ebook img

Eye Tracking and Visual Analytics PDF

382 Pages·2022·44.123 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eye Tracking and Visual Analytics

Eye Tracking and Visual Analytics RIVER PUBLISHERS SERIES IN INFORMATION SCIENCE AND TECHNOLOGY SeriesEditors: K.C.Chen SandeepShukla NationalTaiwanUniversity,Taipei,Taiwan VirginiaTech,USA and and UniversityofSouthFlorida,USA IndianInstituteofTechnologyKanpur,India The “River Publishers Series in Information Science and Technology” covers research which ushers the 21st Century into an Internet and multimedia era. Multimedia means the theoryandapplicationoffiltering,coding,estimating,analyzing,detectingandrecognizing, synthesizing,classifying,recording,andreproducingsignalsbydigitaland/oranalogdevices or techniques, while the scope of “signal” includes audio, video, speech, image, musical, multimedia, data/content, geophysical, sonar/radar, bio/medical, sensation, etc. Networking suggeststransportationofsuchmultimediacontentsamongnodesincommunicationand/or computernetworks,tofacilitatetheultimateInternet. Theory, technologies, protocols and standards, applications/services, practice and implementation of wired/wireless networking are all within the scope of this series. Based on network and communication science, we further extend the scope for 21st Century life throughtheknowledgeinrobotics,machinelearning,embeddedsystems,cognitivescience, patternrecognition,quantum/biological/molecularcomputationandinformationprocessing, biology,ecology,socialscienceandeconomics,userbehaviorsandinterface,andapplications tohealthandsocietyadvance. Bookspublishedintheseriesincluderesearchmonographs,editedvolumes,handbooks andtextbooks.Thebooksprovideprofessionals,researchers,educators,andadvancedstudents inthefieldwithaninvaluableinsightintothelatestresearchanddevelopments. Topicscoveredintheseriesinclude,butarebynomeansrestrictedtothefollowing: • Communication/ComputerNetworkingTechnologiesandApplications • QueuingTheory • Optimization • OperationResearch • StochasticProcesses • InformationTheory • Multimedia/Speech/VideoProcessing • ComputationandInformationProcessing • MachineIntelligence • CognitiveScienceandBrianScience • EmbeddedSystems • ComputerArchitectures • ReconfigurableComputing • CyberSecurity Foralistofotherbooksinthisseries,visitwww.riverpublishers.com Eye Tracking and Visual Analytics Michael Burch UniversityofAppliedSciences,Chur,Switzerland River Publishers Published,soldanddistributedby: RiverPublishers Alsbjergvej10 9260Gistrup Denmark www.riverpublishers.com ISBN:978-87-7022-433-8(Hardback) 978-87-7022-432-1(Ebook) ©2021RiverPublishers Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmittedinanyformorbyanymeans,mechanical, photocopying,recordingorotherwise,withoutpriorwrittenpermissionof thepublishers. Contents Preface xi ListofFigures xiii ListofTables xxxi ListofAbbreviations xxxiii 1 Introduction 1 1.1 Tasks,Hypotheses,andHumanObservers . . . . . . . . . . 3 1.2 SynergyEffects . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 DynamicVisualAnalytics . . . . . . . . . . . . . . . . . . 11 2 Visualization 17 2.1 MotivatingExamples . . . . . . . . . . . . . . . . . . . . . 19 2.2 HistoricalBackground . . . . . . . . . . . . . . . . . . . . 27 2.2.1 EarlyFormsofVisualizations . . . . . . . . . . . . 28 2.2.2 TheAgeofCartographicMaps. . . . . . . . . . . . 30 2.2.3 VisualizationDuringIndustrialization . . . . . . . . 32 2.2.4 AftertheInventionoftheComputer . . . . . . . . . 34 2.2.5 VisualizationToday . . . . . . . . . . . . . . . . . 36 2.3 DataTypesandVisualEncodings . . . . . . . . . . . . . . 38 2.3.1 PrimitiveData . . . . . . . . . . . . . . . . . . . . 39 2.3.2 ComplexData . . . . . . . . . . . . . . . . . . . . 42 2.3.3 MixtureofData . . . . . . . . . . . . . . . . . . . . 48 2.3.4 DynamicData . . . . . . . . . . . . . . . . . . . . 50 2.3.5 Metadata . . . . . . . . . . . . . . . . . . . . . . . 52 2.4 InteractionTechniques . . . . . . . . . . . . . . . . . . . . 53 2.4.1 InteractionCategories . . . . . . . . . . . . . . . . 54 2.4.2 PhysicalDevices . . . . . . . . . . . . . . . . . . . 58 2.4.3 Users-in-the-Loop . . . . . . . . . . . . . . . . . . 61 v vi Contents 2.5 DesignPrinciples . . . . . . . . . . . . . . . . . . . . . . . 62 2.5.1 VisualEnhancementsandDecorations . . . . . . . . 63 2.5.2 VisualStructuringandOrganization . . . . . . . . . 65 2.5.3 GeneralDesignFlaws . . . . . . . . . . . . . . . . 66 2.5.4 GestaltLaws . . . . . . . . . . . . . . . . . . . . . 68 2.5.5 OpticalIllusions . . . . . . . . . . . . . . . . . . . 71 3 VisualAnalytics 75 3.1 KeyConcepts . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.1.1 OriginandFirstStages . . . . . . . . . . . . . . . . 78 3.1.2 DataHandlingandManagement . . . . . . . . . . . 79 3.1.3 SystemIngredientsAroundtheData . . . . . . . . . 86 3.1.4 InvolvedResearchFieldsandFuturePerspectives . . 88 3.2 VisualAnalyticsPipeline . . . . . . . . . . . . . . . . . . . 91 3.2.1 DataBasisandRuntimes . . . . . . . . . . . . . . . 91 3.2.2 Patterns,Correlations,andRules . . . . . . . . . . . 93 3.2.3 TasksandHypotheses . . . . . . . . . . . . . . . . 97 3.2.4 RefinementsandAdaptations . . . . . . . . . . . . 102 3.2.5 InsightsandKnowledge . . . . . . . . . . . . . . . 104 3.3 ChallengesofAlgorithmicConcepts . . . . . . . . . . . . . 105 3.3.1 AlgorithmClasses . . . . . . . . . . . . . . . . . . 106 3.3.2 ParameterSpecifications . . . . . . . . . . . . . . . 110 3.3.3 AlgorithmicRuntimeComplexities . . . . . . . . . 111 3.3.4 PerformanceEvaluation . . . . . . . . . . . . . . . 112 3.3.5 InsightsintotheRunningAlgorithm . . . . . . . . . 114 3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.4.1 DynamicGraphs . . . . . . . . . . . . . . . . . . . 117 3.4.2 DigitalandComputationalPathology . . . . . . . . 118 3.4.3 MalwareAnalysis . . . . . . . . . . . . . . . . . . 119 3.4.4 VideoDataAnalysis . . . . . . . . . . . . . . . . . 120 3.4.5 EyeMovementData . . . . . . . . . . . . . . . . . 122 4 UserEvaluation 125 4.1 StudyTypes . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1.1 Pilotvs.RealStudy . . . . . . . . . . . . . . . . . . 128 4.1.2 Quantitativevs.Qualitative . . . . . . . . . . . . . . 129 4.1.3 Controlledvs.Uncontrolled . . . . . . . . . . . . . 130 4.1.4 Expertvs.Non-Expert . . . . . . . . . . . . . . . . 132 4.1.5 Short-termvs.Longitudinal . . . . . . . . . . . . . 134 Contents vii 4.1.6 Limited-numberPopulationvs.Crowdsourcing . . . 135 4.1.7 Fieldvs.Lab . . . . . . . . . . . . . . . . . . . . . 136 4.1.8 Withvs.WithoutEyeTracking . . . . . . . . . . . . 138 4.2 HumanUsers . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.2.1 LevelofExpertise . . . . . . . . . . . . . . . . . . 139 4.2.2 AgeGroups . . . . . . . . . . . . . . . . . . . . . . 141 4.2.3 CulturalDifferences . . . . . . . . . . . . . . . . . 142 4.2.4 VisionDeficiencies . . . . . . . . . . . . . . . . . . 144 4.2.5 EthicalGuidelines . . . . . . . . . . . . . . . . . . 145 4.3 StudyDesignandIngredients . . . . . . . . . . . . . . . . . 147 4.3.1 HypothesesandResearchQuestions . . . . . . . . . 148 4.3.2 VisualStimuli. . . . . . . . . . . . . . . . . . . . . 149 4.3.3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.4 IndependentandDependentVariables . . . . . . . . 153 4.3.5 Experimenter . . . . . . . . . . . . . . . . . . . . . 157 4.4 StatisticalEvaluationandVisualResults . . . . . . . . . . . 158 4.4.1 DataPreparationandDescriptiveStatistics . . . . . 160 4.4.2 StatisticalTestsandInferentialStatistics . . . . . . . 161 4.4.3 VisualRepresentationoftheStudyResults . . . . . 163 4.5 ExampleUserStudiesWithoutEyeTracking . . . . . . . . 167 4.5.1 HierarchyVisualizationStudies . . . . . . . . . . . 168 4.5.2 GraphVisualizationStudies . . . . . . . . . . . . . 169 4.5.3 InteractionTechniqueStudies . . . . . . . . . . . . 171 4.5.4 VisualAnalyticsStudies . . . . . . . . . . . . . . . 172 5 EyeTracking 175 5.1 TheEye . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.1.1 EyeAnatomy . . . . . . . . . . . . . . . . . . . . . 178 5.1.2 EyeMovementandSmoothPursuit . . . . . . . . . 179 5.1.3 DisordersandDiseasesInfluencingEyeTracking . . 181 5.1.4 Corrected-to-NormalVision . . . . . . . . . . . . . 183 5.2 EyeTrackingHistory . . . . . . . . . . . . . . . . . . . . . 185 5.2.1 TheEarlyDays . . . . . . . . . . . . . . . . . . . . 186 5.2.2 ProgressintheField . . . . . . . . . . . . . . . . . 188 5.2.3 EyeTrackingToday . . . . . . . . . . . . . . . . . 190 5.2.4 Companies,Technologies,andDevices . . . . . . . 192 5.2.5 ApplicationFields . . . . . . . . . . . . . . . . . . 192 5.3 EyeTrackingDataProperties . . . . . . . . . . . . . . . . . 197 5.3.1 VisualStimuli. . . . . . . . . . . . . . . . . . . . . 199 viii Contents 5.3.2 GazePoints,Fixations,Saccades,andScanpaths . . 202 5.3.3 AreasofInterest(AOIs)andTransitions . . . . . . . 204 5.3.4 PhysiologicalandAdditionalMeasures . . . . . . . 206 5.3.5 DerivedMetrics. . . . . . . . . . . . . . . . . . . . 208 5.4 ExamplesofEyeTrackingStudies . . . . . . . . . . . . . . 209 5.4.1 EyeTrackingforStaticVisualizations . . . . . . . . 210 5.4.2 EyeTrackingforInteractionTechniques . . . . . . . 215 5.4.3 EyeTrackingforText/Label/CodeReading . . . . . 218 5.4.4 EyeTrackingforUserInterfaces . . . . . . . . . . . 221 5.4.5 EyeTrackingforVisualAnalytics . . . . . . . . . . 223 6 EyeTrackingDataAnalytics 229 6.1 DataPreparation . . . . . . . . . . . . . . . . . . . . . . . 230 6.1.1 DataCollectionandAcquisition . . . . . . . . . . . 231 6.1.2 OrganizationandRelevance . . . . . . . . . . . . . 232 6.1.3 DataAnnotationandAnonymization . . . . . . . . 234 6.1.4 DataInterpretation . . . . . . . . . . . . . . . . . . 235 6.1.5 DataLinking . . . . . . . . . . . . . . . . . . . . . 236 6.2 DataStorage,Adaptation,andTransformation . . . . . . . . 237 6.2.1 DataStorage . . . . . . . . . . . . . . . . . . . . . 238 6.2.2 Validation,Verification,andCleaning . . . . . . . . 240 6.2.3 DataEnhancementandEnrichment . . . . . . . . . 241 6.2.4 DataTransformation . . . . . . . . . . . . . . . . . 242 6.3 AlgorithmicAnalyses . . . . . . . . . . . . . . . . . . . . . 243 6.3.1 OrderingandSorting . . . . . . . . . . . . . . . . . 244 6.3.2 DataClustering . . . . . . . . . . . . . . . . . . . . 245 6.3.3 Summarization,Classing,andClassification . . . . . 247 6.3.4 NormalizationandAggregation . . . . . . . . . . . 248 6.3.5 ProjectionandDimensionalityReduction . . . . . . 249 6.3.6 CorrelationandTrendAnalysis . . . . . . . . . . . 250 6.3.7 PairwiseorMultipleSequenceAlignment . . . . . . 252 6.3.8 ArtificialIntelligence-RelatedApproaches. . . . . . 253 6.4 VisualizationTechniquesandVisualAnalytics . . . . . . . . 254 6.4.1 StatisticalPlots . . . . . . . . . . . . . . . . . . . . 256 6.4.2 Point-basedVisualizationTechniques . . . . . . . . 257 6.4.3 AOI-basedVisualizationTechniques . . . . . . . . . 261 6.4.4 EyeTrackingVisualAnalytics . . . . . . . . . . . . 263 7 OpenChallenges,Problems,andDifficulties 267 Contents ix 7.1 EyeTrackingChallenges . . . . . . . . . . . . . . . . . . . 267 7.2 EyeTrackingVisualAnalyticsChallenges . . . . . . . . . . 269 References 273 Index 335 AbouttheAuthor 347

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.