ExtremeNonlinearOptics AdvancedTextsinPhysics This program of advanced texts covers a broad spectrum of topics which are of currentandemerginginterestinphysics.Eachbookprovidesacomprehensiveand yetaccessibleintroductiontoafieldattheforefrontofmodernresearch.Assuch, thesetextsareintendedforseniorundergraduateandgraduatestudentsattheMS andPhDlevel;however,researchscientistsseekinganintroductiontoparticular areasofphysicswillalsobenefitfromthetitlesinthiscollection. Martin Wegener Extreme Nonlinear Optics An Introduction With86Figures,NumerousExamples, and29ProblemswithCompleteSolutions 123 ProfessorDr.MartinWegener InstitutfürAngewandtePhysik Universita¨tKarlsruhe(TH) Wolfgang-Gaede-Str.1 76131Karlsruhe,Germany E-mail:[email protected] ISSN1439-2674 ISBN3-540-22291-x Springer-VerlagBerlinHeidelbergNewYork LibraryofCongressControlNumber:2004109596 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationof thispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw ofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springeronline.com ©Springer-VerlagBerlinHeidelberg2005 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantpro- tectivelawsandregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorandF.HerwegEDVBeratungusingaSpringerTEXmacropackage Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN10984680 56/3141/jl 5 4 3 2 1 0 ThisbookisdedicatedtoKarin,Pauline,andHenriette. Preface In2001Iwasinvitedtogiveaseriesoflecturesonourworkonstrong-fieldexcitation ofsemiconductorsata2003summerschoolinErice(Sicily).Ienthusiasticallystarted preparingthelecturesandsoondevelopedtheideatoputourownworkintoamuch broadercontext.Whenreadingtheoriginalpublicationsfromdiversefieldssuchas solid-statephysics,atomicphysics,relativisticphysics,particlephysicsandmetrol- ogy,Iwasatfirstoverwhelmedbytheamountofmaterialanditsdiversity.Awhole newworldofnonlinearopticsopeneduptome.Then,Irealizedmanysimilaritiesin thephysics,despitetremendousdifferencesinthejargonofthevariousscientificcom- munities.ManyoftheseexcitingandnovelexamplesofExtremeNonlinearOptics hadnotbeendescribedinanytextbook–soIdecidedtowritethisbook. Itgivesanintroductionintothisvibrantfieldfromtheviewpointofanexperimen- talphysicistwhocaresabouttheory.Chaptersonetosixdeliverthebasics.Whenever necessary,crucialresultsfromtraditionalnonlinearopticsarebrieflyrecapitulated. More than twenty problems with detailed solutions at the end of the book, as well asmanyexamples,areanintegralpartofthisintroduction.Chapterssevenandeight reviewthefieldandguidethereadertowardsitscurrentstate-of-the-art. Thus,thisbookshouldbehelpfulforstudentsofphysicsorelectricalengineering in courses/seminars on nonlinear optics, quantum optics or quantum electronics as wellasforyoungresearchersenteringthefieldofextremenonlinearoptics.Expertsin oneofthesubfieldsmightbesurprisedbytheinterconnectionsandparallelsbetween thedisciplines. Karlsruhe,June2004 MartinWegener Contents 1 Introduction................................................. 1 1.1 “Traditional”NonlinearOptics–ExtremeNonlinearOptics....... 1 1.2 HowtoReadthisBook?..................................... 6 2 SelectedAspectsofFew-CycleLaserPulsesandNonlinearOptics ... 9 2.1 MaxwellEquations ......................................... 9 2.2 TheLightIntensity ......................................... 10 2.3 ElectricFieldinaLaserResonator ............................ 11 2.4 ABriefLookatPhenomenologicalNonlinearOptics............. 19 2.5 Even-HarmonicGenerationandInversionSymmetry............. 21 2.6 PrincipleofMeasuringtheCarrier-EnvelopeFrequency .......... 23 3 TheLorentzOscillatorModelandBeyond... ..................... 27 3.1 LinearOptics:RevisitingtheLorentzOscillatorModel ........... 27 3.2 Two-LevelSystemsandRabiEnergy .......................... 29 3.3 Carrier-WaveRabiFlopping ................................. 33 3.4 FrequencyDoublingwithInversionSymmetry .................. 38 3.5 QuantumInterferenceofMultiphotonAbsorption ............... 41 3.6 HighHarmonicsfromTwo-LevelSystems...................... 46 3.6.1 The“Static-FieldApproximation” ...................... 51 3.6.2 The“Square-WaveApproximation”..................... 53 3.6.3 TheDressedTwo-LevelSystem:FloquetStates........... 57 4 TheDrudeFree-ElectronModelandBeyond... ................... 61 4.1 LinearOptics:TheDrudeModel.............................. 61 4.2 ElectronWavePacketsDrivenbyLight ........................ 63 4.2.1 SemiclassicalConsiderations .......................... 63 4.2.2 Quantum-MechanicalTreatment:DressedElectrons ....... 64 4.3 CrystalElectrons........................................... 71 4.3.1 Static-FieldCase..................................... 71 4.3.2 HighHarmonicsfromCarrier-WaveBlochOscillations .... 72 X Contents 4.4 ExtremeNonlinearOpticsofRelativisticElectrons .............. 75 4.4.1 Second-HarmonicGenerationandPhotonDrag........... 78 4.4.2 NonperturbativeRegime .............................. 81 4.5 ExtremeNonlinearOpticsofDiracElectrons ................... 86 4.6 UnruhRadiation ........................................... 91 5 LorentzBecomesDrude:Bound–UnboundTransitions............. 93 5.1 High-HarmonicGeneration:PhenomenologicalApproach ........ 93 5.2 TheKeldyshParameter...................................... 96 5.3 FieldIonizationofAtoms.................................... 99 5.4 High-HarmonicGeneration .................................. 104 5.4.1 Three-StepScenarioandCutoff ........................ 105 5.5 ApplicationtoPhotoemissionfromMetalSurfaces .............. 109 6 AccountingforPropagationEffects ............................. 113 6.1 NumericalSolutionoftheNonlinearMaxwellEquations ......... 113 6.2 SlowlyVaryingEnvelopeApproximation ...................... 116 6.3 GouyPhaseandCarrier-EnvelopePhase ....................... 117 6.4 ReshapingoftheAmplitudeSpectrum ......................... 123 7 ExtremeNonlinearOpticsofSemiconductorsandIsolators......... 129 7.1 Carrier-WaveRabiFlopping ................................. 132 7.1.1 Experiment ......................................... 134 7.1.2 Theory ............................................. 139 7.1.3 DependenceontheCarrier-EnvelopePhase .............. 147 7.1.4 SemiconductorBlochEquations........................ 150 7.2 “THGintheDisguiseofSHG” ............................... 152 7.3 DynamicFranz–KeldyshEffect............................... 161 7.4 PhotonDragorDynamicHallEffect .......................... 166 7.5 ConicalSecond-HarmonicGeneration ......................... 169 8 ExtremeNonlinearOpticsofAtomsandElectrons ................ 173 8.1 High-HarmonicGenerationFromAtoms....................... 173 8.1.1 GasJets ............................................ 174 8.1.2 HollowWaveguides .................................. 177 8.1.3 QuasiPhase-MatchinginModulatedCapillaries .......... 179 8.1.4 DependenceontheCarrier-EnvelopePhase .............. 180 8.2 RelativisticNonlinearThomsonScattering ..................... 183 Solutions........................................................ 187 Symbols ........................................................ 205 References ...................................................... 209 Index........................................................... 219 1 Introduction Withtheinventionofthelaser[1,2]ingeneral,andwiththerealizationoftheruby laser by Maiman in 1960 [3] in particular, the field of optics soon entered the new eraofnonlinearopticsin1961[4].Inthisregime,theopticalpropertiesofmaterials arenolongerindependentoftheintensityoflight–aswasbelievedforhundredsof yearsbefore–butratherchangewiththelightintensity,givingrisetoawealthofnew phenomena,effectsandapplications.Today,nonlinearopticshasenteredoureveryday life in many ways and has also been the basis for numerous new developments in spectroscopy and laser technology. Indeed, from the moment of birth of nonlinear optics,laserphysicsandnonlinearopticshavebeenintimatelyrelatedtoeachother. 1.1 “Traditional”NonlinearOptics–ExtremeNonlinearOptics Within“traditional”nonlinearoptics,theabsolutechangesoftheopticalproperties aretinyifonefollowsthemversustimeonatimescaleofacycleoflight.Thissimple fact is the basis of many concepts and approximations of “traditional” nonlinear optics – as described in a number of excellent textbooks [5–10]. Over the years, however, lasers have improved in many ways, especially in terms of the accessible peakintensitiesandintermsoftheminimumpulsedurationavailable.Thesedays, about40yearsaftertheinventionofthelaser,theshortestopticalpulsesgeneratedare aboutoneandahalfcyclesoflightinduration(seeFig.1.1).Thiscomesclosetothe ultimatelimitofasingleopticalcycle.Byvirtueofmode-locking[11]andspecifically of self-mode-locking [12] of solid-state lasers, such pulses can even be generated directly from the laser oscillator. Moreover, thanks to the concept of chirped-pulse amplification(CPA)[16,17],amplifiedlaserpulseswithfocusedpeakintensitiesin therangeof1022W/cm2[18]areavailableinsomelaboratories(seeFig.1.2).Inten yearsfromnow,thisgiganticnumbercouldpossiblybefurtherincreasedbyanother severalordersofmagnitude.Asaresultofthis,today’slightintensitiescanleadto substantialoreventoextremechangesonthetimescaleoflight.Wewillseelaterin thisbookthatthissomewhatvaguestatementcanbespecifiedbysaying: 2 1 Introduction 10ps n o ati 1ps r u d e s 100fs ul p al 10fs ptic 2.4fs 6fs O 1fs 1960 1970 1980 1990 2000 2010 Year Fig. 1.1. Development of the minimum available laser pulse duration tFWHM versus year (schematically).Therubylasercameintooperationin1960(arrow)andonlyfiveyearslater, 10-pspulseswereavailable.Thereafter,thepulsedurationdecayedalmostexponentiallyfor two decades. Not too much happened in terms of duration after the 1987 world record of Shanketal.[13]basedonadyelaserandadyeamplifier.However,thesubsequentsolid-state revolution[14,15]ledtoanenormousprogressintermsofreliability.Theshortestpossible opticalpulsedurationof2.4fsisindicated(thisisequivalentto1.3cyclesoflightat2.25eV centerphotonenergy,seeProblem2.2).Inthisfigure,wedonotconsidersub-femtosecond extremeultravioletpulsesgeneratedviahigh-harmonicgeneration(seeExampleIII). Whenever an energy associated with the light intensity becomes com- parable to or even larger than a characteristic energy of the material or systemunderinvestigation,thelawsof“traditional”nonlinearopticsfail andsomethingnewisexpectedtohappen. Wewanttocallthisregime extremenonlinearoptics orcarrier-wavenonlinearop- tics. The latter is more precise, the notion extreme nonlinear optics is popular as it soundsmore“sexy”.Dependingontheproblemand/orsystemunderconsideration, theenergyassociatedtothelightintensity,I,canbeoneofthefiveenergies: √ • Rabienergy(cid:1)(cid:1) ∝ I R • Ponderomotiveenergy√(cid:3)Ekin(cid:4)∝I • Blochenergy(cid:1)(cid:1)B ∝ I√ • Cyclotronenergy(cid:1)ωc ∝ √I • Tunnelingenergy(cid:1)(cid:1) ∝ I. tun The characteristic energy of the system under investigation can be one of the three energies: • Carrierphotonenergy(cid:1)ω (ortransitionenergy(cid:1)(cid:1)) 0 • BindingenergyE b • Restenergym c2. 0 0