ebook img

Extreme Cosmic-Ray-Dominated-Regions: a new paradigm for high star formation density events in the Universe PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extreme Cosmic-Ray-Dominated-Regions: a new paradigm for high star formation density events in the Universe

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed14January2011 (MNLATEXstylefilev2.2) Extreme Cosmic-Ray-Dominated-Regions: a new paradigm for high star formation density events in the Universe 1 Padeli P. Papadopoulos,1 Wing-Fai Thi,2,3 Francesco Miniati,4 Serena Viti,5 1 0 1Argelander-Institutfu¨rAstronomie,AufdemHu¨gel71,D-53121Bonn,Germany 2 2UJF-Grenoble1/CNRS-INSU,InstitutdePlane´tologieetd’AstrophysiquedeGrenoble(IPAG)UMR5274,Grenoble,F-38041,France 3SUPA,InstituteforAstronomy,RoyalObservatoryofEdinburgh,UniversityofEdinburgh,BlackfordHill,EdinburghEH93HJ,UK n 4Institutfu¨rAstronomie,ETHZu¨rich,8093Zurich,Switzerland a J 5DepartmentofPhysicsandAstronomy,UniversityCollegeLondon,LondonWC1E6BT,UK 3 1 Accepted...;Received...;inoriginalform... ] O C ABSTRACT WeexamineindetailtherecentproposalthatextremeCosmic-Ray-Dominated-Regions(CR- . h DRs) characterize the ISM of galaxies during events of high-density star formation, funda- p mentally altering its initial conditions (Papadopoulos 2010). Solving the coupled chemical - o and thermalstate equationsfor dense UV-shieldedgasrevealsthatthe largecosmic ray en- r ergydensitiesin suchsystems (UCR∼ few×(103–104)UCR,Gal) will indeedraise themini- t mum temperatureof this phase (where the initial conditionsof star formationare set) from s a ∼10K(asintheMilkyWay)to∼50–100K.MoreoverinsuchextremeCRDRsthegastem- [ peratureremainsfullydecoupledfromthatofthedust,withTkin≫Tdust,evenathighdensi- 2 ties(n(H2)∼105–106cm−3),quiteunlikeCRDRsintheMilkyWaywhereTk∼Tdust when v n(H2)&105cm−3.Thesedramaticallydifferentstarformationinitialconditionswill:a)boost 6 the Jeans mass of UV-shielded gas regions by factors of ∼10–100 with respect to those in 9 quiescentor lessextremestar formingsystems,andb)“erase” theso-calledinflectionpoint 4 oftheeffectiveequationofstate(EOS)ofmoleculargas.Boththeseeffectsoccuracrossthe 2 entire density rangeof typicalmolecularclouds,and may representa newparadigmfor all 9. high-densitystarformationintheUniverse,withcosmicraysasthekeydrivingmechanism, 0 operatingefficientlyeveninthehighdustextinctionenvironmentsofcompactextremestar- 0 bursts.Thecharacteristicmassofyoungstarswillbeboostedasaresult,naturallyyieldinga 1 top-heavystellarinitialmassfunction(IMF)andabimodalstarformationmode(withtheoc- : curanceofextremeCRDRssettingthebranchingpoint).SuchCRDRswillbepresentinlocal v UltraLuminousInfraredGalaxies(ULIRGs)andmerger-drivengas-richstarburstsacrossthe i X Universewherelargeamountsofmoleculargasrapidlydissipatetowardscompactdiskcon- r figurationswhere they fuel intense starbursts. In hierarchicalgalaxy formation models CR- a controlledSFinitialconditionslendaphysicalbasisforthecurrentlypostulatedbimodalIMF inmerger/starburstversusquiescent/diskstarformingenvironments,whilenaturallymaking theintegratedgalacticIMFs(IGIMFs)afunctionoftheSFhistoryofgalaxies. Keywords: cosmicrays–dust,extinction–galaxies:starburst–galaxies:starformation – galaxies:interaction–ISM:molecules–ISM:supernovaeremants. 1 INTRODUCTION galaxies(SMGs),similarlymerger-drivenstarburstsinthedistant Universe,SFRscanevenreachthousandsofsolarmassesperyear Muchof thestellarmassintheUniverseformsinstarbursts(e.g. (Smail et al. 1997; Hughes et al. 1998; Ealeset al. 1999). While Blainetal.1999; Genzel etal.2001; Smailetal.2002), spectac- starsforminvariablyoutofmoleculargasthroughouttheUniverse ulareventsduringwhichthestarformationrate(SFR)ofagalaxy (e.g. Solomon et al. 1997; Frayer et al. 1998, 1999; Greve et al. risesfromfewsolarmassesperyear,typicalofspiralssuchasthe 2005, Tacconi et al. 2006), it is in its densest, UV-shielded, and Milky-Way (Mckee & Williams 1997), to several hundred solar Cosmic-Ray-Dominatedphasewherethestarformationinitialcon- masses per year as in the local Ultra Luminous Infrared Galax- ditions, and the characteristic mass of the emergent young stars ies (ULIRGs) (e.g. Sanders & Mirabel 1996; Genzel et al. 1998; M(∗)aretrulyset(Bergin&Tafalla2007;Elmegreenetal.2008). Sanders&Ishida2004)wheremerger-drivenstarburststakeplace ch Indeed,whilePhoton-Dominated-Regions(PDRs)containthebulk inverycompact(D 100–300pc)densegasdisks(e.g.Downes& ∼ ofthemoleculargasmassingalaxies(Hollenbach&Tielens1999; Solomon 1998; Sakamoto et al. 2008). In the so called sub-mm 2 Papadopouloset al. Ossenkopf et al. 2007), their widely varying physical conditions remain always far removed from those prevailing inUV-shielded CR=10,000 CR-dominateddensegascores.Thelocationofthelatterdeepin- sidemolecularclouds,astrongtemperatureregulationviatheon- setofgas-dustthermalequillibriumatdensitiesn(H )>104cm−3, ) 2 K 100 andthenearlycompletedissipationofsupersonicturbulence(Lar- e ( CR=1000 son2005;Bergin&Tafalla2007;Jappsenetal.2005),allhelpto r u keep the thermal state of typical CRDRs a near invariant over a at CR=100 r widerangeofISMenvironments. e p CR=10 m Cosmicrays(CRs),acceleratedinshocksaroundsupernovae e 10 CR=1 remnants(SNRs)orwindsassociatedwithO,Bstarclusters(e.g. s t CR=0.2 Binnsetal.2008),areresponsiblefortheheating,ionizationlevel, a G T =8K dust andchemical stateofsuchdenseUV-shieldedregionsinmolecu- larclouds(e.g.Goldmith&Langer1978;Goldsmith2001).More- over,whiletheirheatingcontributionrelativetothatfromthe(far- 1 UV)-inducedphotoelectriceffectinPDRs,orturbulence,canvary 103 104 105 106 withina galaxy and individual molecular clouds, CRs remain re- Gas density (cm-3) sponsible for setting the minimum temperature attainable in the gaseous ISM (e.g. Goldmith & Langer 1978; Bergin & Tafalla Figure1.ThetemperatureofUV-shieldeddensegascorescomputedfrom 2007; Elmegreen et al. 2008). For the Galaxy T (min) 10K, reachedinUV-shieldedcoreswithn(H ) (104–106k)cm−3∼. Equation 2 for the range of densities typical in molecular clouds. The 2 ∼ CRenergydensities rangefromthequiescentenvironment oftheGalaxy A recent study has shown that the average CR energy den- (UCR=(0.2–1)×UCR,Gal) to those in extreme CRDRs (UCR∼(103– sities (UCR) in compact starbursts typical in ULIRGs (recently 104)×UCR,Gal,Papadopoulos2010).AdusttemperatureTdust=8Kand found also in an SMG at z 2.3, Swinbank et al. 2010), will aGalacticCRionizationrateofζCR=5×10−17s−1havebeenassumed. ∼ be boosted by the tremendeous factors of U (few) (103– CR 104)U , potentially transforming their ISM∼into e×xtreme CR,Gal 2 THEMINIMUMGASTEMPERATUREINCRDR Cosmic-Ray-DominatedRegions(CRDRs).Thiswilldramatically S alter the thermal and ionization state of UV-shielded cores, and In this section we compute the equillibrium gas temperatures for thustheinitialconditionsofstar-formation,throughout theircon- theUV-shieldedregionsofmolecularcloudsimmersedinthelarge siderablemoleculargasreservoirs( 109-1010M⊙).Higherchar- cosmicrayenergydensitiesoftheextremeCRDRsexpectedinstar- acteristicmass M(∗) for theyoung∼starsformed in such ISMen- burstswithhighSFRdensities. ch vironments,andlongerambipolardiffusiontimescalesfortheCR- heated UV-shieled cores could thus be a new paradigm for high- 2.1 Asimplemethod densitystarformationintheUniverse(seePapadopoulos2010for details).ItisworthmentioningthatrecentlysuchlargeUCRboosts Wefirstconsider thesimplecasewhere thechemical stateof the ( 103.5 UCR,Gal)havebeenfoundintheOrionAbar,andwhile UV-shielded dense gas cores remains unaltered and the only ef- ∼ × not representing the average SF initial conditions in the Galaxy, fectoflargeU valuesistoheatthemmuchmorethaninquies- CR theydoallowlocalstudiesoftheeffectsoflargeCRenergyden- centISMenvironments.Followingstandardpractice(e.g.Goldmith sities on the ISM (Pellegrini et al 2009). Finally CRs have been 2001) thetemperature of such regions can be estimated from the showntoeffectthethermalstateofprimordialgas,catalyzingH2 thermalbalanceequation formationintheabsenceofdust(Jasche,Ciardi,&Ensslin2007). Inthisworkwesolvethecoupledchemicalandthermalstate Γ =Λ +Λ , (1) equationsforUV-shieldedgasanditsconcomitantdustinextreme CR line gd CRDRs without the approximations employed by Papadopoulos whereΓ ζ n(H )istheCRheatingwithζ U being CR CR 2 CR CR ∝ ∝ (2010). We then use the thermal states computed for such a gas thecosmicrayionizationrate.ThecoolingtermΛ isdominated line phasetoexaminetheeffectson M(∗) andtheso-calledinflection byCOandothermolecularlines,whileΛ accountsforgascool- ch gd pointoftheEffectiveEquationofState(EOS),setatgasdensities ingduetothegas-dustinteraction. abovewhichT T (e.g.Spaans&Silk2000;Larson2005 Asignificantpointofdeparturefromthepreviousanalysisby kin dust ∼ andreferencestherein).Bothoftheseplayacrucialroleindeter- Papadopoulos (2010) isthe inclusion of the atomic fine structure mining the stellar initial mass function (IMF) in galaxies, which lines OI (at 63µm) and CII (at 158µm) in Λ . Indeed for the line couldthusturnouttobeverydifferentintheCRDRsofextreme CR-boosted temperatures expected in the UV-shielded dense gas starbursts. Throughout this work we make the standard assump- ofextremeCRDRs,andunlikethecorrespondinggasphaseinthe tionofU ρ˙ (SFRdensity)asinPapadopoulos2010,though quiescent ISM of the Galaxy, the cooling from the fine structure CR sfr ∝ wenowdiscusspossiblecaveats(section4.4).Finally,thedifferent atomic line of OI (63µm) can also become important and along IMFsexpectedinextremeCRDRswillmodifythetotalSFRand withthegas-dustinteractionovertaketheCOlinesfortypicalcore ρ˙ valuescomputedingalaxies(frome.g.cmnon-thermalorIR densities of n(H )>105cm−3 when T >50K . FinallyISM-CR sfr 2 k thermalcontinuum).Inthisnewcontextandthroughoutthiswork interactionscangenerateinternalUVradiationwhichdestroysCO, SFR and ρ˙ will now denote these quantities only for the mas- producing traces of CII, thus cooling via itsfine structure line at sfr sivestars(whichdefineU andpower theIR/cmcontinuum of 158µm must also beincluded. The thermal balance equation en- CR theISM), withtheir total values necessarily remaining uncertain, compassingallphysicalprocessesthatcanbeimportantintheUV- dependingontheexactIMF,whichwillnolongerbeaninvariant. shieldedISMofextremeCRDRsthusis: Starformationin extremeCRDRs 3 units (expected to be even lower for the dense pre-stellar cores deepinsideH clouds)andaresidualmicro-turbulentlinewidthof Λ (T )+Λ (T ,T )+Λ (T )+Λ (T )=Γ , (2) 2 CO k gd k dust OI63 k CII k CR ∆Vm−turb=5kms−1(whichenterstheexpressionsoflineoptical (for the expressions used see the Appendix). The solutions are depths).Inallcaseschemicalandthermalequillibriumisreached shown in Figure1 fromwhere itbecomes obvious that the mini- fast,withinT 6 104yrs,andisalwaysshorterthanthelo- chem,th mumtemperaturesattainableindensegascoresintheISMofsuch cal dynamical timescale which drives the ambient star formation starburstsaremuchhigherthanintheGalaxyorgalaxieswithmod- eventsandthusthetemporalevolutionofU .Theresults,shown CR erateρ˙ values.Turbulentgasheatingwasnotconsideredsincewe inFigure2,corroboratethehighgastemperaturesobtainedusing sfr wanttocomputetheminimumtemperaturevaluesforUV-shielded thesimplermethod. Thisreveals thecosmicraysasthemost im- gasandsince supersonic turbulence(and thusshock-heating) has portantfeedbackaspectofstarformationcapableofsignificantly usually dissipated in dense pre-stellar gas cores where the initial alteringitsinitial conditions during events of high star formation conditionsofSFareset. density via the strong heating of the deeply embedded and UV- FromFigure1itcanbeseenthattheminimumgastempera- shielded dense gasregions of molecular clouds. It canthus oper- turespossibleinextremeCRDRsarelowerthanthosecomputedby ateunhinderedinthehighdustextinctionenvironmentsofextreme Papadopoulos(2010),aresultoftheextracoolingpoweremanating starburstssuchaslocalULIRGsorhighredshiftSMGs. fromthenowincludedatomictransitionsthatbecomeexcitedatthe hightemperaturesnowpossibleinanISMpermeatedbylargeCR energydensities.Neverthelesstheseminimumpossiblegastemper- 2.2.1 Testingtheresultsforstrongerradiationfields aturesremain 5–10timeshigherinextremeCRDRsthanthosein ∼ Wealsoranthesamegridofmodelswiththeincidentfar-UVra- theMilkyWayorgalaxieswithmoderateρ˙ values.AnyIRra- sfr diationfieldscalingexactlyastheCRenergydensitieswhichcor- diation“leaking”deepinthecloudandwarmingtheconcomitant responds tothe maximum incident radiation fieldthat can be ex- dustabove (8–10)K,oranyremnantturbulentgasheating(Pan& ∼ pectedfordensegascores(inpracticepre-stellarcoresarealways Padoan2010)canonlyraisetheseminimumtemperaturesfurther. UV-shieldeddeepinsidemolecularclouds).Thedusttemperatureis nowmoreimportantthaninthepreviouscaseofG◦=1,andiscom- 2.2 Solvingforthecoupledchemicalandthermalstateof putedaspartofthecode.Itsvalueinsidethecloudcaninfluence: UV-shieldedgascoresinextremeCRDRS thecoolingbyemittingIRphotonswhichinteractwithlineradia- tivetransfer,theH formationbychangingthestickingprobability, The thermal balance equation for UV-shielded, CR-heated gas 2 theevaporation/condensation of molecules, and most importantly (Equation 2) and its solutions (Figure 1), while physically trans- thegas-grainheating/cooling.TheUCL-PDRcodeusesamodified parent, they do not account for the fact that ISM chemistry (and versionoftheformulaofHollenbach,Takahashi,&Tielens(1991) thus the abundance of coolants) is also strongly CR-regulated in (hereafterHTT)correctedforthevariousmeangrainsizes. such regions. This makes the problems of thermal and chemical TheHTTformulahasbeenfurthermodifiedtoincludeatten- balanceofCR-dominatedgasstronglycoupledthatmustbesolved uation of the far-IR radiation. The incident FUV radiation is ab- together,especiallygiventheverylargeCRenergydensitiespos- sorbedandre-emittedintheinfraredbydustatthesurfaceofthe sible in the CRDRs of compact starbursts. We do so by utilizing cloud (up to A 1mag). In the HTT derivation, this FIR radia- the advanced time-dependant UCL-PDR code (the latest version v∼ tion then serves as a second heat source for dust deeper into the describedinBelletal.2007)tocomputegastemperaturesofCR- cloud.Howeverintheirmodelthissecondaryradiationcomponent heated molecular cloud interiors self-consistently with their CR- isnotattenuatedwithdistanceintothecloud,remainingundimin- regulatedchemistryforawiderangeofCRenergydensities.This ishedwithdepthandleadingtohigherdusttemperaturesdeepinto model has already been successfully used several timesto model thecloud,whichinturnheatsthegastounrealistictemperatures. PDRsintheGalaxy(e.g.Thietal.2009). AttenuationoftheFIRradiationhasbeenintroduced byusingan The heating mechanisms included are: (i) photoelectric ef- approximationfortheinfrared-onlydusttemperaturefromRowan- fect from silicate grains and Polycyclic Aromatic Hydrocarbons (PAHs), (ii) H formation on gain surfaces, (iii) H photodisso- Robinson(1980),hisEquation30b:T=T◦(r/r◦)−0.4 wherer◦ is 2 2 theclouddepthcorresponding toA =1magouter’slab’thatpro- ciation, (iv) H UV fluorescence, (v) CII recombination, (vi) in- v 2 cessestheincidentFUVradiationandthenre-emitsitintheFIR. teractionoflow-energycosmicrayswiththegas.Thelatterdom- From Figure 3 it can be readily seen that the gas tempera- inategasheatingdeepinsideH clouds(A >5)wheredensegas 2 v turesremaininvariant beyond A 5evenwithwithincident far- coresresideandtheinitialconditionsforstarformationareset.At v∼ UVfieldsasenhancedastheCRenergydensities.Thisessentially cloudsurfaceshotgasemitsLyαandOI63µmlineswhiledeeper leavesCRsastheonlystrongfeedbackfactorofstarformationop- in (A >0.1), gas cooling occurs via fine-structure line emission v eratingefficientlydeepinsidemolecularclouds.Moreover,intense ofoxygen andneutral andsinglyionizedcarbon. Vibrational and CR heating of UV-shielded gas strongly decouples gas and dust ro-vibrationallinesofH andCOalsocoolthegaswhileCOrota- 2 temperatureevenathighdensities(Figures1,2,3)withimportant tionallinesareexcellentcoolantsforthecoldinnerregionsasthe implications on the gas fragmentation properties and thus on the firstrotationally-excitedlevelreachesdownto5.5K.Theinterac- emergentstellarIMF(section3.2). tionbetweenthegasandthedustgrainsactsascoolingorheating agentforthegasdependingonthedifferencebetweenthegasand dusttemperature.H andCOself-shieldingaretakenintoaccount. 2 Thecodecalculatesthegaschemicalabundances, emergentcool- 3 NEWINITIALCONDITIONSFORSTARFORMATION, inglinefluxes,andtemperaturesself-consistentlyateachdepthin ANDTHESTELLARIMFINEXTREMECRDR thecloud, andithasbeenbenchmarked againstother state-of-the S artphotodissociationregioncodesinRo¨llig,M.etal.(2007). Thenewdetailedthermo-chemicalcalculationspresentedheresup- We set a nominal incident far-UV field of G◦=1 in Habing porttheresultsfromthepreviousstudyofCRDRsandtheeffects 4 Papadopouloset al. n =5 103 cm-3 n =104 cm-3 H H CR=10,000 CR=10,000 100 ) 100 CR=1000 ) CR=1000 K K ( CR=100 ( CR=100 T T CR=10 CR=10 CR=1 CR=0.2 10 10 CR=0.2 CR=1 T T dust dust 0.1 1.0 10.0 0.1 1.0 10.0 A A V V n =105 cm-3 n =106 cm-3 H H CR=10,000 CR=10,000 100 100 CR=1000 CR=1000 ) ) K K ( CR=100 ( T T CR=100 CR=10 CR=10 10 CR=0.2 CR=1 10 CR=0.2 CR=1 T T dust dust 0.1 1.0 10.0 0.1 1.0 10.0 A A V V Figure2.Thegastemperature profilesversusopticalextinction insidemolecularcloudsimmersedinarangeofCRenergydensities,estimatedusingthe time-dependantUCL-PDRcodesolvingbothforthermalandchemicalequillibriumateachpointofthecloud.TheCRenergydensitiesrangefromGalactic values∼(0.2–1)×UCR,Gal,tolow-levelstarformingsystems∼10×UCR,Gal,andextremestarbursts∼(103–104)×UCR,Gal.Thedensitiesencompassthe rangetypicalforstar-formingmolecularclouds,andtheincidentfar-UVfieldassumedisG◦=1(inHabingunits).ThedusttemperatureTdust(Av)profile isindicatedbythedashedblackline.Strongerradiationfieldsreachingthedensepre-stellarcoresdeepinsidemolecularclouds(e.g.becauseof“leaking” far-UVradiationfromO,BstarsinsidethetypicallyclumpymolecularISM),canfurtherraisethegastemperaturesforAv65,whiledeeperthanthatgas temperaturesremainalwaysCR-controlled.Thesmall∼10%riseofTk(Av)atthehighestdensitiesandUCRvaluesforAv&5islikelyanartifactofthe highopticaldepthsofCandCOatsuchlargeclouddepths(seeBayetetal.2010). ofhighU valuesontheinitialconditionsofstarformation(Pa- wellaboveT (8–10)KexpectedintheirCRDRs.Usinginap- CR dust ∼ padopoulos 2010). Thethermal stateofUV-shieldeddensegasis propriatePDR-typeinitialconditionsofstarformationinnumerical indeed dramatically altered in the CRDRs of extreme starbursts, models:a)wouldmakethemhard-pressedtoaccountevenforthe and this will affect its Jeans mass, gas fragmentation properties, near-invariantIMFfoundintheGalaxy(asthewiderangeofphys- and thecharecteristic massM(∗) of young stars. Thiscontradicts ical conditions initsmassive PDR gasphase would yield awide ch theresultsbyElemgreenetal.(2008)which,whilecorrectlycon- rangeofIMFs),b)omitsthesignificant,CR-induced,thermalde- sideringtheUV-shieldedgasphaseastheonewheretheSFinitial couplingbetweengasanddust(Figures2,3).Thelatterfundamen- conditionsareset,itomittedCRsfromitsthermalbalance. tallyimpactstheso-calledinflectionpointofeffectiveequationof state(EOS)usedinallrealistic(i.enonisothermal)numericalsim- Itmustbepointedoutthatwhileseveralotherstudiesinvesti- ulationsofmolecularcloudfragmentation(e.g.Jappsenetal.2005; gatedtheeffectsofstarburstenvironmentsontheIMF,all(besides Bonnelletal.2006),andthisisfurtherdiscussedinsection3.2. theonebyElmegreenetal.2008)failedtoconsidertheISMphase wheretheinitialconditionsofSFareactuallyset(theCRDRs).In- steadtheyused physicalpropertiestypical ofPDRs(e.g.Klessen etal.2007)which,whiledominatingtheobserveddustSEDsand 3.1 ThecharacteristicmassofyoungstarsinCRDRs molecularlineSpectralEnergyDistributions(SLEDs)ofgalaxies, theyarehardlyrepresentativeofthephysicalconditionsexpected Thethermalstateofthesedensepre-stellargascoresisnolongera intheirCRDRs.EvenformildlySFIR-luminousgalaxiesthedust near-invariantbutisinsteadstronglyalteredbythehighCRenergy temperaturetypicaloftheirglobalSEDsis (30–40)K,whichis densitybackgroundsofextremestarbursts,inevitablyaffectingthe ∼ Starformationin extremeCRDRs 5 n =5 103 cm-3 n =104 cm-3 H H 100 100 ) ) K K ( ( T T 10 10 0.1 1.0 10.0 0.1 1.0 10.0 A Go=CR=10,000 A V Go=CR=1000 V Go=CR=100 dust gas n =105 cm-3 Go=CR=10 n =106 cm-3 H Go=CR=1 H 100 100 ) ) K K ( ( T T 10 10 0.1 1.0 10.0 0.1 1.0 10.0 A A V V Figure3.ThecomputedgasanddusttemperatureprofilesversusopticalextinctioninsidemolecularcloudsasinFigure2,butnowwiththeincidentfar-UV radiationfieldalsoscalingastheCRenergydensity.Thenowstronglyvaryingdusttemperaturesareshownalongwiththegastemperaturesasdashedlines withthesamecolor.ThegastemperaturesatAv=5–10remainalmostinvariant(comparewithFigure2)demonstratingthenear-invarianceofthethermalstate ofthegas(andthusofthestarformationinitialconditions)deepinsidemolecularcloudswhenitcomestoitsdependenceontheradiationfield.Theabrupt Tkdropathighdensities(∼(105−106)cm−3)andG◦valuesisduetoalackofatomic/ioncoolantsintheH-richregion:asHisconvertedintoH2,theH2 formationheating(whichwasthemajorheatingagent)dropswhileatthesametimeCIcooling(CIIisconvertedtoCIduetoH2/Cmutualshielding)andH2 coolingsharplyincreases.ForhighUCRthegasremainmuchwarmerthanthedust,markingaCR-inducedthermaldecouplingofgasanddust(section3.2). fragmentationofthosegasregionstowardsprotostars.Indeed,the a higher M(∗) and thus a top-heavy IMF (Larson et al. 2005; ch JeansmassforsuchCR-heatedcores Elmegreenetal.2008).Thewiderangeofdensitiesoverwhichthis occurs makes this conclusion independent of the specific details ofmolecular cloudfragmentationaslongasM [n(˜r,t),T (˜r,t)] J k M(c) = kBTk 3/2ρ−1/2 = drivesthefragmentationprocessoutcomeateachspatialandtem- J (cid:18)GµmH2(cid:19) c poralpoint(˜r,t).Thelatteristhecurrentconsensusontheroleof T 3/2 n (H ) −1/2 theJeansmassinmolecularcloudfragmentationtowardsastellar = 0.9 10Kk 10c4cm2−3 M⊙, (3) IMF, though the views regarding the particular gas phase whose (cid:18) (cid:19) (cid:20) (cid:21) M setstheM(∗)vary(e.g.Klessen2004;Bonnelletal.2006). J ch rises from M(Jc)∼0.3M⊙ when nc(H2)=105cm−3 and Tk=10K IfM∗ch)∝hMJiattheonsetofmolecularcloudfragmentation (typicalfortheGalaxy),toM(Jc)∼(3–10)M⊙ forTk∼(50–110)K (Klessen 2004), the CR-boost of M(c∗h) in extreme CRDRs is ob- expectedforsamedensityH gasimmersedintheverylargeCR vious from the large vertical displacement of the M values in 2 J energydensitiesofextremestarbursts.Thenear-invarianceofM(c) Figure4.Inanon-isothermalgravoturbulentmolecularcloudfrag- J in galaxies (Elmegreen et al. 2008) is thus upended in starbursts mentationscheme(e.g.Jappsenetal.2005)itisM(∗) M (n )ata ch ∼ J c withhighSFRdensities.InFigure4theM valuescomputedfor characteristicgasdensityn abovewhichefficientgas-dustthermal J c molecular gas immersed in the CRDRsof compact extreme star- couplinglowersthegastemperatureinCRDRstowardsaminimum bursts are shown for a gas density range typical for star-forming valueofT (min) T (Larson2005).FortheGalaxythisoccurs k dust molecularclouds.ForU /U >103,M increasesbyafac- atn 105cm−3,∼adensitythatmarksalsothetransitiontonear- CR CR,Gal J c ∼ tor of 10 across the entire range, which will invariably lead to isothermalcloudregionswherethermalmotionsdominateoversu- ∼ 6 Papadopouloset al. exactshapeandmassscaleofthenewstellarIMFcanonlybedeter- mined with dedicated molecular cloud fragmentation simulations thatmakeuseofthenewSFinitialconditionsinextremeCRDRs, 100.0 alongwithanEOSappropriate fortheverydifferentthermaland ionizationstateoftheirmoleculargas. ) 10.0 MSun CR=10,000 3.2 CRDRs:SFinitialconditions,theEOSinflectionpoint ( M Jeans 1.0 CR=1000 TpahreamiemtrpiozertdanacseapooflytthroepeEPff=eKctiρveγ,iEnqtuhaetifornagmofentSattaiotenp(EroOpSer)-, tiesandemergent massspectrumof turbulentself-gravitatinggas CR=100 hasbeenwell-documentedinafewseminalpapers(Lietal.2003; Jappsen et al. 2005; Bonnell et al. 2006; Klessen et al. 2007) re- CR=10 0.1 vealingacrucialroleforγ indefiningtheshapeof thecollapsed CR=1 CR=0.2 gascoremassdistribution(andhencethestellarIMF).TheEOS, 103 104 105 106 its polytropic index γ as a function of density, and their depen- Gas density (cm-3) dance on ISM properties such as metallicity, and physical condi- tions such as the elevated CMB at high redshifts have also been well-documented (Spaans & Silk2000, 2005), with the so-called Figure 4. The Jeans mass estimated from Equation 3, and gas tempera- turesinsideCRDRs,computedforthecorrespondingdensities (usingthe EOS inflection point emerging as a general characteristic. In an fullUCL-PDRcode)andaveragedovertheinnerAv=5–10cloudregions EOSthatseemswell-approximatedbyapiecewisepolytropewith (Figure2).Lowmassstarformationwillbeclearlysurpressedinextreme twodistinctγ values,thelatterissimplythecharacteristicdensity CRDRsforaMJ-drivengasfragmentationtowardsastellarIMF(seetext). ncforwhichγ<1whenn<nc,andγ&1forn&nc.Itscrucialrole indeterminingtheIMFmassscale,discussedbrieflyin3.1,isdocu- mentedthroughouttheliterature(Larson2005;Jappsenetal.2005; personic turbulence (Larson2005; Bergin& Tafalla2007). From Elmegreen2008).Instarburstenvironmentsa“sharpening”ofthat Figures2,3itisobviousthatthehighCRenergydensitiesinex- inflection point is thought to occur because of warm dust. There tremeCRDRswillkeepthegasanddustthermallydecoupled,with γ reachesupto 1.4andstaysaboveunityfor densitiespast the mTka(rmkeind)b≫yTthdeuostn,saentdofthtuhseramcahlaeraqcutiellriibstriicumdenbseittwyeceanngnaoslaonndgedrubste. inflectionpointn∼c∼(104–105)cm−3(Spaans&Silk2005),which surpressesmolecularcloudfragmentationwhile“tilting”ittowards Such CR-induced effects have been long suspected for the dense topheavyIMFs(e.g.Lietal.2003;Klessenetal.2007). moleculargasintheGalacticCenter(Yusef-Zadehetal.2007). Unfortunately PDR-like ISM has been used to set the SF In the CR-innudated molecular clouds of extreme starbursts initialconditionsforstarburstsinalloftheaforementionedmodels, a characteristic density in the ISM can now remain only as the eventhoughthedustinCRDRs(wheretheseconditionsarereally onewherethesupersonicturbulencehasfullydissipatedandover- set)remainscool,muchlowerthanthegas,especiallyinextreme taken by thermal motions in pre-stellar cores, a prerequisite for CRDRs.Thisinsensitivity of the CRDRdust temperatures to the their efficient gravitational collapse (e.g. Krumholz & McKee ambient far-UV radiation field can be demonstrated analytically 2005).Theaveragedensityofsuchtransitionregionscanbeesti- bysimplyconsideringthelocationofCRDRsdeepinsidefar-UV matedfromtwowell-knownscalingrelationsinmolecularclouds: illuminatedmolecularcloudsatA & 5(e.g.McKee1989).Then σsiVze()r)a=fσte◦r(sre/tpticn)ghσ(lin(emwinid)t=h(-3sikze)Tan/dµhmni=n)1◦/(2r/apsct)h−e1m(dineinmsiutym- Tdust,SB/Tdust,Gal∼[exp(−Av/v1.086)×G◦,SB/G◦,Gal]1/(4+a) V B k H2 will be the radiation induced boost of the CRDR dust tempera- linewidth possible, and solving for the corresponding mean vol- ture in starbursts T with respect to that in the quiescent umedensity, dust,SB Galactic environments T 8K. For a dust emissivity dust,Gal ∼ law of α=2, a large enhancement of the far-UV radiation field hntri=n◦(cid:18)µ3mkBHT2σk◦2(cid:19)1/2h ∼11n◦(cid:16)kmσs◦−1(cid:17)2(cid:18)1T0Kk (cid:19)−1(4.) ytGeime◦l,SdpBienr/agGtuT◦r,edGupaslrt=o∼1fi10le74s,Kp,aanisdnt AgAovod=55asgihrtoeewismneTinndtuFwsitgi,tSuhBre/thT3e.dudItsetti,asGilaaelcd=tu2da.1ull5syt, v ∼ For h=1/2 (expected for gas clouds virialiazed under ex- this robustness of dust temperatures inside CRDRs, along with a ternal pressure, Elemgreen 1989), σ◦=1.1kms−1, and for strong gas-dust coupling at high densities (when UCR values are n◦=few 103cm−3, it is ntr few 104cm−3. For the CR- modest) that helps retain: thethermal statesof thepre-stellar gas × h i∼ × boosted gas temperatures in extreme starbursts where typically cores,theM(∗)values,andtheIMF,asnearinvariantsoverawide Tk(min) 100K(Figures1,2,3): ntr few 103cm−3,andthe rangeofambcihentPDRconditions(Elmegreenetal.2008) ∼ h i∼ × (turbulentgas) (thermalcore)transitionwilloccuratlowerdensi- ThusPDRconditions,whilealwaysdominatingtheobserved → tiesaswellashigher(CR-boosted)gastemperaturesthaninquies- dust SEDsand molecular SLEDs of even mildly SF galaxies (as centCRDRs.ThiswillthenshifttheexpectedM(∗)bothvertically PDRsarewarmandcontainthebulkoftheISMmass)theyarenot ch (highertemperatures),aswellastotheleft(lowerdensities)ofFig- representativeoftheSFinitialconditionsingalaxies,whichareset ure4,yieldingevenhigherM(∗) valuesthanthoseresultingfrom inCRDRs.Thisleavesthepre-stellargasphaseinthem,amount- ch onlyaverticalshiftofM becauseofCR-boostedgastemperatures. ingtoafew%ofthemassper GiantMolecular Cloud( SFeffi- J ∼ Thusirrespectiveofmolecularcloudfragmentationdetails,a ciency per typical GMC), yet tobe explored interms of itsEOS muchlargercharacteristicmassofyoung starsisexpectedinthe and fragmentation properties. A detailed exploration of those in CR-innudatedmolecularcloudsofextremestarbursts.Howeverthe CRDRs will be the subject of a future paper, but Figures 2 and Starformationin extremeCRDRs 7 4.1 Asequenceofρ˙sfr-dependentstellarIMFs Thedependanceofthethermo-chemicalandionizationstateofpre- stellar dense gas in CRDRs on the average U permeating the CR 1000.0 CR=10,000 ISMofagalaxynaturallylinkstheSFinitialconditionsandthere- sultingIMFtotheaverageSFRdensityρ˙ ,providedU ρ˙ . CR=1000 sfr CR ∝ sfr The details of CR transport/escape mechanisms in quiescent SF 100.0 CR=100 disksandstarburstswilldefinetheproportionalityfactor(seeSuck- ol co hovetal.1993fordetailes).Thus,oncesimulationsofmolecular /tn CR=10 gasfragmentationinCRDRsproducelibrariesofthecorresponding y td 10.0 IMFs,thesewillbenaturallyparametrizedbyρ˙sfr,andhenceac- tualobservables(especiallyintheupcomingeraofhigh-resolution CR=1.0 imagingatsubmmwavelengthswithALMA). 1.0 CR=0.2 4.2 Implicationsforhierarchicalgalaxyformationmodels:a 0.1 physically-motivatedIMFbimodality 103 104 105 106 Gas density (cm-3) In hierarchical galaxy formation models a bimodal IMF, top- heavy for mergers/starbursts and regular for disk/regular-SF sys- tems, has been postulated to explain the populations of the Figure5.Theratioofdynamical/coolingtimescalesinUV-shieldedmolec- starbursting/merger-drivensubmillimetergalaxies(SMGs)andreg- ulargasofCRDRs(Av=5-10)estimatedusingtheUCL-PDRcodeandcos- ularSFdisksliketheLy-breakgalaxies(LBGs)athighredshiftsin micrayenergydensitiesrangingfromthoseexpectedinquiescentGalactic tocompactextremestarbursts. ΛCDMcosmology(Baughetal.2005).TheCR-controlledSFini- tialconditionsingalaxies,unhinderedbydustextinction,cannow set this on a firm physical basis. From Figures 2 and 4 is obvi- ous that for typical SF disks (U (0.2–10) U ) no sub- CR CR,Gal ∼ × stantial effects on the gas temperatures and Jeans masses in CR- 3 already show that CRs, by inducing astrong decoupling of the DRs are expected while in the extreme CDRDs of compact star- gtiavseaEnOdSduinsfltetecmtiopnerpaotuinretsfowritghasTdke≫nsTitideusstu,pthtoeyn“=e1r0as6ec”ma−ny3.pTuhtais- bursts(UCR∼(103–104)×UCR,Gal)verywarmgasandlargeJeans masseswillleadtoaneffectivesurpressionoflow-massstarforma- will maintain efficient molecular gas cooling, with cooling times tionandhenceatop-heavyIMF.Formerger-drivenstarformation alwaysmuchshorterthandynamicaltimes(Figure5),andγ<1in the latter may characterize entire star-formingepisodes (i.e. until CRDRs over the entire gas density range explored here. In such the in-situmolecular gas reservoir isnearly exausted) as dissipa- regions gas gravoturbulent fragmentation will then occur equally tioncancontinously“funnel”thelargemoleculargasmassesofthe efficientlyfromn 5 103cm−3upto 106cm−3yieldingapure ∼ × ∼ progenitorstowardsverycompact( (100–500)pc)regionswhere powerlawIMF(Spaans&Silk2000;Lietal.2003). ∼ extreme, Eddington-limited SF, takes place with tremendeous IR Thelatterresult,alongwithourdiscussionin3.1makesclear brightness of σIR (few) 1013L⊙kpc−2 (e.g. Thompson 2009). that the stellar IMF will be very different in extreme CRDRs, ∼ × Suchhigh IR brightness, and thus high SFRdensities, havebeen thoughonlydetailedgravoturbulentsimulationswiththeappropri- recentlydeducedalsoinadistantSMG(Swinbanketal.2010). ateinitialconditions,andperformedwithanewsuitableEOScan ThusCR-controlledSFinitialconditionsnaturallyyieldabi- decideitsexactshapeandmassscale.Itmustbealsonotedthatthe modalSFprocessingalaxies,withhighρ˙ valuesprovidingthe sfr veryhighionizationfractionsinextremeCRDRscannow“anchor” branchingpoint,asfollows: the magnetic field for much longer periods, and at much higher (merger-drivenSF) (highρ˙ ) (highU ) (topheavyIMF), sfr CR densities,asambipolardiffusioninsuchregionsisnowmuchpro- → → → (regulardiskSF) (lowρ˙ ) (lowU ) (GalacticIMF). sfr CR longed(Papadopoulos2010).Magneticfieldsmaythusremainim- → → → This proposed ρ˙ -IMF link can then parametrize such an SF sfr portant during much later stages of gas fragmentation, even in a bimodality in hierarchical galaxy formation, once IMF=F(ρ˙ ) sfr highlyturbulentmedium,andmaythushavetobeincludedinthe “libraries” are obtained from e.g. gravoturbulent simulations of simulationsofthisprocessinextremeCRDRs. molecularcloudfragmentationforarangeofρ˙ values. sfr A top-heavy IMF in high-ρ˙ systems will have very seri- sfr ous implications on the actual SFRs deduced from the IR lumi- nositiesofthesetypicallyverydust-enshroudedsystems(whereall thefar-UVlightfrommassivestarsisreprocessedintoIR).Their CR-inducedtop-heavyIMFswillnowcorrespondtoseveraltimes 4 CONSEQUENCES,OBSERVATIONALPROSPECTS higherenergyoutputsperstellarmass,andtheSFRsinsuchsys- temswillhavetobereviseddownwardsbyidenticalfactors. ThecurrentstudysupportstherecentlysuggestedroleofCRsasa decisiveSFfeedbackfactor,capableofalteringtheSFinitialcon- ditionsandtheIMFinextremeCRDRs.Inthissectionwediscuss 4.3 Aρ˙ -dependentIMF:integratedgalacticIMFs someoftheconsequencesbeyondtheimmediateissuesoftheISM sfr dependentonstarformationhistory? andthestellarIMFinsuchenviornments,andoutlinecurrentand futureobservationsthatcanshedlightonthesenewSFinitialcon- A ρ˙ -dependent IMF as the natural outcome of CR-controlled sfr ditionsthatwillbetypicalinhighSFRdensityeventsintheUni- SFinitialconditionsingalaxiescanalsonaturalyyieldintegrated verse. galacticIMFs(IGIMFs)thatdependonthestarformationhistory 8 Papadopouloset al. (SFH) of galaxies. This is because ρ˙sfr can be a strong function yields M(c∗h)(M82)>2M⊙ (Fig.4). However the Galactic Center of the evolution of a galaxy, especially during its early and pre- does offer an example of regions with locally boosted U val- CR sumably gas-rich state even when no mergers are involved. Such uesthatdonotnecessarilycorrespondtotop-heavyIMFsintheir a SFH-dependance of the IGIMFshas been considered before as vicinity,possiblybecausesuchboostsaretooshortandtransientto thecause of thewell-knownmass-metallicityrelationof galaxies systematicallybiasthelocalemergentIMF. (Ko¨ppen,Weidner,&Kroupa2007). Stronger evidence for top-heavy IMFs exists in UCDs, small stellar systems with r (10–30)pc (half-light radius) e where (106–107)M⊙ of gas ∼have been converted into stars 4.4 CRpropagationindensemoleculargas:adynamicview at SFR∼ (10–100)M⊙yr−1 (see Dabringhausen et al. 2009 h i∼ isneeded and references therein). Unlike the GC where IMF studies are hindered by high extinction and tidal disruption of clusters, Setting U ρ˙ in CRDRsassumes that CRs can freely pene- CR∝ sfr and where any high-ρ˙ SF episodes may have been short- trate and warm the entire volume of a GMC down to its densest sfr lived (and thus could not significantly bias its average IMF to- UV-shieldedregions.Recentgamma-rayobservationshavedirectly wards a top-heavy one), the IMFs in UCDs are much more measuredCRenergydensitiesinthenucleusofanearbygalaxyon amenabletosystematicstudies,whiletheirSFepisodes havehad parwiththosecomputedforextremeCRDRsandexpectedfromits ρ˙ (UCDs) & ρ˙ (ULIRGs) ! They are thus ideal targets for SFRdensity, whileindicatingonlymildlycalorimetricconditions h sfr i h sfr i studyingtheIMFresultingfromcompletedhigh-ρ˙ SFevents. fortheCR/ISMp-pinteractions(Aceroetel.2009).Thelattersup- sfr Thenext bestthingbesidesstudiesoftheIMFitselfisstud- portsanunhinteredCRpenetrationthroughthemolecularclouds. iesoftheISMinCRDRsfromwhichtheIMFemerges,especially NeverthelessAlfve´nwavesgeneratedoutsidesuchcloudsbyanet those in compact extreme starburstswhere ρ˙ isvery high (e.g. flux of CRs in their environments could be effective in keeping sfr ULIRGs)versussystemswithmoredistributedSFandmuchlower low energyCRsbelow afew hundred MeV (thosemost effective ρ˙ values.Theuniqueobservationalsignaturesoftheverywarm in heating the gas) outside their high density regions (Skilling& sfr densegaswithhighionizationfractionsexpectedinextremeCR- Strong 1976), which in turn would affect their thermal balance, DRshavealreadybeendiscussedinsomedetailbyPapadopoulos theirfragmentationproperties,andtheemergentstellarIMF.Thus (2010), and the interested reader is refered to this work. In sum- the coupled problems of CR transport, magnetic field dynamics, mary, intheeraofHerschel and theupcoming eraofALMA the and gravoturbulent evolution of non-isothermal dense molecular sole main obstacle is the degeneracy of extreme CRDR diagnos- gaswithhighdegreesofionizationlikethoseexpectedincompact tic with that of X-ray Dominated regions (XDRs) induced in the extremestarburstssuchasArp220(e.g.Greveetal.2009)mustbe ISMbyanX-rayluminousAGN.Indeed,unlessanX-rayluminous investigatedwithdedicatedMHDsimulations. AGNcanbeexcludedbyotherindependentmeans(e.g.deepX-ray observations),itcanbedifficulttotellextremeCRDRsandXRDs apartinasimplefashionasevenexotichighexcitationspeciessuch 4.5 Observationalprospects asOH+ andH O+,recentlydetectedbyHerschelinthearchety- 2 Thedetectionsofγ-rayemissionfromtwonearbygalaxies,namely pal ULIRG/QSO Mrk231 and attributed to XDRs (van der Werf M82 and the starburst nucleus of NGC253 (Acciari et al. 2009, et al. 2010), could be partlydue to CRDRs.Inrecent work Mei- Aceroetal.2009),aretwoveryimportantrecentdevelopmentsin jerinketal.2010provideadetaileddiscussionofdiagnosticslines γ-rayastronomy,giventhatγ-rayemissionresultsfromCRproton inextremeCRDRsversusXDRsandthekeyobservationsthatcan interactionswiththemolecularISM.Thisallowssuchobservations separatethem. todirectlymeasuretheaverageCRenergydensitiesinSFenviron- FinallyitisworthnotingthatX-raysandXDRswillhavesim- ments, and thus sensitivesuch measurements inULIRGssuch as ilareffectsasCRsontheJeansmassandtheIMFofUV-shielded thenearbyULIRGArp220willbeveryimportantinrevealingex- densegasregionsasbothcanvolumetricallywarmsuchregionsto tremeCRDRsinsuchsystems. hightemperatures.ThiswaspointedoutrecentlybyBradfordetal. Ontheotherhand,directmeasurementsoftheexpectedtop- (2009) for the ISM of a distant QSO, and constitutes an omitted heavy IMFs in the heavily dust-enshrouded compact starbursts aspectofAGNfeedbackonstarformation.Thishasbeenstudied whereextremeCRDRswouldresideareimpossible.Howeverany recentlyandshowntoleadtoatop-heavyIMF(Hocuk&Spaans caseswherethe“end”products,i.e.thestellarpopulations,ofhigh- 2010).XDRsbesideselevatingT (min)tomuchhighervaluesthan k ρ˙sfr SFeventscanbeobservedandtheirIMFdeterminedsuchas intheGalaxytheyalsoyieldTkin Tdust (andthustheycanalso theGalacticCenter(GC)andlocalUltraCompactDwarfs(UCDs) “erase”theEOSinflectionpoint),th≫oughunlikeCRDRstheirinflu- allow such direct observational tests. There is indeed strong evi- enceontheISMisnecessarilylimitedbythe 1/R2 geometric ∼ AGN denceofCRheatingofthedensemoleculargasintheGC,setting factor(R thedistanceoftheirradiatedgasfromtheAGN). AGN T >T ,andexpectedstrongeffectsonthelocalJeansmass kin dust andambipolardiffusiontimescales(Yusef-Zadehetal.2007).Un- 5 CONCLUSIONS fortunately,initialassertionsaboutatop-heavyIMFintheGC(e.g. Nayakshin&Sunyaev2005) andthemassiveArchesclusternear Wehaveconducted new,detailedcalculationsonthethermalbal- it (Figer et al. 1999; Stolte et al. 2002, 2005) have not been cor- anceofUV-shieldeddensegasinCosmic-Ray-Dominated-Regions roboratedbylaterstudies(Kimetal.2006; Espinozaetal.2009; (CRDRs),theISMphasewheretheinitialconditionsofstarforma- Lo¨ckmannetal.2010).Ontheotherhandsomeevidenceexistsfor tionaresetingalaxies,inordertoexamineindetailtheeffectsof atop-heavyIMFinthenuclearstarburstofM82(e.g.Riekeetal. extremeCRDRsonthemassscaleofyoungstarsandtheIMFre- 1980; 1993), and asignificantly enhanced UCR iscertainly there centlysuggestedbyPapadopoulos(2010).Ourresultscanbesum- ( 500 UCR,Gal, directly measured via γ-ray observations; Ac- marizedasfollows: c∼iariet×al.2009)toachievethisviaaCR-boostedM(∗) IMFmass 1.Weconfirmthehightemperaturesofdensegascoresinthe ch scale.IndeedforsuchU values,settingM(∗) M (105cm−3) extreme CRDRs expected in ULIRGs and all systems with large CR ch ∼ J Starformationin extremeCRDRs 9 star formation rate densities (ρ˙ ), albeit at lower levels than the Burke&Hollenbach1983,ApJ265,223 sfr originalstudy. Dabringhausen J., Kroupa P., & Baumgardt H. 2009, MNRAS, 2.TheseCR-inducedhighergastemperatureswillleadto 10 394,1529 ∼ timeslargerJeansmassesacrosstheentiredensityrangetypicalin DownesD.,&SolomonP.M.1998,ApJ,507,615 suchregions,andthushighercharecteristicmassofyoungstarsin EalesS.,LillyS.,GearW.etal.1999,ApJ,515,518 theISMofgalaxieswithhighρ˙sfr. ElmegreenB.G.1989,ApJ,338,178 3.TheCRs,bydecoupling thethermalstateofthegasfrom ElmegreenB.G.,KlessenR.S.,&WilsonC.D.2008,ApJ,681, thatofthedustinCRDRskeepTk Tdustforalldensitiestypical 365 ≫ ofmolecularclouds.Thiseffectively“erases”thesocalledinflec- EspinozaP.,SelmanF.J.,&MelnickJ.2009,A&A,501,563 tionpointoftheEffectiveEquationofState,especiallyinextreme Frayer D. T., Ivison R. J., ScovilleN. Z., Yun M., Evans A. S., CRDRs,inevitablyalteringthefragmentationpropertiesofthegas. SmailIan,BlainA.W.,&KneibJ.-P1998,ApJ,506,L7 This effect, along with the expected much higher gas ionization FrayerD.T.etal.1999,ApJ,514,L13 fractions,necessitatesasearchforanewEOS,appropriateforCR- GenzelR.,LutzD.,SturmE.,etal.1998,ApJ,498,579 DRs. Genzel R., Tacconi L. J., Rigopoulou D., Lutz D., & Tecza M. 4. These new CR-induced ISM conditions provide a new 2001,ApJ,563,527 paradigmforallhigh-densitystarformationintheUniverse,with GoldsmithP.F.,&LangerW.D.1978,ApJ,222,881 CRsasthekeySFfeedbackmechanism,operatingunhinderedby GoldsmithP.F.2001,ApJ,557,736 extinctioneveninthemostdust-enshroudedstarbursts. GreveT.R.,BertoldiF.,SmailI.etal.2005,MNRAS,359,1165 5. The resulting ρ˙ -dependent IMF, yields: a) a natural bi- sfr GreveT.R.,PapadopoulosP.P.,GaoY.,&RadfordS.J.E.2009, modalbehaviourformerger-driven/starburstversusdisk/regular-SF ApJ,692,1432 galaxies,andb)integratedgalacticIMFs(IGIMFs)thatdependon GroenewegenM.A.T.1994,A&A,290,531 their star formation history, both withimportant consequences in HocukS.,&SpaansM.2010,A&A,(inpress,arXiv:1008.5284) galaxyformationandevolution. HollenbachD.J.,TakahashiT.,&TielensA.G.G.M.1991,ApJ, 6.IMFstudiesofstellarsystemsformedunderextremelyhigh 377,192 ρ˙ valuessuchasUltraCompactDwarfs,andmolecularlineob- h sfri HollenbachD.J.,&TielensA.G.G.M.1999,ReviewsofModern servationsoftheextremeCRDRsinnearbyULIRGscanprovide Physics,Vol.71,No.1,January1999 thefullpicture of CRDRpropertiesand their effectson theIMF. JascheJ.CiardiB.,&EnsslinT.A.2007,MNRAS,380,417 Regardingthelatter,thenowspacebornHerschelSpaceObserva- Jappsen A.-K., Klessen R. S., Larson R. B., et al. 2005, A&A, tory,andtheupcomingALMAholdparticularpromise. 435,611 KimS.S.,FigerD.F.,KudritzkiR.P.,&NajarroF.2006, ApJ, 653,L113 ACKNOWLEDGMENTS KlessenR.S.2004,Astrophysics&SpaceScience292,215 KlessenR.S.,SpaansM.,&JappsenA.-K.2007,MNRAS,374, WewouldliketothankPavelKroupafornumeroususefulconver- L29 sations,especiallyregardingtheIMFofUCDs,andJoergDabring- Ko¨ppenJ.,WeidnerC.,&KroupaP.2007,MNRAS,375,673 hausenforpointingouthisrelevantwork.WealsothankAndrew KrumholzM.R.,&McKeeC.F.2005,630,250 StrongfordiscussinguncertaintiesregardingCRtransportindense LarsonR.B.2005,MNRAS,359,211 molecularclouds,andtherefereeforcommentsregardingtheCR LehnertM.D.,&HeckmanT.M.1996,ApJ,472,546 energy densities and their effect on the IMF of M82. Padelis P. LiY.,KlessenR.S.,McLowM.-M.2003,ApJ,592,975 Papadopouloswouldliketodedicatethisworktothememory LiseauR.etal.1999,A&A344,342 ofhisdearfriendYannisBakopoulos,anexcellentmathemati- Lo¨ckmannU.,BaumgardtH.,&KroupaP.2010,MNRAS,402, cian,fellowscientist,andcommittedsocialactivistwhodiedon 519 6thofDecember2010. McKee,C.F.1989,ApJ,345,782 NayakshinS.,SunayevR.2005,MNRAS,364,L23 Papadopoulos,P.P.2010,ApJ,720,226 REFERENCES Pellegrini E. W., Baldwin J. A. Ferland G. J., et al. 2009, ApJ, AceroF.etal.(H.E.S.S.Collaboration),2009,Science,Vol.326, 693,285 1080 Ossenkopf V., Rollig M., Cubick M., & Stutzki J. 2007, in AcciariV.A.etal.(VERITASCollaboration),2009,Nature,Vol. MoleculesinSpaceandLaboratory,meetingheldinParis,France, 462,770 Editors:J.L.Lemaire,F.Combes,pg.95 BaughC.M.,LaceyC.G.FrenkC.S.,GranatoG.L.,SilvaL.,& PanL.,&PadoanP.2009,ApJ,692,594 BressanA.2005,MNRAS,356,1191 RiekeG.H.,LebofskyM.J.,ThompsonR.I.,LowF.J.,&Toku- BayetE.,HartquistT.W.,VitiS.,etal.2010,A&A,521,16 nagaA.T.1980,ApJ,239,24 BellT.A.,VitiS.,&WilliamsD.A.2007,MNRAS,378,983 RiekeG.H.,LokenK.,RiekeM.J.,&TamblynP.1993,412,99 BerginE.A.,&TafallaM.2007,ARA&A,vol.45Issue1,pg.339 Ro¨lligM.,etal.2007,A&A,467,187 Binns W. R., Wiedenbeck M. E., Arnould M., et al. 2008, New Rowan-RobinsonM.1980,ApJS,44,403 AstronomyReviews,Vol.52,Issue7-10,p.427 SakamotoK.,etal.2008,ApJ,684,957 BlainA.,SmailI.,IvisonR.J.,Kneib,J.-P.1999,MNRAS,302, SandersD.B.&MirabelF.1996,ARA&A,Vol.34 pg.749 632 Sanders. D. B., &Ishida C. 2004, ASP Conference Series, Vol. BonnellI.A.,ClarkeC.J.,&BateR.2006,MNRAS,368,1296 320,pg.230 BradfordC.M.,etal.2009,ApJ,705,112 SkillingJ.,&StrongA.W.1976,A&A,53,253 10 Papadopoulosetal. Smail I. 2002, Royal Society of London Philosophical Transca- tionsA,vol.360,Issue1801,pg.2697 SolomonP.M.,DownesD.,RadfordS.J.E.,&BarrettJ.W.1997, ApJ,478,144 SpaansM.,&SilkJ.2000,ApJ,538,115 SpaansM.,&SilkJ.2005,ApJ,626,644 StolteA.,GrebelE.K.,BrandnerW.,FigerD.F.2002,A&A,394, 459 StolteA.,BrandnerW.,GrebelE.K.,etal.2005,ApJ,628,L113 SuchkovA.,AllenR.J.,&HeckmanT.M.1993,ApJ,413,542 SwinbankA.M.,etal.2010,Nature,464,733 TacconiL.J.,NeriR.,ChapmanS.C.,etal.2006,ApJ,640,228 ThompsonT.A.2009,TheStarburst-AGNConnectionASPCon- ferenceSeries,Vol.408,pg.128 ThiW.-F.,vanDishoeckE.F.,BellT.,etal.2009,MNRAS,400, 622 van der Werf P. P.,and the HerCULES team, 2010, A&A, 518, L42 WolfireM.G.,etal.1995,ApJ,443,152 Yusef-ZadehF.,WardleM.,&RoyS.2007,ApJ,665,L123

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.