,orthetimeintervalbetweentheATPbindingeventsof∼13µs. on Figure5showsthepictorialschemeofthisprocess,whiletheplotsinFig. 6(a,b)showhowtheaverageanticlockwise “no-load”velocity(cid:104)ω (cid:105)dependsonthekeyparameters. Firstofall,thereisthelife-timeintheisomerizedfree-rotationstate 0 τ . Thistimeisnotgenerallyknown,andtheonlyclosemeasurementreportedbyFuruikeetal.30 isthatofadwelltimeof 2 severalmilliseconds(alsosee18). Weassumethattheactuallifetimeoftheisomerizedβ-subunitismuchshorter. Theplot6(a) ismadeforthelow-frictionrotationcorrespondingtoa40nmgoldbeadmarker,orthewildtypemotor,D=2·104rad2/s, andseveralrealisticvaluesof[ATP]giventhek =4·107M−1s−1. Firstofall,weseethatourconceptmodel,inspiteofall on itssimplifications,isquantitativelyproducingthevaluesofaveragerotationvelocityintheobservedrange(spinningatover a100rpsisclearlyrealistic). Ontheotherhand,thedependenceonthepoorlyknownlifetimeτ isverysharpandifone 2 ‘misses’theoptimalvalue,therotationvelocitydropsrapidly. Thisdependenceiseasilyunderstood: atveryshortlife-timethe camcannotdiffusetoofarfromitsoriginalpositionintheE periodicpotential,andit’smostlikelytore-engageinthesame 1 positiongivingnonetrotation–atverylongτ thecamhastimetodiffuseveryfaranditbecomesrelativelyequal-probability 2 tore-engagetotheleftandtotheright. Itisclearthatthisisacrucialparameterforevolutiontoadjustforanygivenmotorand itsspecificuseinthecell. Plot6(b)showsthedependenceon[ATP]concentration,whichentersinourmodelastherateofE →E transition. As 1 2 expected, andingoodagreementwith‘canonical’experiments,24,31 atlowATPconcentrationtheaveragevelocityvaries linearlywithconcentration–whileathighconcentrationitsaturatesatamaximalvalueω whichiscontrolledbytherateof max thereverseE →E transition,1/τ . Thechangebetweenthetworegimesoccursatk [ATP]≈1/τ . Itiscommoninthe 2 1 2 on 2 literaturetofitthistypeofcurvetoaMichelis-Mentenequation,whichisindeedwhatEq. (5)gives,with a a linear: (cid:104)ω0(cid:105)≈ √πDτ2(a−b)e−a2/4Dτ2·kon[ATP], ωmax≈ √πDτ3/2(a−b)e−a2/4Dτ2, (6) 2 (stillinthenominalunitsof[rad/s])maintainingthesimplifiedexpandedformforthesmalltorsionalasymmetry(a−b)(cid:28)1. Notethattheratio2a2/Disapproximatelythetimeforanon-engagedγ-shafttodiffuseasingle120◦period,theratioofwhich toτ iswhateffectivelycontrolsthemagnitudeoftheseexpressions. 2 Letusnowexaminehowthismotoroperatesindifferentfrictionregimes. Asexplainedabove,forthestochasticmotor likethisthe(rotational)frictiondoesnotprovidea‘load’,butsimplyactsthroughthechangingrateofdiffusion,D=k T/ξ. B Wishing to compare with the famous experiments of Yasuda et al.15,24 which studied a wide range of markers providing differentrotationalfrictionconstant,weplotthedependenceofaveragevelocity(cid:104)ω (cid:105)onthisfrictioncoefficient(assuming 0 8/15 Figure6. Theaveragespeedoffree-spinningmotor. (a)Therotationvelocityasafunctionoflife-timeτ atseveralvalues 2 of[ATP](givenintheplot)andthelow-frictionregimecorrespondingtothewild-typeF ATPaseandthein-vitroexperiments 1 witha40nmgoldbeadmarker. Aprominentmaximuminthevelocityindicatestheoptimalvalueforthemotoroperation τ ≈20µsforthisresistanceregime. (b)TherotationvelocityasafunctionofATPconcentration,expressedhereviathe 2 transitionratek [ATP].Thesamevalueofthediffusionconstant(rotationalfriction)isused,andseveralvaluesofthe on isomerizationlife-timeτ (inseconds)arelabelledontheplot. Theonsetoftheplateauandthemagnitudeofω aredirectly 2 max determinedbyτ . 2 Figure7. Theaveragespeedchangeswithfrictionresistance. Bothplotsshowthesamedataofhow(cid:104)ω (cid:105)varieswiththe 0 rotationalfrictioncoefficientξ,atT =23◦Cand[ATP]of2mM.Severalvaluesofτ arelabelledontheplots. Theplot(a)has 2 thelinearscaleoftheξ-axisandhighlightstheexponentialdependenceof(cid:104)ω (cid:105)(ξ)athighfriction,whilethelog-logplot(b) 0 allowsamuchwiderrangeoffrictionvaluestobeexamined. roomtemperatureof23◦C),ratherthanthediffusionconstantD, seeFig. 7. Thelog-linearversionofthisplot(a)shows theexponentialdecayof‘no-load’(cid:104)ω (cid:105)withincreasingfriction,whichisinfactobviousfromexaminingEqs. (5)-(6). The 0 log-logplot(b)enhancesthesmallchangein(cid:104)ω (cid:105)atverylowfriction(perhapsatunreasonablylowvalueusedmerelyfor 0 completenessofexposure). ThismayseemnotinperfectagreementwiththeresultsofYasudaetal.24 thatappeartoplateauat ξ →0. However,wouldpointthatourmodelwasultimatelysimplifiedforclarityofconcept,anditcertainlyunderestimates thefrictioninthe‘free-diffusion’excitedstate(whenwetookthattheγ-shafthasnoconstraintwhatsoever). Equally,thereare difficultiestoactuallyachievevanishingfrictioninexperiment,sothissmalldecreasemightnothavebeennoticed(aswellas thereliabilityofaccuratelydeterminethefrictionconstantlimited). Yasudaetal.15,24 fitthecurveof(cid:104)ω (cid:105)vs. frictionconstantξ byaninterpolatedformula: (cid:104)ω (cid:105)=(1/V +2πξ/M)−1, 0 0 noload wheretheir‘assumedtorque’was(cid:39)40pN.nm. Wealreadyexplainedthatastochasticmolecularmotordoesnotexertatorque intheunloadedstate–itjustmakesmorerandomstepsinonedirectionthanintheother. Inthehigh-frictionlimitwhen ξ (cid:29)k Tτ ,oursimplifiedEq. (5)predictsanexponentialdropintheaveragerotationvelocity(cid:104)ω (cid:105),whilethedataofYasuda B 2 0 etal.15,24 isprobablygoingbroadlyoverthecrossoverregion. 9/15 Figure8. Twocompetingmotors: theroleofcounter-torque. Themodifiedsketchofthetwostatesofthemotor,skewed bytheexternaltorqueMfromtheF motor. Now,inadditiontotheATP-activatedratchetmotordrivingtheshaft 0 anticlockwise,therearetwofactorsthatpromotetheclockwiserotation: thebiaseddiffusioninthetiltedperiodicpotential E (θ,M)andthedriftofthediffusionenvelopewiththeconstantrateMD/k T. 1 B F motor operating against external torque 1 Inrealcircumstances,theF motordrivenbythepmf,originallydescribedbyElstonetal.10 andreviewedinseveraltopical 0 reviewsonthesubject,exertsatorqueonthec-ring,whichispassedthroughtheγ-shafttotheconfiningregioninsidethe α β complex. Thistorque,ortheturningmomentM,isinthedirectionoppositetothenaturalanticlockwiserotationofthe 3 3 F motor,andsothetwohavetocompete. Figure8showsthepictorialeffectofsuchanexternaltorqueontheF operation, 1 1 slantingbothenergystatesE andE andaddingtwoadditionalcontributionstotheaverageangularvelocityoftheshaft: 1 2 (cid:104)ω(M)(cid:105). Oneoftheseisadriftintheclockwisedirectioninthefree-diffusionexcitedstateE ,theotherisdiffusiontothe 2 rightintheground-stateperiodicpotentialE (θ)becausetheenergybarriersfortheforwardandbackwardmotionarenow 1 different. Thefirsteffect(ofthefreediffusionenvelopedrift)isaccountedforbytheshiftintheGaussianexponentofthe probability p(∆θ)=exp[−(θ−θ )2/4Dt+Mθ/2k T]andisnaturallyextendingtheBrownianratchetapproachthathasled 0 B toEq. (5). Thesecondeffectofthediffusioninatiltedperiodicpotentialisaclassicalproblemcarefullystudiedinthetextbook byNelson,50improvingontheoriginalFeynman’streatmentoftheratchetandpawlproblem.51 ThesimpleFeynmanformula hastheexponentiallydivergingvelocityatlargetorque,whiletheNelsonapproachcorrectlyaccountsfortheviscousdragand resultswithalinear‘force-velocity’relationshipintheoverdampedmolecularsystem. TheformulafortheS-ratchetderived in50hastobemodifiedbecausetherearetwoslopesofthepotentialfromitsminimum(towardsaandb),sothefinalexpression becomesalittlebitmoreinvolved,althoughtheunderlyingprincipleofdiffusivemotionacrosstheeffectiveperiodiclandscape remainsthesame. Itisalsoinstructivetocomparethetwoversionsofthispartofthisclockwiseangularvelocityatsmall torqueM,i.e. inthelinearresponseregime: (cid:104)ω+Feynman(cid:105)≈ kBDTe−∆E0/kBT·M; (cid:104)ω+Nelson(cid:105)≈ kBDT (∆E(e0∆/Ek0B/TkB)T2e−∆E10)/2kBT ·M. (7) However,forourpracticalpurposesinthispaper,itturnsoutthatwiththeenergybarrier∆E (cid:39)136k T andtheexternaltorque 0 B notexceedingM(cid:39)50pN.nm(whichisequalto12k T)thiscontributiontothemotoractioniscompletelynegligible. B Thedriftofthefree-diffusingdistributioncanbedirectlyincorporatedintotheexpressionfortheaverageangularvelocity duetotheProstmechanism,25shiftingthemid-pointofthespreadingfree-diffusiondistribution p(θ,t)intheexcitedstateE , 2 givingtheexpression,whichatM=0reducestoEq. (5): (cid:18) (cid:20) (cid:21) (cid:20) (cid:21)(cid:19) a+b b+MDτ /k T a−MDτ /k T (cid:104)ω(M)(cid:105)≈ · Erf √ 2 B −Erf √ 2 B . (8) 1/kon[ATP]+τ2 4πDτ2 4πDτ2 TheplotsinFig. 9illustratethepredictionsofEq. (8)whentheF motorissubjectedtoacounter-torqueM(clockwise, 1 arisingfromtheF motor). Bothplotsarecomputedforthe‘near-optimal’valueofexcitedstatelife-timeτ =50µs,seeFig. 0 2 6(a)andthefrictionconstantξ =2·10−4pN.nm.s,correspondingtotherotationaldiffusionD=2·104rad2/s(asinthewild type,orlow-friction40-nmgoldbeadofYasudaetal.24). Theplot9(a)showsa‘bigpicture’forawiderangeoftorques,but notpermittingtoseewhathappensaroundM=0. Weseethattheexternaltorqueessentiallydrivestheshaft–intheopposite clockwisedirectiionshowingasthenegative(cid:104)ω(M)(cid:105)intheplot,whenthetorqueisagainstthenaturalanticlockwisedirection oftheF spin,orinthepositiveanticlockwisedirectionwhentheexternaltorqueworksinthesamedirectionasF . Athigh 1 1 enoughtorquethevelocitysaturatesataconstantplateauvalue,whichisdeterminedbytherateofATPbinding(wecontinue usingthe‘standard’valueforthespecificbindingratek =4·107M−1s−1),andalsotheexcitedstatelife-timeτ . on 2 10/15

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.