ebook img

Extremes of threshold-dependent Gaussian processes PDF

0.38 MB·
by  L. Bai
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extremes of threshold-dependent Gaussian processes

EXTREMES OF THRESHOLD-DEPENDENT GAUSSIAN PROCESSES LONGBAI,KRZYSZTOFDE¸BICKI,ENKELEJDHASHORVA,ANDLANPENGJI Abstract: Inthiscontributionweareconcernedwiththeasymptoticbehaviour,asu ,ofP sup X (t)>u , →∞ t∈[0,T] u where X (t),t [0,T],u > 0 is a family of centered Gaussian processes with continuous trajecntories. A key applicao- u ∈ tion of our findings concerns P sup (X(t)+g(t))>u , as u , for X a centered Gaussian process and g t∈[0,T] → ∞ some measurable trend functionn. Further applications incluode the approximation of both the ruin time and the ruin 7 probability of the Brownian motion risk model with constant force of interest. 1 0 Key Words: Extremes; Gaussian processes; fractional Brownian motion; ruin probability; ruin time. 2 AMS Classification: Primary 60G15; secondary 60G70 n a J 1. Introduction 9 1 Let X(t),t 0 be a centered Gaussian process with continuous trajectories. An important problem in applied and ≥ theoretical probability is the determination of the asymptotic behavior of ] R P (1) p(u)=P sup (X(t)+g(t))>u , u h. (t∈[0,T] ) →∞ t a for some T >0 and g(t),t [0,T] a bounded measurable function. For instance, if g(t)= ct, then in the context of ∈ − m risk theory p(u) has interpretationas the ruin probability over the finite-time horizon[0,T]. Dually, in the context of [ queueing theory, p(u) is related to the buffer overloadproblem; see e.g., [1–5]. 1 For the special case that g(t) = 0,t [0,T] the exact asymptotics of (1) is well-known for both locally stationary v ∈ 7 and generalnon-stationaryGaussianprocesses,see e.g.,[6–18]. Commonly, for X a centerednon-stationaryGaussian 8 process it is assumed that the standard deviation function σ is such that t = argmax σ(t) is unique and 3 0 t [0,T] ∈ 5 σ(t )=1. Additionally,if the correlationfunctionr andthe standarddeviationfunctionσ satisfy (hereafter means 0 0 ∼ . asymptotic equivalence) 1 0 (2) 1 r(s,t) a t sα, 1 σ(t +t) b tβ, s,t t 7 − ∼ | − | − 0 ∼ | | → 0 1 : for some a,b,β positive and α (0,2], then we have (see [10][Theorem D.3]) v ∈ Xi (3) p(u) C0u(α2−β2)+P X(t0)>u , u , ∼ { } →∞ r a where (x) =max(0,x) and + a1/αb 1/βΓ(1/β+1) , if α<β, − α H C0 = αb/a, if α=β,  1P, if α>β. Here Γ() is the gamma function, and  · 1 Hα =Tl→im∞TE(t∈s[u0p,T]eW(t)), Pαb/a =E(t∈s[u0,p∞)eW(t)−b/a|t|α), with W(t)=√2Bα(t)−|t|α, are the Pickands and Piterbarg constants, respectively, where B is a standard fractional Brownian motion (fBm) α with self-similarity index α/2 (0,1], see [19–25] for properties of both constants. ∈ The more general case with non-zero g has also been considered in the literature; see, e.g., [1, 26–30]. However, most ofthe aforementionedcontributionstreatonlyrestrictivetrendfunctionsg. Forinstance,in[26][Theorem3]aHo¨lder- type conditionfor g is assumed, which excludes important cases of g that appear in applications. The restrictionsare Date:January20,2017. 1 2 LONGBAI,KRZYSZTOFDE¸BICKI,ENKELEJDHASHORVA,ANDLANPENGJI often so severe that simple cases such as the Brownian bridge with drift considered in Example 3.11 below cannot be covered. A key difficulty when dealing with p(u) is that X+g is not a centered Gaussianprocess. It is howeverpossible to get rid of the trend function g since for any bounded function g and all u large (1) can be re-written as X(t) p (u)=P sup X (t)>u , X (t)= , t [0,T]. T u u (t∈[0,T] ) 1−g(t)/u ∈ Here X is centered, however it depends on the threshold u, which complicates the analysis. u Extremesofthreshold-dependentGaussianprocessesX (t),t Rhavebeenalreadydealtwithinseveralcontributions, u ∈ see e.g., [2, 3, 30–32]. Our principal result in Theorem 2.4 derives the asymptotics of p (u) for quite general families T of centered Gaussian processes X under tractable assumptions on the variance and correlation functions of X . To u u this end, in Theorem 2.2 we first derive the asymptotics of p (u)=P sup X (t)>u , u ∆ u (t ∆(u) ) →∞ ∈ for some short compact intervals ∆(u). ApplicationsofourmainresultsincludederivationofProposition3.1foraclassoflocallystationaryGaussianprocesses with trend and that of Proposition3.6 for a class of non-stationaryGaussian processes with trend, as well as those of theircorollaries. Forinstance,adirectapplicationofProposition3.6yieldstheasymptoticsof (1)foranon-stationary X withstandarddeviationfunction σ andcorrelationfunction r satisfying (2)with t =argmax σ(t). Iffurther 0 t [0,T] ∈ the trend function g is continuous in a neighborhood of t , g(t )=max g(t) and 0 0 t [0,T] ∈ (4) g(t) g(t ) ct t γ, t t 0 0 0 ∼ − | − | → for some positive constants c,γ, then (3) holds with C specified in Proposition 3.9 and β,u being substituted by 0 min(β,2γ) and u g(t ) respectivelly. 0 − Complementary, we investigate asymptotic properties of the first passage time (ruin time) of X(t)+g(t) to u on the finite-time interval [0,T], given the process has ever exceeded u during [0,T]. In particular, for (5) τ =inf t 0:X(t)>u g(t) , u { ≥ − } with inf = , we are interested in the approximate distribution of τ τ T,as u . Normal and exponential u u {∅} ∞ | ≤ →∞ approximationsofvariousGaussianmodelshavebeendiscussedin[30, 32–35]. Inthispaper,wederivegeneralresults for the approximationsofthe conditionalpassagetime inPropositions3.3, 3.10. The asymptoticsofp (u)for ashort ∆ compact intervals ∆(u) displayed in Theorem 2.2 plays a key role in the derivation of these results. Organisation of the rest of the paper: In Section 2, the tail asymptotics of the supremum of a family of centered Gaussianprocessesindexed by u aregiven. Severalapplications andexamples aredisplayedin Section3. Finally, we present all the proofs in Section 4 and Section 5. 2. Main Results Let X (t),t R,u> 0 be a family of threshold-dependent centered Gaussian processes with continuous trajectories, u ∈ variance functions σ2 and correlation functions r . Our main results concern the asymptotics of slight generalization u u of p (u) and p (u) for families of centered Gaussian processes X satisfying some regularity conditions for variance ∆ T u and coavariance respectivelly. Let C (E) be the set of continuous real-valued functions defined on the interval E such that f(0) = 0 and for some 0∗ ǫ >ǫ >0 2 1 (6) lim f(t)/tǫ1 = , lim f(t)/tǫ2 =0, t ,t E | | ∞ t ,t E | | | |→∞ ∈ | |→∞ ∈ if sup x:x E = or inf x:x E = . { ∈ } ∞ { ∈ } −∞ In the following denotes the set of regularly varying functions at 0 with index α R, see [36–38] for details. α R ∈ EXTREMES OF THRESHOLD-DEPENDENT GAUSSIAN PROCESSES 3 We shall impose the following assumptions where ∆(u) is a compact interval: A1: For any large u, there exists a point t R such that σ (t )=1. u u u ∈ A2: There exists some λ>0 such that 1 1 u2 f(uλt) (7) lim sup σu(tu+t) − − =0 u→∞t∈∆(u)(cid:12)(cid:12)(cid:12)(cid:16) f(uλt(cid:17))+1 (cid:12)(cid:12)(cid:12) (cid:12) (cid:12) holds for some non-negative continuous function(cid:12)f with f(0)=0. (cid:12) (cid:12) (cid:12) A3: There exists ρ ,α (0,2] such that α/2 ∈R ∈ 1 r (t +s,t +t) u u u lim sup − 1 =0 u→∞s,t∈t=∆s(u)(cid:12)(cid:12) ρ2(|t−s|) − (cid:12)(cid:12) 6 (cid:12) (cid:12) (cid:12) (cid:12) and η :=lim ρ2(s) [0, ], with λ given in A2. s→0 s2/λ ∈ ∞ Remark 2.1. If f satisfies f(0)=0 and f(t)>0,t=0, then 6 1 1 lim sup σu(tu+t) − 1 =0 u→∞t∈∆(u),t6=0(cid:12)(cid:12) u−2f(uλt) − (cid:12)(cid:12) (cid:12) (cid:12) for some λ>0 implies that (7) is valid. (cid:12) (cid:12) (cid:12) (cid:12) Next we introduce some further notation, starting with the Pickands-type constant defined by α[0,T]=E sup e√2Bα(t)−|t|α , T >0, H (t [0,T] ) ∈ where B is an fBm. Further, define for f C ([S,T]) with S,T R,S <T and a positive constant a α ∈ 0∗ ∈ Pαf,a[S,T]=E(ts[uSp,T]e√2aBα(t)−a|t|α−f(t)), ∈ and set f [0, )= lim f [0,T], f ( , )= lim f [S,T]. Pα,a ∞ T Pα,a Pα,a −∞ ∞ S ,T Pα,a →∞ →−∞ →∞ The finiteness of f [0, ) and f ( , ) is guaranteed under weak assumptions on f, which will be shown in Pα,a ∞ Pα,a −∞ ∞ the proof of Theorem 2.2, see [2, 3, 5, 7, 15, 25, 39–43] for various properties of and f [0, ). Hα Pα,a ∞ Denote by I the indicator function. For the regularly varying function ρ(), we denote by ←−ρ() its asymptotic {·} · · inverse (which is asymptotically unique). Throughout this paper, we set 0 = 0 and u = 0 if u > 0. Let −∞ ·∞ Ψ(u):=P >u , with a standard normal random variable. {N } N In the next theorem we shall consider two functions x (u),x (u),u R such that x (1) , x (1) with 1 2 ∈ 1 t ∈ Rµ1 2 t ∈ Rµ2 µ ,µ λ, and 1 2 ≥ (8) lim uλx (u)=x [ , ],i=1,2, with x <x . i i 1 2 u ∈ −∞ ∞ →∞ Theorem 2.2. Let X (t),t R be a family of centered Gaussian processes with variance functions σ2 and correlation u ∈ u functions r . If A1-A3 are satisfied with ∆(u) = [x (u),x (u)], and f C ([x ,x ]), then for M satisfying M u 1 2 ∈ 0∗ 1 2 u u ∼ u,u , we have →∞ I (9) P sup Xu(tu+t)>Mu C uλ←−ρ(u−1) −{η=∞}Ψ(Mu), u , (t ∆(u) )∼ →∞ ∈ (cid:0) (cid:1) where x2e f(t)dt, if η = , Hα x1 − ∞ (10) C = Psuαfp,ηR[x1,x2]e, f(t), iiff ηη ∈=(00,,∞), t∈[x1,x2] − and Pαf,η(−∞,∞)∈(0,∞).  4 LONGBAI,KRZYSZTOFDE¸BICKI,ENKELEJDHASHORVA,ANDLANPENGJI Remark 2.3. Let α (0,2],a> 0 be given. If f C ([x ,x ]) for x ,x ,y R,x <x , as shown in Appendix, we ∈ ∈ 0∗ 1 2 1 2 ∈ 1 2 have, with f (t):=f(y+t),t R y ∈ (11) f [x ,x ]= fy [x y,x y], f [x , )= fy [x y, ). Pα,a 1 2 Pα,a 1− 2− Pα,a 1 ∞ Pα,a 1− ∞ In particular, if f(t)=ct,c>0, then for any x R ∈ ct [x, )= cx+ct[0, )=e cx ct [0, ). Pα,a ∞ Pα,a ∞ − Pα,a ∞ Next, for any fixed T (0, ), in order to analyse p (u) we shall suppose that: T ∈ ∞ A1’: For all large u, σ (t) attains its maximum over [0,T] at a unique point t such that u u σ (t )=1 and lim t =t [0,T]. u u u 0 u ∈ →∞ A4: For all u large enough 1 p(lnu)q inf 1+ t∈[0,T]\(tu+∆(u))σu(t) ≥ u2 holds for some constants p>0,q>1. A5: For some positive constants G,ς >0 E (X (t) X (s))2 Gt sς u u − ≤ | − | holds for all s,t x [0,T]:σ(x)=0 an(cid:8)d X (t)= Xu(t). (cid:9) ∈{ ∈ 6 } u σu(t) Below we define for λ given in A2 and ν,d positve [0,δ ] if t 0, u u ≡  [ tu,δu], if tu du−ν and ν λ, (12) ∆(u)= [[−−δδu,,Tδu], t ], iiff Ttu ∼∼tdu−νduorνTa−n≥dtuν∼dλu,−ν when ν <λ, or t0 ∈(0,T), u u u − − − − ∼ ≥ where δ = (lnu)q λ withq[g−ivδeun,0i]n A4. if tu =T, u u (cid:16) (cid:17) Theorem 2.4. Let X (t),t [0,T] be a family of centered Gaussian processes with variance functions σ2 and u ∈ u correlation functions r . Assume that A1’,A2-A5 are satisfied with ∆(u)=[c (u),c (u)] given in (12) and u 1 2 lim c (u)uλ =x [ , ],i=1,2, x <x . i i 1 2 u ∈ −∞ ∞ →∞ If f C ([x ,x ]), then for M suc that lim M /u=1 we have ∈ 0∗ 1 2 u u→∞ u I (13) P sup Xu(t)>Mu C uλ←−ρ(u−1) −{η=∞}Ψ(Mu), u , (t [0,T] )∼ →∞ ∈ (cid:0) (cid:1) where C is the same as in (10) if η (0, ] and C =1 if η =0. ∈ ∞ Remark 2.5. Theorem 2.4 generalises both [26][Theorem 1] and [32][Theorem 4.1]. 3. Applications 3.1. Locally stationary Gaussian processes with trend. In this section we consider the asymptotics of (1) for X(t),t [0,T] a centered locally stationary Gaussian process with unit variance and correlationfunction r satisfying ∈ 1 r(t,t+h) (14) lim sup − =1 h→0t∈[0,T](cid:12)(cid:12) a(t)|h|α (cid:12)(cid:12) with α (0,2], a() a positive continuous function o(cid:12)n [0,T] and fur(cid:12)ther ∈ · (cid:12) (cid:12) (15) r(s,t)<1, s,t [0,T] and s=t. ∀ ∈ 6 We refer to e.g., [9, 10, 44–46] for results on locally stationary Gaussian processes. Extensions of this class to α(t)- locally stationary processes are discussed in [13, 47, 48]. EXTREMES OF THRESHOLD-DEPENDENT GAUSSIAN PROCESSES 5 Regarding the continuous trend function g, we define g =max g(t) and set m t [0,T] ∈ H := s [0,T]:g(s)=g . m { ∈ } Set below, for any t [0,T] 0 ∈ , if t (0,T), (16) Q =1+I , w = −∞ 0 ∈ t0 {t0∈(0,T)} t0 ( 0, if t0 =0 or t0 =T. Proposition 3.1. Suppose that (14) and (15) hold for a centered locally stationary Gaussian process X(t),t [0,T] ∈ and let g :[0,T] R be a continuous function. → i) If H = t and (4) holds, then as u 0 { } →∞ (17) P(ts[u0p,T](X(t)+g(t))>u)∼Ct0u(α2−γ1)+Ψ(u−gm), ∈ where (set with a=a(t )) 0 Q a1/αc 1/γΓ(1/γ+1) , if α<2γ, t0 − Hα Ct0 = P1,αc|,ta|γ[wt0,∞), iiff αα=>22γγ,. ii) If H =[A,B]⊂[0,T] with 0≤A<B ≤T, then as u→∞ B P sup (X(t)+g(t))>u α (a(t))1/αdtuα2Ψ(u gm). (t∈[0,T] )∼H ZA − Remarks 3.2. i) If H = t ,...,t , then as mentioned in [10], the tail distribution of the corresponding supremum 1 n { } is easily obtained assuming that for each t the assumptions of Proposition 3.1 statement i) hold, implying that i n P(ts[u0p,T](X(t)+g(t))>u)∼ Ctj u(α2−γ1)+Ψ(u−gm), u→∞. ∈ (cid:16)Xj=1 (cid:17) ii) The novelty of Proposition 3.1 statement i) is that for the trend function g only a polynomial local behavior around t is assumed. In the literature so far only the case that (4) holds with γ =2 has been considered (see [28]). 0 iii) By the proof of Proposition 3.1 statement i), if g(t) is a measurable function which is continuous in a neighborhood of t and smaller than g ε for some ε>0 in the rest part over [0,T], then the results still hold. 0 m − We present below the approximation of the conditional passage time τ τ T with τ defined in (5). u u u | ≤ Proposition 3.3. Suppose that (14) and (15) hold for a centered locally stationary Gaussian process X(t),t [0,T]. ∈ Let g :[0,T] R be a continuous function, H = t and (4) holds. 0 → { } i) If t [0,T), then for any x (w , ) 0 ∈ ∈ t0 ∞ γc1/γRx e−c|t|γdt wt0 , if α<2γ,  Qt0Γ(1/γ) Pnu1/γ(τu−t0)≤x(cid:12)τu ≤To∼ PPαcαc|,|t,at|a|γγ[[wwtt00,,∞x]), if α=2γ, (cid:12) sup e ctγ, if α>2γ, ii) If t =T, then for any x ( ,0)  t∈[wt0,x] − || 0 ∈ −∞ γc1/γR∞e−c|t|γdt −x , if α<2γ, Γ(1/γ)  Pnu1/γ(τu−t0)≤x(cid:12)τu ≤To∼ PPαcα|c,ta|,|taγ|γ[−[0x,∞,∞)), if α=2γ, (cid:12) e cxγ, if α>2γ.  − | | 6 LONGBAI,KRZYSZTOFDE¸BICKI,ENKELEJDHASHORVA,ANDLANPENGJI Example 3.4. Let X(t),t [0,T] be a centered stationary Gaussian process with unit variance and correlation ∈ function r that satisfies r(t) = 1 atα(1+o(1)), t 0 for some a > 0, α (0,2], and r(t) < 1, for all t (0,T]. − | | → ∈ ∈ Let τ be defined as in (5) with g(t)= ct,c>0. Then we have u − c 1a1/α , α (0,2), P max (X(t) ct)>u u(α2−1)+Ψ(u) − Hα ∈ t [0,T] − ∼ ( ct [0, ), α=2, (cid:26)∈ (cid:27) Pα,a ∞ and for any x positive 1 e cx, α (0,2), P uτ x τ T − − ∈ u ≤ u ≤ ∼ Pαct,a[0,x] , α=2. n (cid:12)(cid:12) o  Pαct,a[0,∞) Example 3.5. Let X(t),t > 0 be a stand(cid:12)ardized fBm,i.e., X(t) = Bα(t)/tα/2 with Bα an fBm. Let c,T be positive constants. Then for any n N, we have ∈ n P t [Tm,(na+x1)T] X(t)+csin 2Tπt >u ∼ ajα1Hα√T2cπuα2−12Ψ(u−c), (cid:26)∈ (cid:18) (cid:18) (cid:19)(cid:19) (cid:27) j=1 X   α where a = 1 (4j+1)T − ,j =1,...,n. j 2 4 (cid:16) (cid:17) 3.2. Non-stationary Gaussian processes with trend. In this section we consider the asymptotics of (1) for X(t),t [0,T] a centered Gaussian process with non-constant variance function σ2. Define below whenever σ(t)=0 ∈ 6 X(t) X(t):= , t [0,T], σ(t) ∈ and set for a continuous function g σ(t) (18) m (t):= , t [0,T], u>0. u 1 g(t)/u ∈ − Proposition 3.6. Let X and g be as above. Assume that t = argmax m (t) is unique with lim t = t u t [0,T] u u u 0 ∈ →∞ and σ(t ) = 1. Further, we suppose that A2-A5 are satisfied with σ (t) = mu(t) , r (s,t) = r(s,t), X (t) = X(t) 0 u mu(tu) u u and ∆(u)=[c (u),c (u)] given in (12). If in A2 f C ([x ,x ]) and 1 2 ∈ 0∗ 1 2 lim c (u)uλ =x [ , ],i=1,2, x <x , i i 1 2 u ∈ −∞ ∞ →∞ then we have (19) P sup (X(t)+g(t))>u C uλ←−ρ(u−1) −I{η=∞}Ψ u−g(tu) , u , (t∈[0,T] )∼ (cid:18) σ(tu) (cid:19) →∞ (cid:0) (cid:1) where C is the same as in (10) when η (0, ] and C =1 when η =0. ∈ ∞ Remarks 3.7. i) Proposition 3.6 extends [26][Theorem 3] and the results of [1] where (1) was analyzed for special X with stationary increments and special trend function g. ii) The assumption that σ(t )=1 is not essential in the proof. In fact, for the general case where σ(t )=1 we have 0 0 6 that (19) holds with σ0−α2Hα xx12e−σ0−2f(t)dt, if η =∞, C = 1P,ασ,0−σ20−f2η[Rx1,x2], iiff ηη =∈(00,,∞), σ0 =σ(t0).  Proposition 3.8. Under the notation and assumptions of Proposition 3.6 without assuming A3,A5, if X is differ- entiable in the mean square sense such that r(s,t)<1,s=t, E X′2(t0) >σ′2(t0), 6 and E X 2(t) σ2(t) is continuous in a neighborhood of(cid:8)t , then(cid:9)(19) holds with ′ ′ 0 − (cid:8) (cid:9) α=2, ρ2(t)= 1 E X′2(t0) σ′2(t0) t2. 2 − (cid:16) n o (cid:17) EXTREMES OF THRESHOLD-DEPENDENT GAUSSIAN PROCESSES 7 The next result is an extension of a classical theorem concerning the extremes of non-stationary Gaussian processes discussed in the Introduction, see [10][Theorem D.3]. Proposition3.9. LetX(t),t [0,T]bea centeredGaussian process with correlation function r and variance function ∈ σ2 such that t = argmax σ(t) is unique with σ(t ) = σ > 0. Suppose that g is a bounded measurable function 0 t [0,T] 0 ∈ being continuous in a neighborhood of t such that (4) holds. If further (2) is satisfied, then 0 u g(t ) (20) P sup (X(t)+g(t))>u C0u(α2−β2∗)+Ψ − 0 , (t∈[0,T] )∼ (cid:18) σ (cid:19) where β =min(β,2γ), ∗ σ−2/αa1/αHα w∞t0 e−f(t)dt, if α<β∗, C0 = P1,αf,σ−2a[wt0,∞R), iiff αα>=ββ∗,, ∗ with f(t)= σb3|t|βI{β=β∗}+ σc2|t|γI{2γ=β∗} and wt0 defined in (16). Proposition 3.10. i) Under the conditions and notation of Proposition 3.6, for any x [x ,x ] we have 1 2 ∈ Rx e−f(t)dt x1 , if η = ,  Rxx12e−f(t)dt ∞ (21) P(cid:8)uλ(τu−tu)≤x(cid:12)τu ≤T(cid:9)∼ PPαfαf,,ηη[[xx11,,xx2]], if η ∈(0,∞), (cid:12) sup e f(t), if η =0. ii) Under the conditions and notation of Proposition3.9, iftt∈[x1,x[0],T−), then for x (w , ) 0 ∈ ∈ t0 ∞ Rx e−f(t)dt Rw∞t0e−f(t)dt, if α<β∗,  wt0 Pnu2/β∗(τu−t0)≤x(cid:12)τu ≤To∼ PPαfαf,,aa[[wwtt00,,∞x]), if α=β∗, (cid:12) and if t =T, then for x ( ,0)  supt∈[wt0,x]e−f(t), if α>β∗, 0 ∈ −∞ R∞e−f(t)dt −x , if α<β , R∞e−f(t)dt ∗  0 Pnu2/β∗(τu−t0)≤x(cid:12)τu ≤To∼ PPαfαf,a,a[−[0x,∞,∞)), if α=β∗, (cid:12) e f(x), if α>β . Example 3.11. Let X(t) = B(t) tB(1),t [0,1], where B(t) i−s a standard Brownia∗n motion and suppose that τ u − ∈ is defined by (5) with g(t)= ct. Then − (22) P sup (X(t) ct)>u e−2(u2+cu), (t [0,1] − )∼ ∈ u P u τ x τ 1 Φ(4x), x ( , ). u u − c+2u ≤ ≤ ∼ ∈ −∞ ∞ (cid:26) (cid:18) (cid:19) (cid:12) (cid:27) (cid:12) We note that according to [49][Lemma 2.7], the resu(cid:12)lt in (22) is actually exact, i.e. for any u>0, P sup (X(t) ct)>u =e 2(u2+cu). t∈[0,1] − − Nonw, let T =1/2. It appearos that the asymptotics in this case is different, i.e., (23) P sup (X(t) ct)>u Φ(c)e 2(u2+cu), − (t [0,1/2] − )∼ ∈ 8 LONGBAI,KRZYSZTOFDE¸BICKI,ENKELEJDHASHORVA,ANDLANPENGJI and u 1 Φ(4x) P u τ x τ , x ( ,c/4]. u u − c+2u ≤ ≤ 2 ∼ Φ(c) ∈ −∞ (cid:26) (cid:18) (cid:19) (cid:12) (cid:27) (cid:12) Similarly, we have (cid:12) c 1 (24) P sup X(t)+ c t >u 2Ψ(c)e−2(u2−cu) (t∈[0,1](cid:18) 2 − (cid:12)(cid:12) − 2(cid:12)(cid:12)(cid:19) )∼ (cid:12) (cid:12) and (cid:12) (cid:12) 4x (|t|+c)2 P u τu 1 x τu 1 −∞e− 2 dt, x ( , ). (cid:26) (cid:18) − 2(cid:19)≤ (cid:12) ≤ (cid:27)∼ R 2√2πΨ(c) ∈ −∞ ∞ (cid:12) Weconcludethissectionwithanapplication(cid:12)ofProposition3.6tothecalculationoftheruinprobabilityofaBrownian motion risk model with constant force of interest over infinite-time horizon. 3.3. Ruin probability in Gaussian risk model. Consider risk reserve process U(t), with interest rate δ, modeled by t t U(t)=ueδt+c eδ(t v)dv σ eδ(t v)dB(v), t 0, − − − ≥ Z0 Z0 where c,δ,σ are some positive constants and B is a standard Brownian motion. The corresponding ruin probability over infinite-time horizon is defined as p(u)=P inf U(t)<0 . t [0, ) (cid:26)∈ ∞ (cid:27) For this model we also define the ruin time τ =inf t 0:U(t)<0 . Set below u { ≥ } δ 2 c h(t)= t+r2 r , t [0, ), r = . σ2 − ∈ ∞ δ (cid:16)p (cid:17) We present next approximations of the ruin probability and the conditional ruin time τ τ < as u . u u | ∞ →∞ Proposition 3.12. As u →∞ 1 (25) p(u) h r2, Ψ 2δu2+4cu ∼P1,δ/σ2 − ∞ σ (cid:18) (cid:19) (cid:2) (cid:1) p and for x ( r2, ) ∈ − ∞ P(u2 e−2δτu −(cid:18)δuc+c(cid:19)2!≤x τu <∞)∼ PP1h1h,,δδ//σσ22[(cid:2)−−rr22,,∞x(cid:3)). (cid:12) (cid:12) Remark 3.13. According to [50] (see also [51]) we have √2δ √2c (26) P inf U(t)<0 =Ψ (u+r) Ψ . (cid:26)t∈[0,∞) (cid:27) σ !. σ√δ! By (25) and (11) 2δ δ 2 δ 1 P inf U(t)<0 E sup exp B(t) t+r2 r t Ψ 2δu2+4cu (cid:26)t∈[0,∞] (cid:27) ∼ (t∈[−r2,∞) rσ2 − σ2 (cid:16)p − (cid:17) − σ2| |!) (cid:18)σp (cid:19) c2 2c c2 √2δ E sup exp √2B(t) t+ + t+ t Ψ (u+r) ∼ t∈[−σc22δ,∞) −(cid:18) σ2δ(cid:19) σ√δr σ2δ −| |! σ ! = E sup exp √2B(t) 2t+ 2c √t Ψ √2δ (u+r) ,  (t∈[0,∞) (cid:18) − σ√δ (cid:19)) σ ! which combined with (26) implies that 1 2c √2c − (27) E sup exp √2B(t) 2t+ √t = Ψ . (t∈[0,∞) (cid:18) − σ√δ (cid:19)) σ√δ!! EXTREMES OF THRESHOLD-DEPENDENT GAUSSIAN PROCESSES 9 4. Proofs In the proofs presented in this section C ,i N are some positive constants which may be different from line to line. i ∈ We first give two preliminary lemmas, which play an important role in the proof of Theorem 2.2. Lemma 4.1. Let ξ(t),t R be a centered stationary Gaussian process with unit variance and correlation function r ∈ satisfying (28) 1 r(t) aρ2(t), t 0, − ∼ | | → with a>0, and ρ , α (0,2]. Let f be a continuous function, K be a family of index sets and α/2 u ∈R ∈ ξ(←−ρ(u−1)t) Z (t):= , t [S ,S ], u 1+u−2f(←−ρ(u−1)uλt) ∈ 1 2 where λ>0 and <S <S < . If M (u),k K is such that 1 2 k u −∞ ∞ ∈ M (u) k (29) lim sup 1 =0, u→∞k∈Ku(cid:12)(cid:12) u − (cid:12)(cid:12) then we have (cid:12) (cid:12) (cid:12) (cid:12) 1 (30) lim sup P sup Z (t)>M (u) f[S ,S ] =0, u→∞k∈Ku(cid:12)(cid:12)Ψ(Mk(u)) (t∈[S1,S2] u k )−Rη 1 2 (cid:12)(cid:12) (cid:12) (cid:12) where (cid:12) (cid:12) (cid:12) (cid:12) [a1/αS ,a1/αS ] f() 0, Rfη[S1,S2]:=E(t∈[sSu1p,S2]e√2aBα(t)−a|t|α−f(η−1/αt))=( PHαhα,a[S1,S12] 2 oth·erw≡ise, with η :=lim ρ2(t) (0, ] and h(t)=f(η 1/αt) for η (0, ), h(t)=f(0) for η = . t↓0 t2/λ ∈ ∞ − ∈ ∞ ∞ Proof of Lemma4.1: We set η 1/α =0 if η = . The prooffollows by checking the conditions of[52][Theorem2.1] − ∞ where the results still holds if we omit the requirements f(0)=0 and [S ,S ] 0. By (29) 1 2 ∋ lim inf M (u)= . k u→∞k∈Ku ∞ By continuity of f we have (31) ul→im∞k∈Kus,tu∈p[S1,S2](cid:12)Mk2(u)u−2f(←−ρ(u−1)uλt)−f(η−1/αt)(cid:12)=0. (cid:12) (cid:12) Moreover,(28) implies (cid:12) (cid:12) Var(ξ(←−ρ(u−1)t) ξ(←−ρ(u−1)t′))=2 2r ←−ρ(u−1)(t t′) 2aρ2 ←−ρ(u−1)(t t′) , u , − − − ∼ − →∞ (cid:0)(cid:12) (cid:12)(cid:1) (cid:0)(cid:12) (cid:12)(cid:1) holds for t,t′ [S1,S2]. Thus (cid:12) (cid:12) (cid:12) (cid:12) ∈ (32) lim sup sup M2(u)Var(ξ(←−ρ(u−1)t)−ξ(←−ρ(u−1)t′)) 1 =0. u→∞k∈Kut=6 t′∈[S1,S2](cid:12)(cid:12) k 2au2ρ2(|←−ρ(u−1)(t−t′)|) − (cid:12)(cid:12) Since ρ2 α which satisfies the uniform(cid:12)(cid:12)convergence theorem (UCT) for regularly v(cid:12)(cid:12)arying function, see, e.g., [53], ∈ R i.e., (33) lim sup u2ρ2 ←−ρ(u−1)(t t′) t t′ α =0, u→∞t,t′∈[S1,S2](cid:12) (cid:0)(cid:12) − (cid:12)(cid:1)−| − | (cid:12) and further by the Potter’s bound for ρ2, se(cid:12)e [53] w(cid:12)e have (cid:12) (cid:12) (34) lium→s∞upt,t′∈st=[uStp1′,S2]u2ρ2(cid:0)(cid:12)(cid:12)|←t−ρ−(ut−′|α1)−(εt1−t′)(cid:12)(cid:12)(cid:1) ≤C1max(cid:16)|S1−S2|α−ε1,|S1−S2|α+ε1(cid:17)<∞, 6 where ε (0,min(1,α)). We know that for α (0,2] 1 ∈ ∈ (35) tα t′ α C2 t t′ α∧1, t,t′ [S1,S2]. | | −| | ≤ | − | ∈ (cid:12) (cid:12) (cid:12) (cid:12) 10 LONGBAI,KRZYSZTOFDE¸BICKI,ENKELEJDHASHORVA,ANDLANPENGJI By (28) for any small ǫ>0, when u large enough (36) r(←−ρ(u−1)t) 1 ρ2(←−ρ(u−1) t)(1 ǫ), r(←−ρ(u−1)t) 1 ρ2(←−ρ(u−1) t)(1+ǫ) ≤ − | | − ≥ − | | hold for t [S ,S ], then by (29) for u large enough 1 2 ∈ sup sup Mk2(u)E [ξ(←−ρ(u−1)t)−ξ(←−ρ(u−1)t′)]ξ(0) k∈Ku|t−t′|<ε,t,t′∈[S1,S2] (cid:8) (cid:9) C3u2 sup r(←−ρ(u−1)t) r(←−ρ(u−1)t′) ≤ − |t−t′|<ε,t,t′∈[S1,S2](cid:12) (cid:12) C3 sup u(cid:12)2ρ2(←−ρ(u−1) t) u2ρ2(←−ρ((cid:12)u−1) t′ ) +ǫ u2ρ2(←−ρ(u−1) t) +ǫ u2ρ2(←−ρ(u−1) t′ ) ≤ | | − | | | | | | C3|t−t′|<εs,tu,tp′∈[S1,S2](cid:0)(cid:12)(cid:12)u2ρ2 ←−ρ(u−1)(t) tα + u2ρ2 ←(cid:12)(cid:12)−ρ(u−(cid:12)(cid:12)1)(t′) t′ α +(cid:12)(cid:12) tα(cid:12)(cid:12) t′ α (cid:12)(cid:12)(cid:1) ≤ −| | −| | | | −| | |t−t′|<ε,t,t′∈[S1,S2](cid:0)(cid:12) (cid:0)(cid:12) (cid:12)(cid:1) (cid:12) (cid:12) (cid:0)(cid:12) (cid:12)(cid:1) (cid:12) (cid:12) (cid:12) (37) +C4ǫ tα−ε1 + t′ α−(cid:12)ε1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) | | | | (38) C εα (cid:16)1+C ǫ, u (cid:17)(cid:17) 5 ∧ 6 ≤ →∞ 0,ε 0,ǫ 0, → → → where in (37) we use (34) and (38) follows from (33) and (35). Hence the proof follows from [52][Theorem 2.1]. (cid:3) Lemma4.2. LetZ (s,t),(s,t) R2 beacenteredstationaryGaussianfieldwithunitvarianceandcorrelationfunction u ∈ r (, ) satisfying Zu · · s α/2 t α/2 (39) 1−rZu(s,t)=au−2(cid:18)(cid:12)←−ρ(u−1)(cid:12) +(cid:12)←−ρ(u−1)(cid:12) (cid:19), (s,t)∈R2, with a>0, ρ2 α and α (0,2]. Let Ku b(cid:12)(cid:12)e some in(cid:12)(cid:12)dex se(cid:12)(cid:12)ts. Then(cid:12)(cid:12), for Mk(u),k Ku satisfying (29) and for any ∈R ∈ ∈ S ,S ,T ,T 0 such that max(S ,S )>0,max(T ,T )>0, we have 1 2 1 2 1 2 1 2 ≥ 1 lim sup P sup Z (s,t)>M (u) (S ,S ,T ,T ) =0, u k 1 2 1 2 u→∞k∈Ku(cid:12)(cid:12)Ψ(Mk(u)) ((s,t)∈D(u) )−F (cid:12)(cid:12) (cid:12) (cid:12) where D(u)=[−←−ρ(u−1)S1,(cid:12)(cid:12)←−ρ(u−1)S2]×[−←−ρ(u−1)T1,←−ρ(u−1)T2] and (cid:12)(cid:12) (S ,S ,T ,T )= [ a2/αS ,a2/αS ] [ a2/αT ,a2/αT ]. 1 2 1 2 α/2 1 2 α/2 1 2 F H − H − Proof of Lemma 4.2: The proof follows by checking the conditions of [35][Lemma 5.3]. For D =[ S ,S ] [ T ,T ] we have 1 2 1 2 − × − P sup Zu(s,t)>Mk(u) =P sup Zu(←−ρ(u−1)s,←−ρ(u−1)t)>Mk(u) . ((s,t)∈Du ) ((s,t)∈D ) Since by (39) Var(Zu(←−ρ(u−1)s,←−ρ(u−1)t)−Zu(←−ρ(u−1)s′,←−ρ(u−1)t′)) = 2−2rZu ←−ρ(u−1)(s−s′),←−ρ(u−1)(t−t′) = au 2 s(cid:0) s α/2+ t t α/2 (cid:1) − ′ ′ | − | | − | (cid:16) (cid:17) we obtain (40) lim sup sup M2(u)Var(Zu(←−ρ(u−1)s,←−ρ(u−1)t)−Zu(←−ρ(u−1)s′,←−ρ(u−1)t′)) 1 =0. u→∞k∈Ku(s,t)6=(s′,t′)∈D(cid:12)(cid:12) k 2a(|s−s′|α/2+|t−t′|α/2) − (cid:12)(cid:12) Further, since for α/2 (0,1] (cid:12) (cid:12) (cid:12) (cid:12) ∈ tα/2 t α/2 C t t α/2, sα/2 s α/2 C s s α/2 ′ 1 ′ ′ 2 ′ | | −| | ≤ | − | | | −| | ≤ | − | (cid:12) (cid:12) (cid:12) (cid:12) holds for t,t [ T ,T(cid:12)],s,s [ S ,(cid:12)S ], we have by (39)(cid:12) (cid:12) ′ ∈ − 1 2(cid:12) ′ ∈ − 1 (cid:12) 2 (cid:12) (cid:12) sup sup Mk2(u)E [Zu(←−ρ(u−1)s,←−ρ(u−1)t)−Zu(←−ρ(u−1)s′,←−ρ(u−1)t′)]Zu(0,0) k∈Ku|((ss,,tt))−,((ss′,′t,t′)′)|<Dε (cid:8) (cid:9) ∈

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.