ebook img

F-VIPGI: a new adapted version of VIPGI for FORS2 spectroscopy. Application to a sample of 16 X-ray selected galaxy clusters at 0.6 < z < 1.2 PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview F-VIPGI: a new adapted version of VIPGI for FORS2 spectroscopy. Application to a sample of 16 X-ray selected galaxy clusters at 0.6 < z < 1.2

Astronomy&Astrophysicsmanuscriptno.aa19862 (cid:13)c ESO2013 January14,2013 F-VIPGI: a new adapted version of VIPGI for FORS2 spectroscopy Application to a sample of 16 X-ray selected galaxy clusters at 0.6 ≤ z ≤ 1.2 1 2 1 1 4 3 2 2 A.Nastasi ,M.Scodeggio ,R.Fassbender ,H.Bo¨hringer ,D.Pierini ,M.Verdugo B.Garilli ,andP.Franzetti 1 Max-Planck-Institutfu¨rextraterrestrischePhysik(MPE),Giessenbachstrasse1,85748Garching,Germany e-mail:[email protected] 2 IASF-INAF-ViaBassini15,I-20133,Milano,Italy 3 Institutfu¨rAstrophysikUniversita¨tWien,Tu¨rkenschanzstr.17,1180Vienna,Austria 3 4 Freelancescientist 1 0 Received...;accepted... 2 ABSTRACT n a Aims.Thegoalofthispaperistwofold.Firstly,wepresentF-VIPGI,anewversionoftheVIMOSInteractivePipelineandGraphical J Interface(VIPGI)adaptedtohandleFORS2spectroscopicdatatakenwiththestandardinstrumentconfiguration.Secondly,weinves- 0 tigatethespectro-photometricpropertiesofasampleofgalaxiesresidingindistantX-rayselectedgalaxyclusters,theopticalspectra 1 ofwhichwerereducedwiththisnewpipeline. Methods.WeprovidebasictechnicalinformationabouttheinnovationsofthenewsoftwareandreferthereadertotheoriginalVIPGI ] paperforadetaileddescriptionofthecorefunctionsandperformances.Asademonstrationofthecapabilitiesofthenewpipeline, M wethenshow resultsobtainedfor16distant(0.65 ≤ z ≤ 1.25) X-rayluminousgalaxyclustersselectedwithintheXMM-Newton I DistantClusterProject.Weperformedaspectralindicesanalysisoftheextractedopticalspectraoftheirmembers,basedonwhich . wecreatedalibraryofcompositehighsignal-to-noiseratiospectra.Wethencomparedtheaveragespectraofthepassivegalaxiesof h oursamplewiththosecomputedforthesameclassofobjectsthatresideinthefieldatsimilarhighredshiftandingroupsinthelocal p Universe.Finally,Wecomputedthe“photometric”propertiesofourtemplatesandcomparedthemwiththoseoftheComaCluster - o galaxies,whichwetookasrepresentativeofthelocalclusterpopulation. r Results.Wedemonstrate thecapabilities of F-VIPGI,whose strength isan increased efficiency and a simultaneous shortening of t FORS2spectroscopic data reduction time by a factor of ∼10 w.r.t.the standard IRAF procedures. We then discuss the quality of s a thefinal stacked optical spectra andprovide theminelectronic form⋆ ashigh-quality spectral templates, representative of passive [ andstar-forminggalaxiesresidingindistantgalaxyclusters.Bycomparingthespectro-photometricpropertiesofourtemplateswith thelocalanddistantgalaxypopulationresidingindifferentenvironments,wefindthatpassivegalaxiesinclustersappeartobewell 1 evolvedalreadyatz∼0.8andevenmoresothanthefieldgalaxiesatsimilarredshift.Eventhoughthesefindingswouldpointtoward v asignificant acceleration of galaxy evolutionindensest environments, wecannot exclude theimportance of the massasthemain 7 evolutionarydrivingelementeither.Thelattereffectmayindeedbejustifiedbythesimilarityofourcompositepassivespectrumwith 2 theluminousredgalaxiestemplateatintermediateredshift. 3 2 Keywords. Instrumentation:spectrographs–Methods:dataanalysis–Techniques:spectroscopic–galaxyclusters:general,redshifts . 1 0 3 1. Introduction ters by means of their red galaxy population (e.g., SpARCS, 1 Wilsonetal.2006),theirSunyaev−Zel’dovich(SZ)effectsigna- Galaxyclustersarethesignatureoftheprimordialdensity fluc- : ture(e.g.,SPT,Williamsonetal.(2011);ACT,Menanteauetal. v tuations that have grown via hierarchical accretion since the (2010)) or the diffuse X-ray emission originating from the hot Xi epoch of recombination. Because their abundance at different intraclustermedium.Thelastapproach,inparticular,hasproved epochs is extremely sensitive to the matter content and accel- r very powerful to the above aim as shown e.g. by the XMM- a eration of the universe, clusters are sensitive probes for test- Newton Distant Cluster Project (XDCP, Bo¨hringeretal. 2005; ing different cosmological models. In addition, they are cos- Fassbenderetal. 2011a). This is a serendipitous X-ray survey mic laboratoriesin whichcomplexprocessesthatshapegalaxy specifically designedforfindingandstudyingdistantX-ray lu- evolution can be studied in great detail. Nowadays many ef- minousgalaxyclustersatz≥0.8andithascompiledthelargest forts are invested into the observational challenge of provid- sampleofsuch systemstodate. Fora comprehensiveoverview ingsizable samplesofgalaxyclustersathighredshift(z >0.8) ofthesurveyandanextensivediscussiononitsstrategyandre- to trace the evolution of the cluster population and its mat- sultswereferthereadertoFassbenderetal.(2011a). ter components back to the first half of the universe life- Irrespectiveoftheinitialapproachusedtodetectdistantclus- time, corresponding to lookback times of 7 − 10 Gyr. Many ters,thefinalmandatorystep oftheconfirmationprocessisthe surveys have been designed to efficiently detect distant clus- redshiftassessmentofthesystembymeansofspectroscopicob- ⋆ The library of spectra is available at the CDS via anony- servationsofitsgalaxypopulation.Tomaximizethenumberof mous ftp to cdsarc.u-strasbg.fr 130.79.128.5 or via galaxiesatz>0.8whoseredshiftcanbesuccessfullymeasured, http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/ and at the link pro- onehastodesignspectroscopiccampaignstoobservethespec- videdinAppendixA(Sect.A.2). tralfeatureswiththehighestsignal-to-noiseratio(S/N).Because 1 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy galaxy populations in clusters are dominated by red, passive needtoprocessthehugeamountofspectroscopicdataexpected galaxies,the most suitable featureto thisaim is the continuum from surveys such as the VIMOS-VLT Deep Survey (VVDS, breakat4000Å(D4000)andtheassociatedabsorptioncalcium LeFe`vreetal. 2004) or zCOSMOS (Lillyetal. 2007), each of lines(CaH/K).Forz ∼0.8−1thisspectralregionisredshifted whichproducedatotalof∼50,000spectraofgalaxiesinavery toλ ≈7200−8000Å,awavelengthwindowreadilyaccessible wideredshiftrange(0≤z≤5). formanyground-basedtelescopes.Inparticular,oneofthe cur- The core of VIPGI is a library of C-written routines, the rentlymostefficientspectrographsabletocoverthiswavelength VIMOSDataReductionSoftware(DRS,Scodeggioetal.2001), rangeandtosimultaneouslyguaranteeaveryhighandstableef- currently used by ESO for the VIMOS online reduction. All ficiencyofitsCCDuptoλ∼11000ÅistheFOcalReducerand these fundamental functions can interact with each other and lowdispersionSpectrograph(FORS2,Sect.3.1)mountedonthe with the user thanks to the adopted standard Python Tkinter UT1ofVLT.Becauseofitsperformancesatlongerwavelengths, graphicalinterface.Thischoiceallowsone to obtaina pipeline wherethe powerand efficiencyof the C codecomputationand thisinstrumentiswidelyusedforimagingandspectroscopy of distantclustergalaxiesandishencetheinstrumentofchoicefor thepossibilityofa continuousqualitycheckbythe useronthe the spectroscopicfollow-upof the distantcandidatesystems in intermediatereductionresultsarebothpresent.Namely,theuser XDCP. canconstantlymonitorthequalityoftheongingreductionstep bystepwithVIPGI,repeatinganintermediatereductionstepif AtthetimeofwritingXDCPprovidesthelargestsampleof necessarywithoutrestartingtheentireprocedure. X-ray selected distant galaxy clusters, with 30 confirmed clus- VIPGIwas also designedto optimizethe storageof a large ters at z > 0.9 and a final aim of more than 50 clusters at amountofreduceddata,with aclearandeasily understandable z > 0.8 (30 at z > 1) to allow statistically meaningful evo- filingstrategy.MoretechnicaldetailsonVIPGIareprovidedin lution studies of the cluster population in at least three mass- theoriginalpaperofScodeggioetal.(2005). and redshift bins. One of the main disadvantagesconnected to these expectations is the significant work related to reducing thelargeamountofdataproducedbythespectroscopicfollow- 3. TheFORS2-VIMOSInteractivePipelineand up campaigns. Each XDCP targetis observedwith the FORS2 multi-objectspectroscopy(MOS)mode,enablinganaverageof GraphicalInterface(F-VIPGI) 50slits permask. Accordingto the surveyexpectationsquoted Although VIPGI was specifically designed for the VIMOS in- above,thespectroscopiccampaignsshouldfinallyyieldseveral strument, its capabilities are general enough to make it poten- thousandslits,resultinginasimilaramountofspectratobere- tially usablewith anyotherMOSspectrograph.Thismotivated ducedandextracted(seeFig.2,top).Thisprocessisverytime- us to consider VIPGI as a potentially useful tool for XDCP, consumingifcarriedoutwiththetraditionalIRAFpackages,and whoseclustercandidateshavebeen(orareplannedtobe)spec- the pipelines provided by ESO for automating the procedures troscopicallyfollowed-uptosafelyconfirmtheirnatureofgrav- wouldnotprovidethenecessaryaccuracyforanefficientextrac- itationallybound,distantsystems. Theinstrumentused forthis tion of the spectra of such distant galaxies, which are mostly purposeistheFOcalReducerandlowdispersionSpectrograph faint (I > 20)1. These reasons motivated us to develop a new (FORS2)mountedonVLT.TheXDCPspectroscopiccampaigns dedicatedpipelineforaquickandefficientreductionofspectro- havetargeted∼70clustercandidatessince2005,producingato- scopic FORS2 data. Because of the many similarities between talof∼3,500singlespectratobeextractedandreduced.Withthe FORS2andVIMOSdata,wechosetobuildthenewpipelineon same original spirit of VIPGI we therefore adapted the power VIPGI(Scodeggioetal.2005)andnameditF-VIPGI. and efficiency of VIPGI to FORS2 data as well. The result is Thispaperisstructuredasfollows:inSect.2themainchar- F-VIPGI, a new pipeline that allows us to shortenthe time for acteristicsofVIPGIarebrieflydescribedtointroducetheinno- reducingFORS2spectroscopicdatabyafactorof∼10w.r.t.the vationsofF-VIPGI,whichareextensivelydiscussedinSect.3. standardIRAFprocedures. Wethenshowanapplicationofthenewpipelinetoasampleof distant clusters (Sect.4) that results in a new libray of spectro- scopictemplates,whiletechnicaldetailsandpropertiesaredis- 3.1.TheFORS2instrument cussed in Sect.5 and a conclusivesummaryis givenin Sect.6. FORS2 is the visual and near-UV FOcal Reducer and low- Throughoutthis manuscript we assume a concordance ΛCDM cosmology,with H = 70 km s−1 Mpc−1, Ω = 0.7, Ω = 0.3 dispersionSpectrographmountedontheUT1unit(Antu)ofthe 0 Λ m Very LargeTelescope (VLT) (Appenzelleretal. 1998). The in- andw=−1. strumentcoversthewavelengthrangefrom330nmto1100nm withanimagescaleof0.25′′/pixel(or0.125′′/pixelifthehigh- resolutioncollimatorisused)inthestandardreadoutmode(2x2 2. TheVIMOSInteractivePipelineandGraphical binning)andafieldofview(FoV)of6.83′×6.83′.Thedetector Interface(VIPGI) consistsoftwoMIT/LLCCID-20chips,with4096×204815µm VIPGI is a semi-automatic data reduction pipeline released in pixels,eachcharacterizedbyanexcellentsensitivitytowardthe 2005 (Scodeggioetal. 2005) written to process and archive red part of the spectrum (up to λ ∼ 11000Å) and the almost the data obtained with the VIsible MultiObject Spectrograph totalabsence of fringingpatterncontamination.FORS2 can be (VIMOS) mountedat the MelipalUnit Telescope(UT3) of the used in many modes, includingmulti-objectspectroscopywith VLTinaquickandefficientfashion.Itisabletohandlethedata exchangable masks, long-slit spectroscopy, imaging, spectro- takenwithallthethreeavailableVIMOSmodes:MOS,imaging, polarimetryandhigh-timeresolutionimagingandspectroscopy. andintegralfieldunit(IFU)spectroscopy.Thecreationofsucha F-VIPGI was designed to work with all FORS2 data taken new,VIMOS-dedicated,reductionpipelinewasmotivatedbythe with the standard spectroscopic instrument configuration and straightslits,definedasthoseslitswherethepixel-to-wavelength 1 ApparentVegaI-bandmagnitudeofaz>0.5L⋆passivelyevolving relationis“constant”alongtheslitlength,andthereforethesky galaxywithformationredshiftz =5andsolarmetallicity. linesareperfectlyalignedalongtheCCDrows(orcolumns,de- form 2 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy Table1.PropertiesofthegrismformingtheFORS2standardinstrumentconfigurationforwhichF-VIPGIisusable.Inparenthesis are the wavelength rangesactually used by F-VIPGIto providethe best-qualityresults. The listed valuesof resolution λ/∆λ are computedatthecentralwavelengthandfora1′′slit. Grismname Centralwavelength Wavelengthrange Dispersion Resolution Orderseparation [nm] [nm] [Å/mm] [Å/pixel] λ/∆λ filter GRIS 600B+22 465 330-621 50 1.50 780 none GRIS 300V+10 590 330(350)-660(925) 112 3.36 440 none GRIS 300V+10 590 445(450)-865(850) 112 3.36 440 GG435+81 GRIS 300I+11 860 580(600)-1100(1050) 108 3.24 660 none GRIS 300I+11 860 600-1100(1050) 108 3.24 660 OG590+32 GRIS 150I+27 720 330(370)-650(980) 230 6.90 260 none GRIS 150I+27 720 445(430)-880(990) 230 6.90 260 GG435+81 GRIS 150I+27 720 600(590)-1100(1050) 230 6.90 260 OG590+32 pendingon the originalorientationof the data). A summaryof 3.3.F-VIPGIcalibrationfiles thepropertiesoftheFORS2 standardgrismsequipmentispro- As forVIPGI, the user hasto initially providespecific calibra- videdinTable1. tionfilesalsoforF-VIPGI.Thesearethenusedbythepipeline tolocatethepositionandlengthoftheslitsontheCCD,tocom- putethecoefficientoftheinterpolatingpolynomyalforthewave- 3.2.ConversionofFORS2filesintotheVIMOSformat lengthdispersion,to correctforbadCCD pixels,and to finally extract the single 1-D spectra. The calibration files are the fol- The functionalities of F-VIPGI were enabled not by creating lowing: new routinesspecifically codedforthe FORS2 data formatbut insteadbymanipulatingtheFORS2 datathemselvestoconvert • grism table: it contains all the main spectroscopic infor- them into the VIMOS format. Despite the differences between mation of the grism, i.e. central wavelength, wavelength FORS2andVIMOSCCDsarchitectures(withfoursquaredsen- range, and resolution. The emission sky lines usable for sorsfortheformerandtworectangularonesforthelatter), our an additional refinement of the wavelength calibration (see idea was to make the software able to identify chips 1 and 2 Sect.3.4) are defined here, too. It is defined for each grism (hereafterQ1andQ2,respectively)ofFORS2asthefirsttwoin- configuration. dividualquadrantsofVIMOS.Inthiswayonecanusethestan- • CCD table:itmapsallbadpixels/columnsoftheCCD that dardVIPGIrecipeswiththe“adapted”FORS2fitsfileswithout haveto be correctedforby the pipeline.Two differentfiles affectingthequalityandreliabilityofthedatareductionresults. areneededforQ1andQ2,buttheseremainthesameforany ThepartsofFORS2 data thatare manipulatedby F-VIPGIare FORS2observation. theimageandtheheader: • line catalog: it contains the list of all arc lines used for thewavelengthcalibration(Sect.3.4).ForFORS2onlythree filesareneeded,dependingonthekindoflampused(HeAr, HgCdHeArorHgCdHeNeAr). • image: the original FORS2 matrix of 4096 × 2048 pixels • grismPAFfile:itisaparameterfileinthestandardESOdata is transposed to obtain the same vertical orientation of the interface controlterminology.Basically, it is just a text file VIMOSframes.Thewavelengthdispersionorientationfrom where informationcan be collected in a formatthat is very lower (blue) to upper (red) side of the image is recovered similartotheFITSkeywordsformatandisthenusedtoup- in the same way. We also stress that this process does not dateFITSkeywordsintheheaderofFITSfiles.Specifically, affect the quality of the data because only the positions of this file contains all information related to the wavelength thepixelsarerearranged,whereastheirinformation(counts) dispersion,opticaldistortion,andcurvatureofeachCCDand areleftuntouched. eachgrism. • header: the header structure of FORS2 files differs signif- • SPHOTtable:itisafitstablecontainingmagnitudevs.wave- icantly from those of VIMOS. In particular, while in each lengthofthestandardstarthatisusedforthespectrophoto- VIMOSfiletheheadercontainsonlytheinformationonthe metriccalibrationofthedata.Ithastobenamedexactlyas slitsofthechiptowhichthefilebelongs,inFORS2eachfile the target name reported in the header keyword “ESO OBS hastheinformationofalltheslitsofthemaskonitsheader TARG NAME”. that are associated with Q1 and Q2. During the conversion process F-VIPGI therefore changes these settings and re- All the above calibration files except for the SPHOT table movesalltheinformationabouttheslits thatdonotbelong are provided together with the installation package and should to the chip of the frame itself. Only the six reference slits, notbemodifiedbytheuser. commontobothchips,arepreservedalongthisprocess.We highlightthatthesechangesaremadeforallFORS2frames excepttheBIAS,astheydonotcontainanyslitinformation 3.4.Wavelengthcalibration intheirheaders. One of the most powerful aspects of VIPGI, and hence of F- VIPGI, is that the user can perform sensitive calibration steps viavisualtoolsthatfacilitateexecutingandconstantlychecking A specific and slightly different treatment is reserved to all the procedures. An example of this interactivity within the standard-starframes(STD),asdiscussedinSect.3.7. reduction process is shown in Fig.1. Here the pipeline shows 3 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy Fig.1.AnexampleofaHeAr arc line catalog displayed on a raw lamp frame (in back- ground)withinF-VIPGI.The green regions mark the ex- pected positions of the arc lines according to the infor- mationextractedfromthefits header whiletheredones on the right represent the line catalog used for the calibra- tion.Theredpartofthespec- trumisintheupperpartofthe image. theexpectedpositionsofthearclinesofeachslit(greenregions overlaid on the raw lamp frame) togetherwith the line catalog usedforthecalibration(redregionsontherightside).The user caniterativelyrefinethewavelengthcalibrationacrosstheentire chip by shifting each green line until the region line patterns perfectlymatchtheunderlyinglampframe.Thepositionsofthe line centroids are then computedautomatically by the pipeline by applyinga 2.5 sigma iterative rejectionto removelines that aredeviatetoofarfromthefit. This method produces a very accurate calibration with a median uncertainty on the wavelength calibration that roughly corresponds to one fifth of a pixel. As an example, for grism 300I+11,whosespectrahavealineardispersionof3.24Å/pixel, the typical uncertainty on the wavelength calibration has an < rms > = (0.30 ± 0.05)Å, as shown in the bottom panel of λ Fig.2.Anotherrefinementofthecalibrationcanalsobeobtained byusingthepositionofsomebrightrelativelyisolatedskyemis- sionlineswhosewavelengthsareknownanddefinedinthegrism Fig.2. Top: Redshift distribution of 1543 FORS2 spectra pro- table(seeSect.3.3).Fordatatakenwithgrism300I+11weused duced by XDCP and extracted with F-VIPGI. The solid line marks the secure assigned redshifts (≥75% confidence on the eight sky lines between λ = 6300Å and λ = 10120Å, which assignedvalue)whilethedottedlinereferstounsafeones(con- produced a final refined wavelength calibration with a typical fidence ≤50%).The secure assessments represent ∼72%of the < rms > < 1Å. This quantity can be converted into a corre- λ entiresampleat0<z≤3andincreasesto∼78%includingalso spondingredshiftuncertaintyof δz ∼ 1−2·10−4 byreferring λ stars.Bottom:Distributionofrmswavelengthcalibrationscom- to λ = 8600Å. After the calibration process, all data are pre- c putedforthecorresponding1230reducedslitsobservedwiththe liminarily reduced in the standard way by subtracting the bias grism300I+11.Themedianvalueis<rms> =(0.30±0.05)Å. frames,correctingfortheCCDbadpixelsand,finally,applying λ theflat-fieldingcorrection. science spectrum. If this area is large enough (at least 2′′ left 3.5.Skylinesubtractionandatmosphericabsorption betweenthespectrumandtheslitedges,onbothsides),thesky corrections linescanbeaccuratelymodeledandefficientlysubtractedfrom thefinalspectrum,asshownintherightpanelsofFig.3and4. A significant source of noise along the spectroscopic reduc- Afterskysubtraction,weneedtocorrectallthespectraalsofor tionprocessisintroducedbythestrongabsorption(telluric)and theprominentskyabsorptionfeatures(telluriclines)thatcould emission sky features produced by the O and H O molecules 2 2 and the OH− radical at λ > 6000Å (see Fig.3, left). F-VIPGI along the wavelength axis. Themean signal level and rms(sigma) of isabletoremovethetwoundesiredskycontributionsina very thisslitprofilearethencomputedwitharobustiterativeprocedureby efficientway,asshownin Fig.4.Theskyemission spectrumis usingthebiweigthestimatordescribedbyBeersetal.(1990).Finally, computed for each slit in the free regions2 on the sides of the allgroupsofatleastthreepixelsthatareNsigmaabovethemeanlevel areconsideredasobjectspectrawhileeverythingelseisconsideredfree 2 Theseregionsareidentifiedautomaticallybythepipelinewiththe skyregion.Intheaboveprocessthesigmathreshold(N)canbesetby followingprocedure:firsta“slitprofile”istracedbycollapsingthedata theuser. 4 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy Fig.3.Left:Spectralabsorption(topside)andemission(bottomside)featuresintroducedbythenightskyintheλ>6000Åspectral region. Right: 2D emission spectra of the sky extracted for all slits of a FORS2 mask. The verticalalignmentof the sky lines is indicativeofaverygoodwavelengthcalibrationovertheentiremask. Fig.4. Example of the good quality achievable through the removal of absorption (left) and emission (right) sky features with F-VIPGI.Leftpanel:Atmosphericcorrectionforaspectrumofapassivegalaxyat z ∼ 0.9observedwithgrism300I.Top:Flux- calibratedspectrum(inblack)withouttheatmosphericcorrectionapplied.Itisevidentthatthetelluriclinesatλ∼7600Åstrongly affecttheS/Nofthe4000-ÅbreakandtheCaII(H,K)lines.Bottom:Thesamespectrumafterapplyingtheatmosphericabsorption correction.NowtheCaIIlinesarecompletelyrecovered.Inred(solidanddottedcurves)thepositionsofthemostprominenttelluric linesareshown.Theblackdashedlinesmarkthepositionofthemostimportantspectralfeaturesinthedisplayedwavelengthrange. Thebest-fittingtemplateofbothspectra(anLRGoneatz=0.930)isoverlaidinblueinbothpanelsforreference. Right panel: Subtraction of the emission sky lines from two spectra with different redshift (spectrum1 at z = 1.086, spectrum2 atz = 0.282).Foreach objectthe same partof the spectrumbeforeand afterthe sky subtractionisshown atthe top andbottom, respectively.Inaddition,thestrongestspectroscopicfeaturesofeachobjectaremarkedbytheredboxesandarelabeledonthetop side. Althoughsome residualsofthe skyremovalare visible in thebottompanels,thepipelineefficientlysubtractsthe undesired skyfeaturesandrecoversthesciencefeatures,whicharesometimescompletelyoutshonebytheatmosphericemission. otherwise be interpretedas absorption lines in the object spec- atmosphericcorrectionbycombiningthespectrawhosetelluric tra.Thesespuriousfeaturescanberemovedprovidedthatasuf- linesaremoreevidentandisolatedandfinallyappliessuchacor- ficientnumberofwellexposedfluxcalibratedspectraareavail- rectionto allslitsofthemask.Anexampleofthegoodquality able. Evenif the best results are obtained when the spectra se- achievablefortelluriclineabsorptioncorrectionisshowninthe lectedforthecorrectionspanawideredshiftrange(becausethe leftpanelofFig.4. intrinsicfeaturesareefficientlyremovedinthiswayandonlythe skyonesareenhanced),agoodtelluriclineabsorptioncorrection canalsobegainedbyusingclustergalaxies,whoseredshiftval- uesarerelativelyclosetoeachother.Ifso,thepipelinefindsthe 5 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy Fig.5.Imageofthespectrumofastandardstartakenwiththe FORS2300Iinstrumentsetupinthefirstchip(Q1).Inredare shownthevirtualslitsof30′′lengththatF-VIPGIcreatesinthe headerofthescientificandcalibrationframesofthestandard starstomimictheVIMOSsetting.InFORS2observationsthe standardstarspectraarealwaysimagedinQ1andarealways enclosedinthefirst(#1)virtualslit. Fig.6. Example of the spectrophotometric calibration for a FORS2 observation with grism 300I and sorting filter OG590. Left panel:Extracted1-Dspectrumofthestandardstar,notyetcorrectedfortheCCDresponsefunction.Rightpanel,top:Theexpected spectrumofthestandardstarprovidedbytheSPHOTtable(continuousline)andthefittedone(redpoints)accordingtothespectral resolution of the observation. The sensitivity function (bottom panel) is then computed as the ratio between the extracted 1-D spectrumandthefittedstandardstarspectrumconvertedintoergcm−2s−1Å−1.Theusercanedittheoriginallycomputedsensitivity function(redpoints)andchoosethefinalone(continuousline)toapplytothesinglespectraforcalibratingthemintoflux. 3.6.Thefinalproduct of the standard star frames (and into the correlated calibration files) that mimic the presence of 11 slits in total (6 in Q1 and Once the preliminary reductionand the wavelength calibration 5inQ2)3 with30′′ lengthand1′′ width.Itisimportanttonote are applied to each frame, these are calibrated in flux (see thatinFORS2observationsthestandardstarspectraarealways Sect.3.7) and finally combined to obtain a stack of 2D sky- centered on Q1 at the position given by the header keywords subtractedspectra.Singlespectraarethenextractedfromthe2D CRPIX1 and CRPIX2. The virtual slits are therefore created in stackedframe,usinga Horneoptimalextraction(Horne1986), the way to have the first slit (#1 of Fig.5) always centered on andare saved in localfoldersin fits format.Foreach spectrum (CRPIX1,CRPIX2)and,so,alwayscontainthestarspectrum.An F-VIPGIalsoproducestheassociatednoisevectorgeneratedby exampleofthepartofthe virtualmaskrelativetoQ1isshown theextractionresidual. inFig.5. Once the standard-star spectrum is reduced and extracted, 3.7.Spectrophotometriccalibration thepipelinecomputesthesensitivityfunctionbycomparingthe observedstellarspectrumwiththeexpectedonecontainedinthe AnimportantdifferenceoftheFORS2 observationstothoseof SPHOTtable(Sect.3.3)asshowninFig.6.Theextractedcurve VIMOS concerns the methods used by the two instruments to is finally saved in a calibration table that can be applied to the acquirethespectraofspectro-photometricstandardstars(STD). 1-D spectra for their flux calibration and for the correction of This step is mandatory to calibrate each spectrum in flux and the CCD responsefunction.Since standardstars in FORS2 are tocorrectitscontinuumshapefortheCCDsensitivityfunction. observedonlyonQ1,forQ2 data thesame calibrationtableas StandardstarsinVIMOSareobservedinallfourquadrantsand computedforthe firstchip hasto be used. An exampleof how with a specifically designed mask composed of eight slits per thesensitivityfunctioniscomputedforastandardstarobserved chip, with fixed position and length (10′′). In FORS2, instead, withthe300IgrismisshowninFig.6. theSTDframeisacquiredonlyonQ1andbymeansofasingle long-slitwith5′′width. Toovercomethisdiscrepancyandenabletheuseofthestan- dardVIPGIroutinesforspectrophotometriccalibrationalsofor 3 Thisisthemaximum number of 30′′ length slitsthat can be uni- FORS2 data, F-VIPGI writes some keywords into the header formlyplacedontheareaofthetwochips. 6 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy Fig.7. Distribution of the absolute values of the differences Fig.8.Redshiftdistributionofthe selected187galaxies,mem- between the redshift measurements |∆z| for 14 members of bersofthe16XDCPclustersreportedinTable2. XMMUJ1230.3+1339atz=0.975frommultiple,independent, spectroscopic observations. The median value of < |∆z| > = veys),whichcontaintemplatesrepresentativeofthepopulation 5.1·10−4ismarkedbytheverticaldashedline. offieldgalaxiesatdifferentredshiftsuptoz∼1.5.Inadditionto identifyingredshiftsofdistantgalaxies,the providedtemplates 3.8.Redshiftaccuracytest canalsosignificantlyimprovetheefficiencyandthereliabilityof thephotometricredshiftassessmentofdistantclusterswithcom- The XDCP massive clusterXMMUJ1230.3+1339at z = 0.975 plexstarformationhistories(see,e.g.,Guennouetal.(2010)and (Fassbenderetal. 2011b; Lerchsteretal. 2011) has been tar- Pierinietal.(2012)foradiscussion)andtheycanbeusedtopre- getedbyfourdifferentFORS2spectroscopicobservationsinor- dictrest-frameU−Bcolorsofclustergalaxiesathighredshifts. dertofullycharacterizeitsextendedanddynamicallyunrelaxed galaxypopulation.This resultedin 65 confirmedspectroscopic members,15ofwhichhadmultiple(double)observations.This 4.1.Thespectroscopicsample enabledustousethesetargetsforaself-consistencytestonthe F-VIPGIredshiftmeasurements,basedondifferentindependent For our study we selected all the XDCP clusters with at least spectroscopicobservationsofthesameobject. threespectroscopicallyconfirmedmemberswith anS/N > 2 in Tothisaimweselected14outofthe15duplicatedobserva- the rest frame wavelength range of 4000 - 4300 Å in their re- tions, considering only those couples where the final extracted ducedspectra.Eachspectrumwasalsovisuallyinspectedtover- dataweregoodenoughtoprovideasaferedshiftassessmentfor ifythatnocontaminationsfromcosmicraysorbadskysubtrac- both cases. The median of the differences (in absolute value) tion were present. For the cluster member selection, we firstly between the redshift measurements is < |∆z| >= 5.1 · 10−4, estimated the redshiftcluster(zcl) as the medianof the redshift with a spread given by the semi-interquartile range (SIQ) of peakfoundintheproximityoftheX-rayemissioncenter.After < |∆z| > = 2.5·10−4.Thisvaluecanbetranslatedintoacor- that, we selected the cluster members as those galaxies with a SIQ respondingrest-framevelocityuncertaintyofδv,rest ≈77kms−1 rest-framevelocityoffset<3000kms−1 fromzcl,corresponding foragalaxyatz=0.975. to a redshift window cut of ∆z < 0.01×(1 + zcl). The list of Thedistributionof|∆z|isshowninthehistogramofFig.7. the final targets selected for the next spectroscopic analysis is reportedinTable2.ForeachtargetasequentialID,thespectro- scopicredshifts,thenumberofconfirmedmembersusedinthe 4. Anapplicationtoasampleofdistantgalaxy subsequentanalysis,andtheliteraturereference(ifexisting)are clusters reported.Atotalof187clustermembershavebeenidentifiedin thisway,witharedshiftdistributionintherange0.65≤z≤1.25 InthissectionweshowanapplicationofF-VIPGItotheanaly- asshowninFig.8. sisofspectroscopicdataforasampleof16distantXDCPgalaxy clustersintheredshiftrange(0.65≤z≤1.25)observedwiththe grism300I+11(Table1).Themaingoalofthissectionistopro- 4.2.Spectralindicesanalysisresults vide the communitywith a new set of spectroscopic templates Wegroupedtheabovegalaxiesintofivedifferentspectralclasses thatare intendedto representthe galaxypopulationresiding in accordingtothemeasured4valuesoftheequivalentwidths(EW) distant galaxy clusters. For this reason, as shown in Sect.5.1, thepresentlibraryiscompletelydifferentfromtheexistingones 4 Allspectralindicesweremeasuredinanautomatedwaybymeans (e.g.,theonesconstructedfromSDSS, zCOSMOSorK20sur- ofaPythonscriptdevelopedbyourgroupthatusesthetrapezoidalrule 7 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy Table2.Listofthe16XDCPclustersusedforourspectroscopicanalysis. ID z N References spec members cl1 0.7690 13 (1) cl2 1.2310 8 (1) cl3 0.9410 16 (1) cl4 0.9590 6 C20in(2) cl5 0.8290 8 (1) cl6 0.7850 5 (1) cl7 0.6770 12 (1) cl8 0.8830 4 (1) cl9 0.8940 19 (1) cl10 0.7890 13 (1) cl11 1.1220 7 C11in(2) cl12 1.0740 3 (1) cl13 0.8270 9 (1) cl14 0.7460 7 (1) cl15 0.9750 52 XMMUJ1230.3+1339in(3)and(4) cl16 1.2030 7 (1) References.(1)Tobepublished;(2)Fassbenderetal.(2011a);(3)Fassbenderetal.(2011b);(4)Lerchsteretal.(2011) Table3.ClassificationcriteriatakenfromPoggiantietal.(2009)usedinthisstudyforgroupingtheclustergalaxiesintofivepectral typesaccordingtothe equivalentwidthsvaluesof their[OII]λ3727andHδ lines. Thefollowingconventionis used: EW < 0 for emissionlines,EW >0forabsorptionlines.Thenumberofgalaxiesfoundineachclassisgiveninthelastcolumn. Spectroscopicclass EW([OII])value EW(Hδ )value Number A [Å] [Å] ofgalaxies Passive >-5 <3 108 Post-starburst >-5 ≥3 21 Quiescentstar-forming ]-25,-5] <4 23 Dustystarburst ]-25,-5] ≥4 14 Starburst ≤-25 any 21 of their [OII] and Hδ lines, as summarized in Table3. These ativenumberofgalaxiesinthedifferentclassescanbeinferred two spectralfeaturesare, in fact, reliable indicatorsof ongoing fromthelastcolumnofTable3. and recent star formation activities within timescales of ∼ 107 We adopted the bandpasses defined in Baloghetal. (1999) and ∼ 109yr for [OII] and Hδ, respectively. The amplitude of forEW([OII])andD4000(hereafterD 4000)whileforEW(Hδ) n their 4000-Å break (D4000) and the equivalent widths of Hβ, we used the definition of Hδ given by Worthey&Ottaviani A [OIII]λ4959and[OIII]λ5007werealsocomputedbutwerenot (1997).Thegalaxieswereclassifiedintofivespectralclassesfol- used for the spectral classification. The errors on the indices lowingthesamemethodasdescribedinPoggiantietal.(2009), were estimated by means of the noise vector provided by F- which is based only on the strength of [OII] and Hδ lines, as A VIPGI for each extracted spectrum at the end of the reduc- summarizedinTable3. tionprocess(seeSect.3.6).Specifically,foreachspectrum1000 Fig.9 shows the distribution of the 187 galaxies in the Monte-Carlorealizationsweregeneratedusingtherelatednoise EW([OII])-EW(Hδ )plane.Theadoptedlociforthefivespec- vector as variance. The uncertainties on the indices were then A tral classes are marked by the dashed lines and a color coding computed as the rms of the results obtained by repeating the wasusedforabettervisualizationofthegroups. spectralindicesanalysisontheseriesofsimulatedspectra. We stress that the relative fraction of galaxies in the differ- TheDn4000indexwasthenusedtoqualitativelytesttheva- lidity of our classification. The top panel of Fig.10 shows the entspectraltypesis substantiallybiased bythemethodused in distribution of our galaxy sample in the EW(Hδ ) vs D 4000 XDCP to select the targets forthe spectroscopicfollow-up. As A n spacewiththecolorcodeadoptedinFig.10foridentifyingthe discussed in Fassbenderetal. (2011a), to maximize the proba- differentspectralclasses.Thedistributionwefindisremarkably bilityoftargetingactualclustermembers,FORS2masksarecre- similartothatreportedinFig.1ofGallazzi&Bell(2009)fora atedinafashionthattheslitsarepreferentiallyplacedoncolor- setofmodelgalaxies.Namely,weobservethatconsistentlywith selected galaxies close to the expected red-sequence color and theresultsoftheseauthors,thestarburst(dustyandnot)galaxies withinthedetectedX-rayemission.Thisimpliesthatthemajor- tend to be concentratedon the upperleft side of the plot, indi- ityoftheobservedtargetsisactuallyexpectedtobepassiveand, cating a relatively young (and still forming) stellar population. hence,thatnostatisticallysignificantconclusionsabouttherel- The passive and quiescent star-forming galaxies instead reside to perform the integration. The code functioning was tested on some mostlyinthecenterandonthelowerrightside,suggestingthat spectra by comparing its results with those provided by the standard theyexperiencedthelastepisodeofmajorstar-formationactiv- IRAFpackages. ity more than 3 Gyr earlier. Finally, the post-starbursts are all 8 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy Fig.9.Distributionofthe187galaxiesinEW([OII])-EW(Hδ ) A plane. The dashed lines and the different colors mark the po- sitions of the five spectral classes, with the same criteria as in Poggiantietal. (2009). The color code is the following: blue: starburstgalaxies;cyan:quiescentstar-forming;magenta:dusty- starburst;red:passive;green:post-starburst. locatedabovethesequencedrawnbythepassiveandquiescent star-forming galaxies, a sign that their starburst activity ended withintheprevious2Gyr. InthebottompanelofFig.10thedistributionintheD 4000 n - EW([OII]) diagram is shown. It is evident also here that for the adopted classification method the different spectral classes are confinedto specific regionsof the plots. In particularif we considertherelationadoptedbyFranzettietal.(2007), D 4000+EW([OII])/15>0.7 n (markedbythedottedlineintheplot)todividepassivelyevolv- ing (early-type) galaxies from star-forming (late-type) objects foraspectroscopicsampleofVVDSgalaxiesat0.45≤ z≤1.2, Fig.10. Dn4000 versus EW([OII]) (top panel) and EW(HδA) all passive and post-starburst galaxies appear to be efficiently (bottom panel) for the selected targets. The dotted line in the rightpanelrepresentsthedivisionbetweenearly-type/late-type separatedfromthestarburstones.However,theplotalsoshows galaxiesadoptedinFranzettietal.(2007).Thecolorcodeisthe that the majority of quiescent star-forming and dusty-starburst galaxiesareclassifiedasearly-typeinthisway.Thiseffectwas sameasinFig.9. already predicted by the same authors, who claimed that some contaminationintheearly-typeregionwasexpectedduetoearly In Fig.11 the distribution of these objects in the spirals and that this is a general feature observed for color- or log(EW[OII]λ3727/EW(Hβ)) vs log(EW[OIII]λ5007/EW(Hβ)) spectroscopicclassificationschemes. plane is shown.Only one object(markedin red) appearsto lie To identify possible active galactic nuclei (AGNs, e.g. inthe“AGNregion”oftheplotandwasconsequentlyexcluded Seyfert2) erroneouslyidentified as starburst galaxies, we used fromthefinalstackingofthestarburstspectra. the diagnostic diagram of Bongiornoetal. (2010), that was originally defined in Lamareilleetal. (2004) (and references therein), where the ratios between the EW of [OII]λ3727, 5. Anewlibraryofspectroscopictemplates Hβ, and [OIII]λ5007 lines are used to separate star-forming from AGN-photoionized spectra. The constraint of having the Before proceeding with the final stacking procedure, we re- [OIII]λ5007line within the observed wavelength range 6000Å stricted the usable portion of each spectrum to the observed <λ <9800Åmakesthisanalysisfeasibleonlyforsevenstar- wavelengthrangeof6100-9280Å.Thiscutwasmadetoavoid obs burstgalaxieslyingatredshiftz<0.95. the higly sky-contaminated region at λ ≥ 9300Å (Fig.3, left) 9 A.Nastasietal.:F-VIPGI:anewadaptedversionofVIPGIforFORS2spectroscopy Table 4. Spectral properties of the five averaged spectra of Fig.13. The reported S/N values refer to the wavelength range 4000Å<λ<4300Å. Spectroscopicclass S/N EW([OII]) EW(Hδ ) D 4000 EW(H ) EW([OIII]λ5007) A n β [Å] [Å] [Å] [Å] Passive 9 1.431±1.191 0.148±0.981 1.810±0.030 1.829±0.606 0.958±0.611 Post-starburst 6 -0.178±1.739 4.910±1.395 1.543±0.034 2.753±1.164 0.540±1.448 Quiescentstar-forming 7 -7.946±1.791 0.593±1.231 1.550±0.031 1.664±0.887 -1.184±0.985 Dustystarburst 7.5 -7.719±1.605 5.827±1.123 1.412±0.030 -2.357±1.849 -5.842±0.693 Starburst 5 -34.943±2.929 1.368±1.887 1.254±0.036 -8.816±1.797 -13.516±2.256 1 0.8 0.6 0.4 0.2 Fig.11.Diagnostic diagramused byBongiornoetal. (2010) to 0 distinguish between pure star-forming and AGN-contaminated 3000 4000 5000 galaxies applied to those galaxies of our sample classified as starburst(seeTable3)andlyingatredshift0.6<z<0.95tohave their [OIII]λ5007 line falling within the observed wavelength Fig.12.Normalizedrest-framewavelengthcoverageforthe186 range.Thesolidanddashedcurvesshowthedemarcationandits galaxiesusedinthestackingprocedure.Thegeneralresultforall ±0.15dex uncertainty, respectively, between pure star-forming galaxiesisrepresentedbythethicksolidcurve,whilethethinner galaxies (bottom region) and AGN (top region), as defined in lines indicate the different contributions from the five spectral Lamareilleetal. (2004). The red point marks the starburst ob- classes definedin Sect.4.2. Thesame colorcodeas in Fig.9 is jectpossiblyhostinganAGNthatwasthereforeexcludedfrom used. thefinalstackingprocedure. corner.Themostimportantspectralfeaturesrecognizableinthe while simultaneously preserving the observability of spectral featureslikeHβand[OIII]forgalaxiesuptoz∼0.85. rest-framewavelengthrange∆λ=2700-5300Åarelabeledon The totalrest-framewavelengthrangecoveredbythe com- thetopsideoftheplot,andtheirexpectedpositionsaremarked bydashedverticallines. posite spectra is 2700- 5300Å, with a normalized wavelength coverage for all 186 considered galaxies shown in Fig.12. In Thespectralpropertiesoftheaveragespectraarequantified the same figure we also show the different contributions from in Table4 together with their S/N computed in the wavelength thefivespectralclassesdefinedinSect.4.2.Werecallthathere range4000Å<λ<4300Å. the possible AGN-contaminatedstarburst object of Fig.11 was WenotethatthevaluesofEW(Hδ )and,especially,D 4000 A n excludedfromouranalysis. obtainedforthe“passive”templatearesimilartothoseobserved Forthefinalstackingprocesseachspectrumwasrescaledto forthe mostmassive and passive galaxiesin the localuniverse themeanfluxcomputedinthewavelengthrange4000Å< λ < bySDSS-DR4(D 4000| ≈1.9;EW(Hδ )| ≈-1.5)thatwere n z=0 A z=0 4300Å and then combined with the other objects of the same reportede.g.byGallazzietal.(2005). spectralclassusingthemedianasoperator. In the next two sections (5.1 and 5.2) we compare the The resulting five composite spectra are shown in Fig.13. spectro-photometric properties of our composite spectra with Foreachspectrumtherelativespectralclassandthenumber of those of galaxiesresiding in differentredshiftrangesand envi- galaxiesusedinthestackingprocessarereportedinthetop left ronments. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.