One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Extreme Value Statistics (applied to Actuarial and Financial data) John H.J. Einmahl Tilburg University ASTIN Colloquium The Hague, May 22, 2013 1/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Outline One-dimensional Extreme Value Statistics Tail Dependence Marginal Expected Shortfall Extreme Risk Regions 2/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Introduction: How high, how long, how fast? (cid:73) We often encounter questions about extreme events. (cid:73) How high should the dikes in the Netherlands be in order to protect us against extreme water levels? (Disregarding “once in ten thousand years” storms.) 3/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions (cid:73) How much can we lose on one day on a certain portfolio of shares? (Disregarding “once in thousand” losses.) (cid:73) How long can humans live? 4/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions (cid:73) How strong can an induced earthquake in the province of Groningen be? (cid:73) What can we say about extreme precipitation levels, extreme wind speeds? (cid:73) How fast can we, humans, run (the 100 meters)? 5/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions (cid:73) What is the maximal possible production of a firm, given certain inputs? (Estimate the efficient production frontier.) (cid:73) How large should be the capital buffer of a financial institution? (cid:73) What will be the total (insured) loss of the first hurricane topping Katrina? 6/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Top 40 Insurance Losses Tables showing the major losses 1970–2012 Table 9 The 40 most costly insurance losses (1970–2012) Insured loss27 (in USD m, Date indexed to 2012) Victims28 (start) Event Country 76 25429 1 836 25.08.2005 Hurricane Katrina; floods, dams burst, US, Gulf of Mexico, Bahamas, damage to oil rigs North Atlantic 3355 70305030 19 213375 1214..0130..22001112 EHaurrtrhicqaunaek eS a(MndWy 9; f.l0o)o tdrisggers tsunami; aftershocks JUaSp eatn al 26 180 43 23.08.1992 Hurricane Andrew; floods US, Bahamas 24 349 2 982 11.09.2001 Terror attack on WTC, Pentagon and other buildings US 21 685 61 17.01.1994 Northridge earthquake (M 6.6) US 21 585 136 06.09.2008 Hurricane Ike; floods, offshore damage US, Caribbean: Gulf of Mexico et al 15 672 124 02.09.2004 Hurricane Ivan; damage to oil rigs US, Caribbean; Barbados et al 15 315 815 27.07.2011 Floods caused by heavy monsoon rains Thailand 1154 371752 13851 2129..0120..22001015 EHaurrtrhicqaunaek eW (MilmWa 6; f.3lo)o, dafstershocks NUSew, M Zeexaiclaon, dJamaica, Haiti et al 11 869 34 20.09.2005 Hurricane Rita; floods, damage to oil rigs US, Gulf of Mexico, Cuba 11 00031 123 15.07.2012 Drought in the Corn Belt US 9 784 24 11.08.2004 Hurricane Charley; floods US, Cuba, Jamaica et al 9 517 51 27.09.1991 Typhoon Mireille/No 19 Japan 8 467 71 15.09.1989 Hurricane Hugo US, Puerto Rico et al 88 422015 59652 2275..0021..21091900 EWairnthteqru satokerm (M DWa r8ia.8) triggers tsunami CFrhainlece, UK, Belgium, Netherlands et al 7 994 110 25.12.1999 Winter storm Lothar Switzerland, UK, France et al 7 453 354 22.04.2011 Major storm with wind up to 340km/h, United States (Alabama et al) over 355 tornadoes 7 198 155 20.05.2011 Major tornado outbreak, United States (Missouri et al) storms with winds up to 405km/h 6 748 54 18.01.2007 Winter storm Kyrill; floods Germany, UK, Netherlands, Belgium et al 6 264 22 15.10.1987 Storm and floods in Europe France, UK, Netherlands et al 6 255 38 26.08.2004 Hurricane Frances US, Bahamas 5 952 55 22.08.2011 Hurricane Irene, extensive flooding United States et al 5 607 64 25.02.1990 Winter storm Vivian Europe 5 568 26 22.09.1999 Typhoon Bart/No 18 Japan 54 296732 600- 0240..0099..21091908 EHaurrtrhicqaunaek eG (eMorWg e7s.0; )f,l ooovdesr 300 aftershocks NUSew, C Zaeriablbaenadn 4 673 41 05.06.2001 Tropical storm Allison; floods US 4 622 3 034 13.09.2004 Hurricane Jeanne; floods, landslides US, Caribbean: Haiti et al 4 357 45 06.09.2004 Typhoon Songda/No 18 Japan, South Korea 4 000 45 02.05.2003 Thunderstorms, tornadoes, hail US 3 890 70 10.09.1999 Hurricane Floyd; floods US, Bahamas, Columbia 3 775 59 01.10.1995 Hurricane Opal; floods US, Mexico, Gulf of Mexico 3 724 6 425 17.01.1995 Great Hanshin earthquake (M 7.2) in Kobe Japan 3 489 25 24.01.2009 Winter storm Klaus, wind up to 170km/h France, Spain 3 308 45 27.12.1999 Winter storm Martin Spain, France, Switzerland 3 119 246 10.03.1993 Blizzard, tornadoes, floods US, Canada, Mexico, Cuba 2 947 38 06.08.2002 Severe floods UK, Spain, Germany, Austria et al 2728293031 7/72 2223317980 ISS PbDnrawwecosaliipuessdessdd ar eRRotnsyeend f aee lPmonssrodottiiisd pmmbs eciuaanrlsttatgeeiyinm iiCennsslcca sclliuu moinddv teeeSessrer erflrouldvosp iobcstdyieeo ssNcn (fl,FarP eoIiCPmxmScs l)M u/cdioPnivncCeglI.r NelidaFb IbPilyi lt oNys IasFnePds (lisfee ein psaugraen 4c8e “loTsesremss; UanSd n saetulercatl icoant carsittreorpiah”e). f igures: Swiss Re, sigma No 2/2013 35 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Rank Insured loss Event 1 76254 Katrina 2 35735 Japan 3 35000 Sandy 4 26180 Andrew 5 24349 9/11 ··· ··· 10 15315 ··· ··· 20 7453 ··· ··· 30 4673 ··· ··· 40 2947 8/72 Cauchy data −− Hill estimator 8 1. 6 1. 4 ma 1. m ga 1.2 0 1. gamma 8 Hill 0. true 0 200 400 600 800 k One-dimensionalExtremeValueStatistics DTaailnDiespehnd efnircee data −− Hill estimator MarginalExpectedShortfall ExtremeRiskRegions 0 1. 9 0. 8 0. a 7 m 0. m a g 6 0. 5 0. 4 0. 3 0. 0 500 1000 1500 2000 k -p.23/37 Large Danish fire insurance losses; threshold of 1 million DK. 9/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions (cid:73) For these data we can, as usual, compute the sample mean and the sample variance. (cid:73) However, for these loss data γˆ ≈ 0.7. This γˆ estimates the important parameter γ, the extreme value index. The extreme value index describes the tail heaviness of the claims distribution. Again, these losses are from a heavy-tailed distribution. (cid:73) If X denotes a loss, then EXr = ∞ for r > 1/γ. (cid:73) The estimate 0.7 strongly indicates that VarX might not exist. Such a portfolio constitutes a real danger for the insurer. (cid:73) Because of this alarming message based on rather usual insurance data, we need to understand the parameter γ and its estimator γˆ. 10/72
Description: