ebook img

Extreme Value Statistics (applied to Actuarial and Financial data) PDF

72 Pages·2013·1.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extreme Value Statistics (applied to Actuarial and Financial data)

One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Extreme Value Statistics (applied to Actuarial and Financial data) John H.J. Einmahl Tilburg University ASTIN Colloquium The Hague, May 22, 2013 1/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Outline One-dimensional Extreme Value Statistics Tail Dependence Marginal Expected Shortfall Extreme Risk Regions 2/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Introduction: How high, how long, how fast? (cid:73) We often encounter questions about extreme events. (cid:73) How high should the dikes in the Netherlands be in order to protect us against extreme water levels? (Disregarding “once in ten thousand years” storms.) 3/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions (cid:73) How much can we lose on one day on a certain portfolio of shares? (Disregarding “once in thousand” losses.) (cid:73) How long can humans live? 4/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions (cid:73) How strong can an induced earthquake in the province of Groningen be? (cid:73) What can we say about extreme precipitation levels, extreme wind speeds? (cid:73) How fast can we, humans, run (the 100 meters)? 5/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions (cid:73) What is the maximal possible production of a firm, given certain inputs? (Estimate the efficient production frontier.) (cid:73) How large should be the capital buffer of a financial institution? (cid:73) What will be the total (insured) loss of the first hurricane topping Katrina? 6/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Top 40 Insurance Losses Tables showing the major losses 1970–2012 Table 9 The 40 most costly insurance losses (1970–2012) Insured loss27 (in USD m, Date indexed to 2012) Victims28 (start) Event Country 76 25429 1 836 25.08.2005 Hurricane Katrina; floods, dams burst, US, Gulf of Mexico, Bahamas, damage to oil rigs North Atlantic 3355 70305030 19 213375 1214..0130..22001112 EHaurrtrhicqaunaek eS a(MndWy 9; f.l0o)o tdrisggers tsunami; aftershocks JUaSp eatn al 26 180 43 23.08.1992 Hurricane Andrew; floods US, Bahamas 24 349 2 982 11.09.2001 Terror attack on WTC, Pentagon and other buildings US 21 685 61 17.01.1994 Northridge earthquake (M 6.6) US 21 585 136 06.09.2008 Hurricane Ike; floods, offshore damage US, Caribbean: Gulf of Mexico et al 15 672 124 02.09.2004 Hurricane Ivan; damage to oil rigs US, Caribbean; Barbados et al 15 315 815 27.07.2011 Floods caused by heavy monsoon rains Thailand 1154 371752 13851 2129..0120..22001015 EHaurrtrhicqaunaek eW (MilmWa 6; f.3lo)o, dafstershocks NUSew, M Zeexaiclaon, dJamaica, Haiti et al 11 869 34 20.09.2005 Hurricane Rita; floods, damage to oil rigs US, Gulf of Mexico, Cuba 11 00031 123 15.07.2012 Drought in the Corn Belt US 9 784 24 11.08.2004 Hurricane Charley; floods US, Cuba, Jamaica et al 9 517 51 27.09.1991 Typhoon Mireille/No 19 Japan 8 467 71 15.09.1989 Hurricane Hugo US, Puerto Rico et al 88 422015 59652 2275..0021..21091900 EWairnthteqru satokerm (M DWa r8ia.8) triggers tsunami CFrhainlece, UK, Belgium, Netherlands et al 7 994 110 25.12.1999 Winter storm Lothar Switzerland, UK, France et al 7 453 354 22.04.2011 Major storm with wind up to 340km/h, United States (Alabama et al) over 355 tornadoes 7 198 155 20.05.2011 Major tornado outbreak, United States (Missouri et al) storms with winds up to 405km/h 6 748 54 18.01.2007 Winter storm Kyrill; floods Germany, UK, Netherlands, Belgium et al 6 264 22 15.10.1987 Storm and floods in Europe France, UK, Netherlands et al 6 255 38 26.08.2004 Hurricane Frances US, Bahamas 5 952 55 22.08.2011 Hurricane Irene, extensive flooding United States et al 5 607 64 25.02.1990 Winter storm Vivian Europe 5 568 26 22.09.1999 Typhoon Bart/No 18 Japan 54 296732 600- 0240..0099..21091908 EHaurrtrhicqaunaek eG (eMorWg e7s.0; )f,l ooovdesr 300 aftershocks NUSew, C Zaeriablbaenadn 4 673 41 05.06.2001 Tropical storm Allison; floods US 4 622 3 034 13.09.2004 Hurricane Jeanne; floods, landslides US, Caribbean: Haiti et al 4 357 45 06.09.2004 Typhoon Songda/No 18 Japan, South Korea 4 000 45 02.05.2003 Thunderstorms, tornadoes, hail US 3 890 70 10.09.1999 Hurricane Floyd; floods US, Bahamas, Columbia 3 775 59 01.10.1995 Hurricane Opal; floods US, Mexico, Gulf of Mexico 3 724 6 425 17.01.1995 Great Hanshin earthquake (M 7.2) in Kobe Japan 3 489 25 24.01.2009 Winter storm Klaus, wind up to 170km/h France, Spain 3 308 45 27.12.1999 Winter storm Martin Spain, France, Switzerland 3 119 246 10.03.1993 Blizzard, tornadoes, floods US, Canada, Mexico, Cuba 2 947 38 06.08.2002 Severe floods UK, Spain, Germany, Austria et al 2728293031 7/72 2223317980 ISS PbDnrawwecosaliipuessdessdd ar eRRotnsyeend f aee lPmonssrodottiiisd pmmbs eciuaanrlsttatgeeiyinm iiCennsslcca sclliuu moinddv teeeSessrer erflrouldvosp iobcstdyieeo ssNcn (fl,FarP eoIiCPmxmScs l)M u/cdioPnivncCeglI.r NelidaFb IbPilyi lt oNys IasFnePds (lisfee ein psaugraen 4c8e “loTsesremss; UanSd n saetulercatl icoant carsittreorpiah”e). f igures: Swiss Re, sigma No 2/2013 35 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions Rank Insured loss Event 1 76254 Katrina 2 35735 Japan 3 35000 Sandy 4 26180 Andrew 5 24349 9/11 ··· ··· 10 15315 ··· ··· 20 7453 ··· ··· 30 4673 ··· ··· 40 2947 8/72 Cauchy data −− Hill estimator 8 1. 6 1. 4 ma 1. m ga 1.2 0 1. gamma 8 Hill 0. true 0 200 400 600 800 k One-dimensionalExtremeValueStatistics DTaailnDiespehnd efnircee data −− Hill estimator MarginalExpectedShortfall ExtremeRiskRegions 0 1. 9 0. 8 0. a 7 m 0. m a g 6 0. 5 0. 4 0. 3 0. 0 500 1000 1500 2000 k -p.23/37 Large Danish fire insurance losses; threshold of 1 million DK. 9/72 One-dimensionalExtremeValueStatistics TailDependence MarginalExpectedShortfall ExtremeRiskRegions (cid:73) For these data we can, as usual, compute the sample mean and the sample variance. (cid:73) However, for these loss data γˆ ≈ 0.7. This γˆ estimates the important parameter γ, the extreme value index. The extreme value index describes the tail heaviness of the claims distribution. Again, these losses are from a heavy-tailed distribution. (cid:73) If X denotes a loss, then EXr = ∞ for r > 1/γ. (cid:73) The estimate 0.7 strongly indicates that VarX might not exist. Such a portfolio constitutes a real danger for the insurer. (cid:73) Because of this alarming message based on rather usual insurance data, we need to understand the parameter γ and its estimator γˆ. 10/72

Description:
One-dimensional Extreme Value Statistics. Tail Dependence. Marginal Expected Shortfall. Extreme Risk Regions. Extreme Value Statistics. (applied to Actuarial
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.