Mon.Not.R.Astron.Soc.000,000–000(0000) Printed14January2011 (MNLATEXstylefilev2.2) Extreme Cosmic-Ray-Dominated-Regions: a new paradigm for high star formation density events in the Universe 1 Padeli P. Papadopoulos,1 Wing-Fai Thi,2,3 Francesco Miniati,4 Serena Viti,5 1 0 1Argelander-Institutfu¨rAstronomie,AufdemHu¨gel71,D-53121Bonn,Germany 2 2UJF-Grenoble1/CNRS-INSU,InstitutdePlane´tologieetd’AstrophysiquedeGrenoble(IPAG)UMR5274,Grenoble,F-38041,France 3SUPA,InstituteforAstronomy,RoyalObservatoryofEdinburgh,UniversityofEdinburgh,BlackfordHill,EdinburghEH93HJ,UK n 4Institutfu¨rAstronomie,ETHZu¨rich,8093Zurich,Switzerland a J 5DepartmentofPhysicsandAstronomy,UniversityCollegeLondon,LondonWC1E6BT,UK 3 1 Accepted...;Received...;inoriginalform... ] O C ABSTRACT WeexamineindetailtherecentproposalthatextremeCosmic-Ray-Dominated-Regions(CR- . h DRs) characterize the ISM of galaxies during events of high-density star formation, funda- p mentally altering its initial conditions (Papadopoulos 2010). Solving the coupled chemical - o and thermalstate equationsfor dense UV-shieldedgasrevealsthatthe largecosmic ray en- r ergydensitiesin suchsystems (UCR∼ few×(103–104)UCR,Gal) will indeedraise themini- t mum temperatureof this phase (where the initial conditionsof star formationare set) from s a ∼10K(asintheMilkyWay)to∼50–100K.MoreoverinsuchextremeCRDRsthegastem- [ peratureremainsfullydecoupledfromthatofthedust,withTkin≫Tdust,evenathighdensi- 2 ties(n(H2)∼105–106cm−3),quiteunlikeCRDRsintheMilkyWaywhereTk∼Tdust when v n(H2)&105cm−3.Thesedramaticallydifferentstarformationinitialconditionswill:a)boost 6 the Jeans mass of UV-shielded gas regions by factors of ∼10–100 with respect to those in 9 quiescentor lessextremestar formingsystems,andb)“erase” theso-calledinflectionpoint 4 oftheeffectiveequationofstate(EOS)ofmoleculargas.Boththeseeffectsoccuracrossthe 2 entire density rangeof typicalmolecularclouds,and may representa newparadigmfor all 9. high-densitystarformationintheUniverse,withcosmicraysasthekeydrivingmechanism, 0 operatingefficientlyeveninthehighdustextinctionenvironmentsofcompactextremestar- 0 bursts.Thecharacteristicmassofyoungstarswillbeboostedasaresult,naturallyyieldinga 1 top-heavystellarinitialmassfunction(IMF)andabimodalstarformationmode(withtheoc- : curanceofextremeCRDRssettingthebranchingpoint).SuchCRDRswillbepresentinlocal v UltraLuminousInfraredGalaxies(ULIRGs)andmerger-drivengas-richstarburstsacrossthe i X Universewherelargeamountsofmoleculargasrapidlydissipatetowardscompactdiskcon- r figurationswhere they fuel intense starbursts. In hierarchicalgalaxy formation models CR- a controlledSFinitialconditionslendaphysicalbasisforthecurrentlypostulatedbimodalIMF inmerger/starburstversusquiescent/diskstarformingenvironments,whilenaturallymaking theintegratedgalacticIMFs(IGIMFs)afunctionoftheSFhistoryofgalaxies. Keywords: cosmicrays–dust,extinction–galaxies:starburst–galaxies:starformation – galaxies:interaction–ISM:molecules–ISM:supernovaeremants. 1 INTRODUCTION galaxies(SMGs),similarlymerger-drivenstarburstsinthedistant Universe,SFRscanevenreachthousandsofsolarmassesperyear Muchof thestellarmassintheUniverseformsinstarbursts(e.g. (Smail et al. 1997; Hughes et al. 1998; Ealeset al. 1999). While Blainetal.1999; Genzel etal.2001; Smailetal.2002), spectac- starsforminvariablyoutofmoleculargasthroughouttheUniverse ulareventsduringwhichthestarformationrate(SFR)ofagalaxy (e.g. Solomon et al. 1997; Frayer et al. 1998, 1999; Greve et al. risesfromfewsolarmassesperyear,typicalofspiralssuchasthe 2005, Tacconi et al. 2006), it is in its densest, UV-shielded, and Milky-Way (Mckee & Williams 1997), to several hundred solar Cosmic-Ray-Dominatedphasewherethestarformationinitialcon- masses per year as in the local Ultra Luminous Infrared Galax- ditions, and the characteristic mass of the emergent young stars ies (ULIRGs) (e.g. Sanders & Mirabel 1996; Genzel et al. 1998; M(∗)aretrulyset(Bergin&Tafalla2007;Elmegreenetal.2008). Sanders&Ishida2004)wheremerger-drivenstarburststakeplace ch Indeed,whilePhoton-Dominated-Regions(PDRs)containthebulk inverycompact(D 100–300pc)densegasdisks(e.g.Downes& ∼ ofthemoleculargasmassingalaxies(Hollenbach&Tielens1999; Solomon 1998; Sakamoto et al. 2008). In the so called sub-mm 2 Papadopouloset al. Ossenkopf et al. 2007), their widely varying physical conditions remain always far removed from those prevailing inUV-shielded CR=10,000 CR-dominateddensegascores.Thelocationofthelatterdeepin- sidemolecularclouds,astrongtemperatureregulationviatheon- setofgas-dustthermalequillibriumatdensitiesn(H )>104cm−3, ) 2 K 100 andthenearlycompletedissipationofsupersonicturbulence(Lar- e ( CR=1000 son2005;Bergin&Tafalla2007;Jappsenetal.2005),allhelpto r u keep the thermal state of typical CRDRs a near invariant over a at CR=100 r widerangeofISMenvironments. e p CR=10 m Cosmicrays(CRs),acceleratedinshocksaroundsupernovae e 10 CR=1 remnants(SNRs)orwindsassociatedwithO,Bstarclusters(e.g. s t CR=0.2 Binnsetal.2008),areresponsiblefortheheating,ionizationlevel, a G T =8K dust andchemical stateofsuchdenseUV-shieldedregionsinmolecu- larclouds(e.g.Goldmith&Langer1978;Goldsmith2001).More- over,whiletheirheatingcontributionrelativetothatfromthe(far- 1 UV)-inducedphotoelectriceffectinPDRs,orturbulence,canvary 103 104 105 106 withina galaxy and individual molecular clouds, CRs remain re- Gas density (cm-3) sponsible for setting the minimum temperature attainable in the gaseous ISM (e.g. Goldmith & Langer 1978; Bergin & Tafalla Figure1.ThetemperatureofUV-shieldeddensegascorescomputedfrom 2007; Elmegreen et al. 2008). For the Galaxy T (min) 10K, reachedinUV-shieldedcoreswithn(H ) (104–106k)cm−3∼. Equation 2 for the range of densities typical in molecular clouds. The 2 ∼ CRenergydensities rangefromthequiescentenvironment oftheGalaxy A recent study has shown that the average CR energy den- (UCR=(0.2–1)×UCR,Gal) to those in extreme CRDRs (UCR∼(103– sities (UCR) in compact starbursts typical in ULIRGs (recently 104)×UCR,Gal,Papadopoulos2010).AdusttemperatureTdust=8Kand found also in an SMG at z 2.3, Swinbank et al. 2010), will aGalacticCRionizationrateofζCR=5×10−17s−1havebeenassumed. ∼ be boosted by the tremendeous factors of U (few) (103– CR 104)U , potentially transforming their ISM∼into e×xtreme CR,Gal 2 THEMINIMUMGASTEMPERATUREINCRDR Cosmic-Ray-DominatedRegions(CRDRs).Thiswilldramatically S alter the thermal and ionization state of UV-shielded cores, and In this section we compute the equillibrium gas temperatures for thustheinitialconditionsofstar-formation,throughout theircon- theUV-shieldedregionsofmolecularcloudsimmersedinthelarge siderablemoleculargasreservoirs( 109-1010M⊙).Higherchar- cosmicrayenergydensitiesoftheextremeCRDRsexpectedinstar- acteristicmass M(∗) for theyoung∼starsformed in such ISMen- burstswithhighSFRdensities. ch vironments,andlongerambipolardiffusiontimescalesfortheCR- heated UV-shieled cores could thus be a new paradigm for high- 2.1 Asimplemethod densitystarformationintheUniverse(seePapadopoulos2010for details).ItisworthmentioningthatrecentlysuchlargeUCRboosts Wefirstconsider thesimplecasewhere thechemical stateof the ( 103.5 UCR,Gal)havebeenfoundintheOrionAbar,andwhile UV-shielded dense gas cores remains unaltered and the only ef- ∼ × not representing the average SF initial conditions in the Galaxy, fectoflargeU valuesistoheatthemmuchmorethaninquies- CR theydoallowlocalstudiesoftheeffectsoflargeCRenergyden- centISMenvironments.Followingstandardpractice(e.g.Goldmith sities on the ISM (Pellegrini et al 2009). Finally CRs have been 2001) thetemperature of such regions can be estimated from the showntoeffectthethermalstateofprimordialgas,catalyzingH2 thermalbalanceequation formationintheabsenceofdust(Jasche,Ciardi,&Ensslin2007). Inthisworkwesolvethecoupledchemicalandthermalstate Γ =Λ +Λ , (1) equationsforUV-shieldedgasanditsconcomitantdustinextreme CR line gd CRDRs without the approximations employed by Papadopoulos whereΓ ζ n(H )istheCRheatingwithζ U being CR CR 2 CR CR ∝ ∝ (2010). We then use the thermal states computed for such a gas thecosmicrayionizationrate.ThecoolingtermΛ isdominated line phasetoexaminetheeffectson M(∗) andtheso-calledinflection byCOandothermolecularlines,whileΛ accountsforgascool- ch gd pointoftheEffectiveEquationofState(EOS),setatgasdensities ingduetothegas-dustinteraction. abovewhichT T (e.g.Spaans&Silk2000;Larson2005 Asignificantpointofdeparturefromthepreviousanalysisby kin dust ∼ andreferencestherein).Bothoftheseplayacrucialroleindeter- Papadopoulos (2010) isthe inclusion of the atomic fine structure mining the stellar initial mass function (IMF) in galaxies, which lines OI (at 63µm) and CII (at 158µm) in Λ . Indeed for the line couldthusturnouttobeverydifferentintheCRDRsofextreme CR-boosted temperatures expected in the UV-shielded dense gas starbursts. Throughout this work we make the standard assump- ofextremeCRDRs,andunlikethecorrespondinggasphaseinthe tionofU ρ˙ (SFRdensity)asinPapadopoulos2010,though quiescent ISM of the Galaxy, the cooling from the fine structure CR sfr ∝ wenowdiscusspossiblecaveats(section4.4).Finally,thedifferent atomic line of OI (63µm) can also become important and along IMFsexpectedinextremeCRDRswillmodifythetotalSFRand withthegas-dustinteractionovertaketheCOlinesfortypicalcore ρ˙ valuescomputedingalaxies(frome.g.cmnon-thermalorIR densities of n(H )>105cm−3 when T >50K . FinallyISM-CR sfr 2 k thermalcontinuum).Inthisnewcontextandthroughoutthiswork interactionscangenerateinternalUVradiationwhichdestroysCO, SFR and ρ˙ will now denote these quantities only for the mas- producing traces of CII, thus cooling via itsfine structure line at sfr sivestars(whichdefineU andpower theIR/cmcontinuum of 158µm must also beincluded. The thermal balance equation en- CR theISM), withtheir total values necessarily remaining uncertain, compassingallphysicalprocessesthatcanbeimportantintheUV- dependingontheexactIMF,whichwillnolongerbeaninvariant. shieldedISMofextremeCRDRsthusis: Starformationin extremeCRDRs 3 units (expected to be even lower for the dense pre-stellar cores deepinsideH clouds)andaresidualmicro-turbulentlinewidthof Λ (T )+Λ (T ,T )+Λ (T )+Λ (T )=Γ , (2) 2 CO k gd k dust OI63 k CII k CR ∆Vm−turb=5kms−1(whichenterstheexpressionsoflineoptical (for the expressions used see the Appendix). The solutions are depths).Inallcaseschemicalandthermalequillibriumisreached shown in Figure1 fromwhere itbecomes obvious that the mini- fast,withinT 6 104yrs,andisalwaysshorterthanthelo- chem,th mumtemperaturesattainableindensegascoresintheISMofsuch cal dynamical timescale which drives the ambient star formation starburstsaremuchhigherthanintheGalaxyorgalaxieswithmod- eventsandthusthetemporalevolutionofU .Theresults,shown CR erateρ˙ values.Turbulentgasheatingwasnotconsideredsincewe inFigure2,corroboratethehighgastemperaturesobtainedusing sfr wanttocomputetheminimumtemperaturevaluesforUV-shielded thesimplermethod. Thisreveals thecosmicraysasthemost im- gasandsince supersonic turbulence(and thusshock-heating) has portantfeedbackaspectofstarformationcapableofsignificantly usually dissipated in dense pre-stellar gas cores where the initial alteringitsinitial conditions during events of high star formation conditionsofSFareset. density via the strong heating of the deeply embedded and UV- FromFigure1itcanbeseenthattheminimumgastempera- shielded dense gasregions of molecular clouds. It canthus oper- turespossibleinextremeCRDRsarelowerthanthosecomputedby ateunhinderedinthehighdustextinctionenvironmentsofextreme Papadopoulos(2010),aresultoftheextracoolingpoweremanating starburstssuchaslocalULIRGsorhighredshiftSMGs. fromthenowincludedatomictransitionsthatbecomeexcitedatthe hightemperaturesnowpossibleinanISMpermeatedbylargeCR energydensities.Neverthelesstheseminimumpossiblegastemper- 2.2.1 Testingtheresultsforstrongerradiationfields aturesremain 5–10timeshigherinextremeCRDRsthanthosein ∼ Wealsoranthesamegridofmodelswiththeincidentfar-UVra- theMilkyWayorgalaxieswithmoderateρ˙ values.AnyIRra- sfr diationfieldscalingexactlyastheCRenergydensitieswhichcor- diation“leaking”deepinthecloudandwarmingtheconcomitant responds tothe maximum incident radiation fieldthat can be ex- dustabove (8–10)K,oranyremnantturbulentgasheating(Pan& ∼ pectedfordensegascores(inpracticepre-stellarcoresarealways Padoan2010)canonlyraisetheseminimumtemperaturesfurther. UV-shieldeddeepinsidemolecularclouds).Thedusttemperatureis nowmoreimportantthaninthepreviouscaseofG◦=1,andiscom- 2.2 Solvingforthecoupledchemicalandthermalstateof putedaspartofthecode.Itsvalueinsidethecloudcaninfluence: UV-shieldedgascoresinextremeCRDRS thecoolingbyemittingIRphotonswhichinteractwithlineradia- tivetransfer,theH formationbychangingthestickingprobability, The thermal balance equation for UV-shielded, CR-heated gas 2 theevaporation/condensation of molecules, and most importantly (Equation 2) and its solutions (Figure 1), while physically trans- thegas-grainheating/cooling.TheUCL-PDRcodeusesamodified parent, they do not account for the fact that ISM chemistry (and versionoftheformulaofHollenbach,Takahashi,&Tielens(1991) thus the abundance of coolants) is also strongly CR-regulated in (hereafterHTT)correctedforthevariousmeangrainsizes. such regions. This makes the problems of thermal and chemical TheHTTformulahasbeenfurthermodifiedtoincludeatten- balanceofCR-dominatedgasstronglycoupledthatmustbesolved uation of the far-IR radiation. The incident FUV radiation is ab- together,especiallygiventheverylargeCRenergydensitiespos- sorbedandre-emittedintheinfraredbydustatthesurfaceofthe sible in the CRDRs of compact starbursts. We do so by utilizing cloud (up to A 1mag). In the HTT derivation, this FIR radia- the advanced time-dependant UCL-PDR code (the latest version v∼ tion then serves as a second heat source for dust deeper into the describedinBelletal.2007)tocomputegastemperaturesofCR- cloud.Howeverintheirmodelthissecondaryradiationcomponent heated molecular cloud interiors self-consistently with their CR- isnotattenuatedwithdistanceintothecloud,remainingundimin- regulatedchemistryforawiderangeofCRenergydensities.This ishedwithdepthandleadingtohigherdusttemperaturesdeepinto model has already been successfully used several timesto model thecloud,whichinturnheatsthegastounrealistictemperatures. PDRsintheGalaxy(e.g.Thietal.2009). AttenuationoftheFIRradiationhasbeenintroduced byusingan The heating mechanisms included are: (i) photoelectric ef- approximationfortheinfrared-onlydusttemperaturefromRowan- fect from silicate grains and Polycyclic Aromatic Hydrocarbons (PAHs), (ii) H formation on gain surfaces, (iii) H photodisso- Robinson(1980),hisEquation30b:T=T◦(r/r◦)−0.4 wherer◦ is 2 2 theclouddepthcorresponding toA =1magouter’slab’thatpro- ciation, (iv) H UV fluorescence, (v) CII recombination, (vi) in- v 2 cessestheincidentFUVradiationandthenre-emitsitintheFIR. teractionoflow-energycosmicrayswiththegas.Thelatterdom- From Figure 3 it can be readily seen that the gas tempera- inategasheatingdeepinsideH clouds(A >5)wheredensegas 2 v turesremaininvariant beyond A 5evenwithwithincident far- coresresideandtheinitialconditionsforstarformationareset.At v∼ UVfieldsasenhancedastheCRenergydensities.Thisessentially cloudsurfaceshotgasemitsLyαandOI63µmlineswhiledeeper leavesCRsastheonlystrongfeedbackfactorofstarformationop- in (A >0.1), gas cooling occurs via fine-structure line emission v eratingefficientlydeepinsidemolecularclouds.Moreover,intense ofoxygen andneutral andsinglyionizedcarbon. Vibrational and CR heating of UV-shielded gas strongly decouples gas and dust ro-vibrationallinesofH andCOalsocoolthegaswhileCOrota- 2 temperatureevenathighdensities(Figures1,2,3)withimportant tionallinesareexcellentcoolantsforthecoldinnerregionsasthe implications on the gas fragmentation properties and thus on the firstrotationally-excitedlevelreachesdownto5.5K.Theinterac- emergentstellarIMF(section3.2). tionbetweenthegasandthedustgrainsactsascoolingorheating agentforthegasdependingonthedifferencebetweenthegasand dusttemperature.H andCOself-shieldingaretakenintoaccount. 2 Thecodecalculatesthegaschemicalabundances, emergentcool- 3 NEWINITIALCONDITIONSFORSTARFORMATION, inglinefluxes,andtemperaturesself-consistentlyateachdepthin ANDTHESTELLARIMFINEXTREMECRDR thecloud, andithasbeenbenchmarked againstother state-of-the S artphotodissociationregioncodesinRo¨llig,M.etal.(2007). Thenewdetailedthermo-chemicalcalculationspresentedheresup- We set a nominal incident far-UV field of G◦=1 in Habing porttheresultsfromthepreviousstudyofCRDRsandtheeffects 4 Papadopouloset al. n =5 103 cm-3 n =104 cm-3 H H CR=10,000 CR=10,000 100 ) 100 CR=1000 ) CR=1000 K K ( CR=100 ( CR=100 T T CR=10 CR=10 CR=1 CR=0.2 10 10 CR=0.2 CR=1 T T dust dust 0.1 1.0 10.0 0.1 1.0 10.0 A A V V n =105 cm-3 n =106 cm-3 H H CR=10,000 CR=10,000 100 100 CR=1000 CR=1000 ) ) K K ( CR=100 ( T T CR=100 CR=10 CR=10 10 CR=0.2 CR=1 10 CR=0.2 CR=1 T T dust dust 0.1 1.0 10.0 0.1 1.0 10.0 A A V V Figure2.Thegastemperature profilesversusopticalextinction insidemolecularcloudsimmersedinarangeofCRenergydensities,estimatedusingthe time-dependantUCL-PDRcodesolvingbothforthermalandchemicalequillibriumateachpointofthecloud.TheCRenergydensitiesrangefromGalactic values∼(0.2–1)×UCR,Gal,tolow-levelstarformingsystems∼10×UCR,Gal,andextremestarbursts∼(103–104)×UCR,Gal.Thedensitiesencompassthe rangetypicalforstar-formingmolecularclouds,andtheincidentfar-UVfieldassumedisG◦=1(inHabingunits).ThedusttemperatureTdust(Av)profile isindicatedbythedashedblackline.Strongerradiationfieldsreachingthedensepre-stellarcoresdeepinsidemolecularclouds(e.g.becauseof“leaking” far-UVradiationfromO,BstarsinsidethetypicallyclumpymolecularISM),canfurtherraisethegastemperaturesforAv65,whiledeeperthanthatgas temperaturesremainalwaysCR-controlled.Thesmall∼10%riseofTk(Av)atthehighestdensitiesandUCRvaluesforAv&5islikelyanartifactofthe highopticaldepthsofCandCOatsuchlargeclouddepths(seeBayetetal.2010). ofhighU valuesontheinitialconditionsofstarformation(Pa- wellaboveT (8–10)KexpectedintheirCRDRs.Usinginap- CR dust ∼ padopoulos 2010). Thethermal stateofUV-shieldeddensegasis propriatePDR-typeinitialconditionsofstarformationinnumerical indeed dramatically altered in the CRDRs of extreme starbursts, models:a)wouldmakethemhard-pressedtoaccountevenforthe and this will affect its Jeans mass, gas fragmentation properties, near-invariantIMFfoundintheGalaxy(asthewiderangeofphys- and thecharecteristic massM(∗) of young stars. Thiscontradicts ical conditions initsmassive PDR gasphase would yield awide ch theresultsbyElemgreenetal.(2008)which,whilecorrectlycon- rangeofIMFs),b)omitsthesignificant,CR-induced,thermalde- sideringtheUV-shieldedgasphaseastheonewheretheSFinitial couplingbetweengasanddust(Figures2,3).Thelatterfundamen- conditionsareset,itomittedCRsfromitsthermalbalance. tallyimpactstheso-calledinflectionpointofeffectiveequationof state(EOS)usedinallrealistic(i.enonisothermal)numericalsim- Itmustbepointedoutthatwhileseveralotherstudiesinvesti- ulationsofmolecularcloudfragmentation(e.g.Jappsenetal.2005; gatedtheeffectsofstarburstenvironmentsontheIMF,all(besides Bonnelletal.2006),andthisisfurtherdiscussedinsection3.2. theonebyElmegreenetal.2008)failedtoconsidertheISMphase wheretheinitialconditionsofSFareactuallyset(theCRDRs).In- steadtheyused physicalpropertiestypical ofPDRs(e.g.Klessen etal.2007)which,whiledominatingtheobserveddustSEDsand 3.1 ThecharacteristicmassofyoungstarsinCRDRs molecularlineSpectralEnergyDistributions(SLEDs)ofgalaxies, theyarehardlyrepresentativeofthephysicalconditionsexpected Thethermalstateofthesedensepre-stellargascoresisnolongera intheirCRDRs.EvenformildlySFIR-luminousgalaxiesthedust near-invariantbutisinsteadstronglyalteredbythehighCRenergy temperaturetypicaloftheirglobalSEDsis (30–40)K,whichis densitybackgroundsofextremestarbursts,inevitablyaffectingthe ∼ Starformationin extremeCRDRs 5 n =5 103 cm-3 n =104 cm-3 H H 100 100 ) ) K K ( ( T T 10 10 0.1 1.0 10.0 0.1 1.0 10.0 A Go=CR=10,000 A V Go=CR=1000 V Go=CR=100 dust gas n =105 cm-3 Go=CR=10 n =106 cm-3 H Go=CR=1 H 100 100 ) ) K K ( ( T T 10 10 0.1 1.0 10.0 0.1 1.0 10.0 A A V V Figure3.ThecomputedgasanddusttemperatureprofilesversusopticalextinctioninsidemolecularcloudsasinFigure2,butnowwiththeincidentfar-UV radiationfieldalsoscalingastheCRenergydensity.Thenowstronglyvaryingdusttemperaturesareshownalongwiththegastemperaturesasdashedlines withthesamecolor.ThegastemperaturesatAv=5–10remainalmostinvariant(comparewithFigure2)demonstratingthenear-invarianceofthethermalstate ofthegas(andthusofthestarformationinitialconditions)deepinsidemolecularcloudswhenitcomestoitsdependenceontheradiationfield.Theabrupt Tkdropathighdensities(∼(105−106)cm−3)andG◦valuesisduetoalackofatomic/ioncoolantsintheH-richregion:asHisconvertedintoH2,theH2 formationheating(whichwasthemajorheatingagent)dropswhileatthesametimeCIcooling(CIIisconvertedtoCIduetoH2/Cmutualshielding)andH2 coolingsharplyincreases.ForhighUCRthegasremainmuchwarmerthanthedust,markingaCR-inducedthermaldecouplingofgasanddust(section3.2). fragmentationofthosegasregionstowardsprotostars.Indeed,the a higher M(∗) and thus a top-heavy IMF (Larson et al. 2005; ch JeansmassforsuchCR-heatedcores Elmegreenetal.2008).Thewiderangeofdensitiesoverwhichthis occurs makes this conclusion independent of the specific details ofmolecular cloudfragmentationaslongasM [n(˜r,t),T (˜r,t)] J k M(c) = kBTk 3/2ρ−1/2 = drivesthefragmentationprocessoutcomeateachspatialandtem- J (cid:18)GµmH2(cid:19) c poralpoint(˜r,t).Thelatteristhecurrentconsensusontheroleof T 3/2 n (H ) −1/2 theJeansmassinmolecularcloudfragmentationtowardsastellar = 0.9 10Kk 10c4cm2−3 M⊙, (3) IMF, though the views regarding the particular gas phase whose (cid:18) (cid:19) (cid:20) (cid:21) M setstheM(∗)vary(e.g.Klessen2004;Bonnelletal.2006). J ch rises from M(Jc)∼0.3M⊙ when nc(H2)=105cm−3 and Tk=10K IfM∗ch)∝hMJiattheonsetofmolecularcloudfragmentation (typicalfortheGalaxy),toM(Jc)∼(3–10)M⊙ forTk∼(50–110)K (Klessen 2004), the CR-boost of M(c∗h) in extreme CRDRs is ob- expectedforsamedensityH gasimmersedintheverylargeCR vious from the large vertical displacement of the M values in 2 J energydensitiesofextremestarbursts.Thenear-invarianceofM(c) Figure4.Inanon-isothermalgravoturbulentmolecularcloudfrag- J in galaxies (Elmegreen et al. 2008) is thus upended in starbursts mentationscheme(e.g.Jappsenetal.2005)itisM(∗) M (n )ata ch ∼ J c withhighSFRdensities.InFigure4theM valuescomputedfor characteristicgasdensityn abovewhichefficientgas-dustthermal J c molecular gas immersed in the CRDRsof compact extreme star- couplinglowersthegastemperatureinCRDRstowardsaminimum bursts are shown for a gas density range typical for star-forming valueofT (min) T (Larson2005).FortheGalaxythisoccurs k dust molecularclouds.ForU /U >103,M increasesbyafac- atn 105cm−3,∼adensitythatmarksalsothetransitiontonear- CR CR,Gal J c ∼ tor of 10 across the entire range, which will invariably lead to isothermalcloudregionswherethermalmotionsdominateoversu- ∼ 6 Papadopouloset al. exactshapeandmassscaleofthenewstellarIMFcanonlybedeter- mined with dedicated molecular cloud fragmentation simulations thatmakeuseofthenewSFinitialconditionsinextremeCRDRs, 100.0 alongwithanEOSappropriate fortheverydifferentthermaland ionizationstateoftheirmoleculargas. ) 10.0 MSun CR=10,000 3.2 CRDRs:SFinitialconditions,theEOSinflectionpoint ( M Jeans 1.0 CR=1000 TpahreamiemtrpiozertdanacseapooflytthroepeEPff=eKctiρveγ,iEnqtuhaetifornagmofentSattaiotenp(EroOpSer)-, tiesandemergent massspectrumof turbulentself-gravitatinggas CR=100 hasbeenwell-documentedinafewseminalpapers(Lietal.2003; Jappsen et al. 2005; Bonnell et al. 2006; Klessen et al. 2007) re- CR=10 0.1 vealingacrucialroleforγ indefiningtheshapeof thecollapsed CR=1 CR=0.2 gascoremassdistribution(andhencethestellarIMF).TheEOS, 103 104 105 106 its polytropic index γ as a function of density, and their depen- Gas density (cm-3) dance on ISM properties such as metallicity, and physical condi- tions such as the elevated CMB at high redshifts have also been well-documented (Spaans & Silk2000, 2005), with the so-called Figure 4. The Jeans mass estimated from Equation 3, and gas tempera- turesinsideCRDRs,computedforthecorrespondingdensities (usingthe EOS inflection point emerging as a general characteristic. In an fullUCL-PDRcode)andaveragedovertheinnerAv=5–10cloudregions EOSthatseemswell-approximatedbyapiecewisepolytropewith (Figure2).Lowmassstarformationwillbeclearlysurpressedinextreme twodistinctγ values,thelatterissimplythecharacteristicdensity CRDRsforaMJ-drivengasfragmentationtowardsastellarIMF(seetext). ncforwhichγ<1whenn<nc,andγ&1forn&nc.Itscrucialrole indeterminingtheIMFmassscale,discussedbrieflyin3.1,isdocu- mentedthroughouttheliterature(Larson2005;Jappsenetal.2005; personic turbulence (Larson2005; Bergin& Tafalla2007). From Elmegreen2008).Instarburstenvironmentsa“sharpening”ofthat Figures2,3itisobviousthatthehighCRenergydensitiesinex- inflection point is thought to occur because of warm dust. There tremeCRDRswillkeepthegasanddustthermallydecoupled,with γ reachesupto 1.4andstaysaboveunityfor densitiespast the mTka(rmkeind)b≫yTthdeuostn,saentdofthtuhseramcahlaeraqcutiellriibstriicumdenbseittwyeceanngnaoslaonndgedrubste. inflectionpointn∼c∼(104–105)cm−3(Spaans&Silk2005),which surpressesmolecularcloudfragmentationwhile“tilting”ittowards Such CR-induced effects have been long suspected for the dense topheavyIMFs(e.g.Lietal.2003;Klessenetal.2007). moleculargasintheGalacticCenter(Yusef-Zadehetal.2007). Unfortunately PDR-like ISM has been used to set the SF In the CR-innudated molecular clouds of extreme starbursts initialconditionsforstarburstsinalloftheaforementionedmodels, a characteristic density in the ISM can now remain only as the eventhoughthedustinCRDRs(wheretheseconditionsarereally onewherethesupersonicturbulencehasfullydissipatedandover- set)remainscool,muchlowerthanthegas,especiallyinextreme taken by thermal motions in pre-stellar cores, a prerequisite for CRDRs.Thisinsensitivity of the CRDRdust temperatures to the their efficient gravitational collapse (e.g. Krumholz & McKee ambient far-UV radiation field can be demonstrated analytically 2005).Theaveragedensityofsuchtransitionregionscanbeesti- bysimplyconsideringthelocationofCRDRsdeepinsidefar-UV matedfromtwowell-knownscalingrelationsinmolecularclouds: illuminatedmolecularcloudsatA & 5(e.g.McKee1989).Then σsiVze()r)a=fσte◦r(sre/tpticn)ghσ(lin(emwinid)t=h(-3sikze)Tan/dµhmni=n)1◦/(2r/apsct)h−e1m(dineinmsiutym- Tdust,SB/Tdust,Gal∼[exp(−Av/v1.086)×G◦,SB/G◦,Gal]1/(4+a) V B k H2 will be the radiation induced boost of the CRDR dust tempera- linewidth possible, and solving for the corresponding mean vol- ture in starbursts T with respect to that in the quiescent umedensity, dust,SB Galactic environments T 8K. For a dust emissivity dust,Gal ∼ law of α=2, a large enhancement of the far-UV radiation field hntri=n◦(cid:18)µ3mkBHT2σk◦2(cid:19)1/2h ∼11n◦(cid:16)kmσs◦−1(cid:17)2(cid:18)1T0Kk (cid:19)−1(4.) ytGeime◦l,SdpBienr/agGtuT◦r,edGupaslrt=o∼1fi10le74s,Kp,aanisdnt AgAovod=55asgihrtoeewismneTinndtuFwsitgi,tSuhBre/thT3e.dudItsetti,asGilaaelcd=tu2da.1ull5syt, v ∼ For h=1/2 (expected for gas clouds virialiazed under ex- this robustness of dust temperatures inside CRDRs, along with a ternal pressure, Elemgreen 1989), σ◦=1.1kms−1, and for strong gas-dust coupling at high densities (when UCR values are n◦=few 103cm−3, it is ntr few 104cm−3. For the CR- modest) that helps retain: thethermal statesof thepre-stellar gas × h i∼ × boosted gas temperatures in extreme starbursts where typically cores,theM(∗)values,andtheIMF,asnearinvariantsoverawide Tk(min) 100K(Figures1,2,3): ntr few 103cm−3,andthe rangeofambcihentPDRconditions(Elmegreenetal.2008) ∼ h i∼ × (turbulentgas) (thermalcore)transitionwilloccuratlowerdensi- ThusPDRconditions,whilealwaysdominatingtheobserved → tiesaswellashigher(CR-boosted)gastemperaturesthaninquies- dust SEDsand molecular SLEDs of even mildly SF galaxies (as centCRDRs.ThiswillthenshifttheexpectedM(∗)bothvertically PDRsarewarmandcontainthebulkoftheISMmass)theyarenot ch (highertemperatures),aswellastotheleft(lowerdensities)ofFig- representativeoftheSFinitialconditionsingalaxies,whichareset ure4,yieldingevenhigherM(∗) valuesthanthoseresultingfrom inCRDRs.Thisleavesthepre-stellargasphaseinthem,amount- ch onlyaverticalshiftofM becauseofCR-boostedgastemperatures. ingtoafew%ofthemassper GiantMolecular Cloud( SFeffi- J ∼ Thusirrespectiveofmolecularcloudfragmentationdetails,a ciency per typical GMC), yet tobe explored interms of itsEOS muchlargercharacteristicmassofyoung starsisexpectedinthe and fragmentation properties. A detailed exploration of those in CR-innudatedmolecularcloudsofextremestarbursts.Howeverthe CRDRs will be the subject of a future paper, but Figures 2 and Starformationin extremeCRDRs 7 4.1 Asequenceofρ˙sfr-dependentstellarIMFs Thedependanceofthethermo-chemicalandionizationstateofpre- stellar dense gas in CRDRs on the average U permeating the CR 1000.0 CR=10,000 ISMofagalaxynaturallylinkstheSFinitialconditionsandthere- sultingIMFtotheaverageSFRdensityρ˙ ,providedU ρ˙ . CR=1000 sfr CR ∝ sfr The details of CR transport/escape mechanisms in quiescent SF 100.0 CR=100 disksandstarburstswilldefinetheproportionalityfactor(seeSuck- ol co hovetal.1993fordetailes).Thus,oncesimulationsofmolecular /tn CR=10 gasfragmentationinCRDRsproducelibrariesofthecorresponding y td 10.0 IMFs,thesewillbenaturallyparametrizedbyρ˙sfr,andhenceac- tualobservables(especiallyintheupcomingeraofhigh-resolution CR=1.0 imagingatsubmmwavelengthswithALMA). 1.0 CR=0.2 4.2 Implicationsforhierarchicalgalaxyformationmodels:a 0.1 physically-motivatedIMFbimodality 103 104 105 106 Gas density (cm-3) In hierarchical galaxy formation models a bimodal IMF, top- heavy for mergers/starbursts and regular for disk/regular-SF sys- tems, has been postulated to explain the populations of the Figure5.Theratioofdynamical/coolingtimescalesinUV-shieldedmolec- starbursting/merger-drivensubmillimetergalaxies(SMGs)andreg- ulargasofCRDRs(Av=5-10)estimatedusingtheUCL-PDRcodeandcos- ularSFdisksliketheLy-breakgalaxies(LBGs)athighredshiftsin micrayenergydensitiesrangingfromthoseexpectedinquiescentGalactic tocompactextremestarbursts. ΛCDMcosmology(Baughetal.2005).TheCR-controlledSFini- tialconditionsingalaxies,unhinderedbydustextinction,cannow set this on a firm physical basis. From Figures 2 and 4 is obvi- ous that for typical SF disks (U (0.2–10) U ) no sub- CR CR,Gal ∼ × stantial effects on the gas temperatures and Jeans masses in CR- 3 already show that CRs, by inducing astrong decoupling of the DRs are expected while in the extreme CDRDs of compact star- gtiavseaEnOdSduinsfltetecmtiopnerpaotuinretsfowritghasTdke≫nsTitideusstu,pthtoeyn“=e1r0as6ec”ma−ny3.pTuhtais- bursts(UCR∼(103–104)×UCR,Gal)verywarmgasandlargeJeans masseswillleadtoaneffectivesurpressionoflow-massstarforma- will maintain efficient molecular gas cooling, with cooling times tionandhenceatop-heavyIMF.Formerger-drivenstarformation alwaysmuchshorterthandynamicaltimes(Figure5),andγ<1in the latter may characterize entire star-formingepisodes (i.e. until CRDRs over the entire gas density range explored here. In such the in-situmolecular gas reservoir isnearly exausted) as dissipa- regions gas gravoturbulent fragmentation will then occur equally tioncancontinously“funnel”thelargemoleculargasmassesofthe efficientlyfromn 5 103cm−3upto 106cm−3yieldingapure ∼ × ∼ progenitorstowardsverycompact( (100–500)pc)regionswhere powerlawIMF(Spaans&Silk2000;Lietal.2003). ∼ extreme, Eddington-limited SF, takes place with tremendeous IR Thelatterresult,alongwithourdiscussionin3.1makesclear brightness of σIR (few) 1013L⊙kpc−2 (e.g. Thompson 2009). that the stellar IMF will be very different in extreme CRDRs, ∼ × Suchhigh IR brightness, and thus high SFRdensities, havebeen thoughonlydetailedgravoturbulentsimulationswiththeappropri- recentlydeducedalsoinadistantSMG(Swinbanketal.2010). ateinitialconditions,andperformedwithanewsuitableEOScan ThusCR-controlledSFinitialconditionsnaturallyyieldabi- decideitsexactshapeandmassscale.Itmustbealsonotedthatthe modalSFprocessingalaxies,withhighρ˙ valuesprovidingthe sfr veryhighionizationfractionsinextremeCRDRscannow“anchor” branchingpoint,asfollows: the magnetic field for much longer periods, and at much higher (merger-drivenSF) (highρ˙ ) (highU ) (topheavyIMF), sfr CR densities,asambipolardiffusioninsuchregionsisnowmuchpro- → → → (regulardiskSF) (lowρ˙ ) (lowU ) (GalacticIMF). sfr CR longed(Papadopoulos2010).Magneticfieldsmaythusremainim- → → → This proposed ρ˙ -IMF link can then parametrize such an SF sfr portant during much later stages of gas fragmentation, even in a bimodality in hierarchical galaxy formation, once IMF=F(ρ˙ ) sfr highlyturbulentmedium,andmaythushavetobeincludedinthe “libraries” are obtained from e.g. gravoturbulent simulations of simulationsofthisprocessinextremeCRDRs. molecularcloudfragmentationforarangeofρ˙ values. sfr A top-heavy IMF in high-ρ˙ systems will have very seri- sfr ous implications on the actual SFRs deduced from the IR lumi- nositiesofthesetypicallyverydust-enshroudedsystems(whereall thefar-UVlightfrommassivestarsisreprocessedintoIR).Their CR-inducedtop-heavyIMFswillnowcorrespondtoseveraltimes 4 CONSEQUENCES,OBSERVATIONALPROSPECTS higherenergyoutputsperstellarmass,andtheSFRsinsuchsys- temswillhavetobereviseddownwardsbyidenticalfactors. ThecurrentstudysupportstherecentlysuggestedroleofCRsasa decisiveSFfeedbackfactor,capableofalteringtheSFinitialcon- ditionsandtheIMFinextremeCRDRs.Inthissectionwediscuss 4.3 Aρ˙ -dependentIMF:integratedgalacticIMFs someoftheconsequencesbeyondtheimmediateissuesoftheISM sfr dependentonstarformationhistory? andthestellarIMFinsuchenviornments,andoutlinecurrentand futureobservationsthatcanshedlightonthesenewSFinitialcon- A ρ˙ -dependent IMF as the natural outcome of CR-controlled sfr ditionsthatwillbetypicalinhighSFRdensityeventsintheUni- SFinitialconditionsingalaxiescanalsonaturalyyieldintegrated verse. galacticIMFs(IGIMFs)thatdependonthestarformationhistory 8 Papadopouloset al. (SFH) of galaxies. This is because ρ˙sfr can be a strong function yields M(c∗h)(M82)>2M⊙ (Fig.4). However the Galactic Center of the evolution of a galaxy, especially during its early and pre- does offer an example of regions with locally boosted U val- CR sumably gas-rich state even when no mergers are involved. Such uesthatdonotnecessarilycorrespondtotop-heavyIMFsintheir a SFH-dependance of the IGIMFshas been considered before as vicinity,possiblybecausesuchboostsaretooshortandtransientto thecause of thewell-knownmass-metallicityrelationof galaxies systematicallybiasthelocalemergentIMF. (Ko¨ppen,Weidner,&Kroupa2007). Stronger evidence for top-heavy IMFs exists in UCDs, small stellar systems with r (10–30)pc (half-light radius) e where (106–107)M⊙ of gas ∼have been converted into stars 4.4 CRpropagationindensemoleculargas:adynamicview at SFR∼ (10–100)M⊙yr−1 (see Dabringhausen et al. 2009 h i∼ isneeded and references therein). Unlike the GC where IMF studies are hindered by high extinction and tidal disruption of clusters, Setting U ρ˙ in CRDRsassumes that CRs can freely pene- CR∝ sfr and where any high-ρ˙ SF episodes may have been short- trate and warm the entire volume of a GMC down to its densest sfr lived (and thus could not significantly bias its average IMF to- UV-shieldedregions.Recentgamma-rayobservationshavedirectly wards a top-heavy one), the IMFs in UCDs are much more measuredCRenergydensitiesinthenucleusofanearbygalaxyon amenabletosystematicstudies,whiletheirSFepisodes havehad parwiththosecomputedforextremeCRDRsandexpectedfromits ρ˙ (UCDs) & ρ˙ (ULIRGs) ! They are thus ideal targets for SFRdensity, whileindicatingonlymildlycalorimetricconditions h sfr i h sfr i studyingtheIMFresultingfromcompletedhigh-ρ˙ SFevents. fortheCR/ISMp-pinteractions(Aceroetel.2009).Thelattersup- sfr Thenext bestthingbesidesstudiesoftheIMFitselfisstud- portsanunhinteredCRpenetrationthroughthemolecularclouds. iesoftheISMinCRDRsfromwhichtheIMFemerges,especially NeverthelessAlfve´nwavesgeneratedoutsidesuchcloudsbyanet those in compact extreme starburstswhere ρ˙ isvery high (e.g. flux of CRs in their environments could be effective in keeping sfr ULIRGs)versussystemswithmoredistributedSFandmuchlower low energyCRsbelow afew hundred MeV (thosemost effective ρ˙ values.Theuniqueobservationalsignaturesoftheverywarm in heating the gas) outside their high density regions (Skilling& sfr densegaswithhighionizationfractionsexpectedinextremeCR- Strong 1976), which in turn would affect their thermal balance, DRshavealreadybeendiscussedinsomedetailbyPapadopoulos theirfragmentationproperties,andtheemergentstellarIMF.Thus (2010), and the interested reader is refered to this work. In sum- the coupled problems of CR transport, magnetic field dynamics, mary, intheeraofHerschel and theupcoming eraofALMA the and gravoturbulent evolution of non-isothermal dense molecular sole main obstacle is the degeneracy of extreme CRDR diagnos- gaswithhighdegreesofionizationlikethoseexpectedincompact tic with that of X-ray Dominated regions (XDRs) induced in the extremestarburstssuchasArp220(e.g.Greveetal.2009)mustbe ISMbyanX-rayluminousAGN.Indeed,unlessanX-rayluminous investigatedwithdedicatedMHDsimulations. AGNcanbeexcludedbyotherindependentmeans(e.g.deepX-ray observations),itcanbedifficulttotellextremeCRDRsandXRDs apartinasimplefashionasevenexotichighexcitationspeciessuch 4.5 Observationalprospects asOH+ andH O+,recentlydetectedbyHerschelinthearchety- 2 Thedetectionsofγ-rayemissionfromtwonearbygalaxies,namely pal ULIRG/QSO Mrk231 and attributed to XDRs (van der Werf M82 and the starburst nucleus of NGC253 (Acciari et al. 2009, et al. 2010), could be partlydue to CRDRs.Inrecent work Mei- Aceroetal.2009),aretwoveryimportantrecentdevelopmentsin jerinketal.2010provideadetaileddiscussionofdiagnosticslines γ-rayastronomy,giventhatγ-rayemissionresultsfromCRproton inextremeCRDRsversusXDRsandthekeyobservationsthatcan interactionswiththemolecularISM.Thisallowssuchobservations separatethem. todirectlymeasuretheaverageCRenergydensitiesinSFenviron- FinallyitisworthnotingthatX-raysandXDRswillhavesim- ments, and thus sensitivesuch measurements inULIRGssuch as ilareffectsasCRsontheJeansmassandtheIMFofUV-shielded thenearbyULIRGArp220willbeveryimportantinrevealingex- densegasregionsasbothcanvolumetricallywarmsuchregionsto tremeCRDRsinsuchsystems. hightemperatures.ThiswaspointedoutrecentlybyBradfordetal. Ontheotherhand,directmeasurementsoftheexpectedtop- (2009) for the ISM of a distant QSO, and constitutes an omitted heavy IMFs in the heavily dust-enshrouded compact starbursts aspectofAGNfeedbackonstarformation.Thishasbeenstudied whereextremeCRDRswouldresideareimpossible.Howeverany recentlyandshowntoleadtoatop-heavyIMF(Hocuk&Spaans caseswherethe“end”products,i.e.thestellarpopulations,ofhigh- 2010).XDRsbesideselevatingT (min)tomuchhighervaluesthan k ρ˙sfr SFeventscanbeobservedandtheirIMFdeterminedsuchas intheGalaxytheyalsoyieldTkin Tdust (andthustheycanalso theGalacticCenter(GC)andlocalUltraCompactDwarfs(UCDs) “erase”theEOSinflectionpoint),th≫oughunlikeCRDRstheirinflu- allow such direct observational tests. There is indeed strong evi- enceontheISMisnecessarilylimitedbythe 1/R2 geometric ∼ AGN denceofCRheatingofthedensemoleculargasintheGC,setting factor(R thedistanceoftheirradiatedgasfromtheAGN). AGN T >T ,andexpectedstrongeffectsonthelocalJeansmass kin dust andambipolardiffusiontimescales(Yusef-Zadehetal.2007).Un- 5 CONCLUSIONS fortunately,initialassertionsaboutatop-heavyIMFintheGC(e.g. Nayakshin&Sunyaev2005) andthemassiveArchesclusternear Wehaveconducted new,detailedcalculationsonthethermalbal- it (Figer et al. 1999; Stolte et al. 2002, 2005) have not been cor- anceofUV-shieldeddensegasinCosmic-Ray-Dominated-Regions roboratedbylaterstudies(Kimetal.2006; Espinozaetal.2009; (CRDRs),theISMphasewheretheinitialconditionsofstarforma- Lo¨ckmannetal.2010).Ontheotherhandsomeevidenceexistsfor tionaresetingalaxies,inordertoexamineindetailtheeffectsof atop-heavyIMFinthenuclearstarburstofM82(e.g.Riekeetal. extremeCRDRsonthemassscaleofyoungstarsandtheIMFre- 1980; 1993), and asignificantly enhanced UCR iscertainly there centlysuggestedbyPapadopoulos(2010).Ourresultscanbesum- ( 500 UCR,Gal, directly measured via γ-ray observations; Ac- marizedasfollows: c∼iariet×al.2009)toachievethisviaaCR-boostedM(∗) IMFmass 1.Weconfirmthehightemperaturesofdensegascoresinthe ch scale.IndeedforsuchU values,settingM(∗) M (105cm−3) extreme CRDRs expected in ULIRGs and all systems with large CR ch ∼ J Starformationin extremeCRDRs 9 star formation rate densities (ρ˙ ), albeit at lower levels than the Burke&Hollenbach1983,ApJ265,223 sfr originalstudy. Dabringhausen J., Kroupa P., & Baumgardt H. 2009, MNRAS, 2.TheseCR-inducedhighergastemperatureswillleadto 10 394,1529 ∼ timeslargerJeansmassesacrosstheentiredensityrangetypicalin DownesD.,&SolomonP.M.1998,ApJ,507,615 suchregions,andthushighercharecteristicmassofyoungstarsin EalesS.,LillyS.,GearW.etal.1999,ApJ,515,518 theISMofgalaxieswithhighρ˙sfr. ElmegreenB.G.1989,ApJ,338,178 3.TheCRs,bydecoupling thethermalstateofthegasfrom ElmegreenB.G.,KlessenR.S.,&WilsonC.D.2008,ApJ,681, thatofthedustinCRDRskeepTk Tdustforalldensitiestypical 365 ≫ ofmolecularclouds.Thiseffectively“erases”thesocalledinflec- EspinozaP.,SelmanF.J.,&MelnickJ.2009,A&A,501,563 tionpointoftheEffectiveEquationofState,especiallyinextreme Frayer D. T., Ivison R. J., ScovilleN. Z., Yun M., Evans A. S., CRDRs,inevitablyalteringthefragmentationpropertiesofthegas. SmailIan,BlainA.W.,&KneibJ.-P1998,ApJ,506,L7 This effect, along with the expected much higher gas ionization FrayerD.T.etal.1999,ApJ,514,L13 fractions,necessitatesasearchforanewEOS,appropriateforCR- GenzelR.,LutzD.,SturmE.,etal.1998,ApJ,498,579 DRs. Genzel R., Tacconi L. J., Rigopoulou D., Lutz D., & Tecza M. 4. These new CR-induced ISM conditions provide a new 2001,ApJ,563,527 paradigmforallhigh-densitystarformationintheUniverse,with GoldsmithP.F.,&LangerW.D.1978,ApJ,222,881 CRsasthekeySFfeedbackmechanism,operatingunhinderedby GoldsmithP.F.2001,ApJ,557,736 extinctioneveninthemostdust-enshroudedstarbursts. GreveT.R.,BertoldiF.,SmailI.etal.2005,MNRAS,359,1165 5. The resulting ρ˙ -dependent IMF, yields: a) a natural bi- sfr GreveT.R.,PapadopoulosP.P.,GaoY.,&RadfordS.J.E.2009, modalbehaviourformerger-driven/starburstversusdisk/regular-SF ApJ,692,1432 galaxies,andb)integratedgalacticIMFs(IGIMFs)thatdependon GroenewegenM.A.T.1994,A&A,290,531 their star formation history, both withimportant consequences in HocukS.,&SpaansM.2010,A&A,(inpress,arXiv:1008.5284) galaxyformationandevolution. HollenbachD.J.,TakahashiT.,&TielensA.G.G.M.1991,ApJ, 6.IMFstudiesofstellarsystemsformedunderextremelyhigh 377,192 ρ˙ valuessuchasUltraCompactDwarfs,andmolecularlineob- h sfri HollenbachD.J.,&TielensA.G.G.M.1999,ReviewsofModern servationsoftheextremeCRDRsinnearbyULIRGscanprovide Physics,Vol.71,No.1,January1999 thefullpicture of CRDRpropertiesand their effectson theIMF. JascheJ.CiardiB.,&EnsslinT.A.2007,MNRAS,380,417 Regardingthelatter,thenowspacebornHerschelSpaceObserva- Jappsen A.-K., Klessen R. S., Larson R. B., et al. 2005, A&A, tory,andtheupcomingALMAholdparticularpromise. 435,611 KimS.S.,FigerD.F.,KudritzkiR.P.,&NajarroF.2006, ApJ, 653,L113 ACKNOWLEDGMENTS KlessenR.S.2004,Astrophysics&SpaceScience292,215 KlessenR.S.,SpaansM.,&JappsenA.-K.2007,MNRAS,374, WewouldliketothankPavelKroupafornumeroususefulconver- L29 sations,especiallyregardingtheIMFofUCDs,andJoergDabring- Ko¨ppenJ.,WeidnerC.,&KroupaP.2007,MNRAS,375,673 hausenforpointingouthisrelevantwork.WealsothankAndrew KrumholzM.R.,&McKeeC.F.2005,630,250 StrongfordiscussinguncertaintiesregardingCRtransportindense LarsonR.B.2005,MNRAS,359,211 molecularclouds,andtherefereeforcommentsregardingtheCR LehnertM.D.,&HeckmanT.M.1996,ApJ,472,546 energy densities and their effect on the IMF of M82. Padelis P. LiY.,KlessenR.S.,McLowM.-M.2003,ApJ,592,975 Papadopouloswouldliketodedicatethisworktothememory LiseauR.etal.1999,A&A344,342 ofhisdearfriendYannisBakopoulos,anexcellentmathemati- Lo¨ckmannU.,BaumgardtH.,&KroupaP.2010,MNRAS,402, cian,fellowscientist,andcommittedsocialactivistwhodiedon 519 6thofDecember2010. McKee,C.F.1989,ApJ,345,782 NayakshinS.,SunayevR.2005,MNRAS,364,L23 Papadopoulos,P.P.2010,ApJ,720,226 REFERENCES Pellegrini E. W., Baldwin J. A. Ferland G. J., et al. 2009, ApJ, AceroF.etal.(H.E.S.S.Collaboration),2009,Science,Vol.326, 693,285 1080 Ossenkopf V., Rollig M., Cubick M., & Stutzki J. 2007, in AcciariV.A.etal.(VERITASCollaboration),2009,Nature,Vol. MoleculesinSpaceandLaboratory,meetingheldinParis,France, 462,770 Editors:J.L.Lemaire,F.Combes,pg.95 BaughC.M.,LaceyC.G.FrenkC.S.,GranatoG.L.,SilvaL.,& PanL.,&PadoanP.2009,ApJ,692,594 BressanA.2005,MNRAS,356,1191 RiekeG.H.,LebofskyM.J.,ThompsonR.I.,LowF.J.,&Toku- BayetE.,HartquistT.W.,VitiS.,etal.2010,A&A,521,16 nagaA.T.1980,ApJ,239,24 BellT.A.,VitiS.,&WilliamsD.A.2007,MNRAS,378,983 RiekeG.H.,LokenK.,RiekeM.J.,&TamblynP.1993,412,99 BerginE.A.,&TafallaM.2007,ARA&A,vol.45Issue1,pg.339 Ro¨lligM.,etal.2007,A&A,467,187 Binns W. R., Wiedenbeck M. E., Arnould M., et al. 2008, New Rowan-RobinsonM.1980,ApJS,44,403 AstronomyReviews,Vol.52,Issue7-10,p.427 SakamotoK.,etal.2008,ApJ,684,957 BlainA.,SmailI.,IvisonR.J.,Kneib,J.-P.1999,MNRAS,302, SandersD.B.&MirabelF.1996,ARA&A,Vol.34 pg.749 632 Sanders. D. B., &Ishida C. 2004, ASP Conference Series, Vol. BonnellI.A.,ClarkeC.J.,&BateR.2006,MNRAS,368,1296 320,pg.230 BradfordC.M.,etal.2009,ApJ,705,112 SkillingJ.,&StrongA.W.1976,A&A,53,253 10 Papadopoulosetal. Smail I. 2002, Royal Society of London Philosophical Transca- tionsA,vol.360,Issue1801,pg.2697 SolomonP.M.,DownesD.,RadfordS.J.E.,&BarrettJ.W.1997, ApJ,478,144 SpaansM.,&SilkJ.2000,ApJ,538,115 SpaansM.,&SilkJ.2005,ApJ,626,644 StolteA.,GrebelE.K.,BrandnerW.,FigerD.F.2002,A&A,394, 459 StolteA.,BrandnerW.,GrebelE.K.,etal.2005,ApJ,628,L113 SuchkovA.,AllenR.J.,&HeckmanT.M.1993,ApJ,413,542 SwinbankA.M.,etal.2010,Nature,464,733 TacconiL.J.,NeriR.,ChapmanS.C.,etal.2006,ApJ,640,228 ThompsonT.A.2009,TheStarburst-AGNConnectionASPCon- ferenceSeries,Vol.408,pg.128 ThiW.-F.,vanDishoeckE.F.,BellT.,etal.2009,MNRAS,400, 622 van der Werf P. P.,and the HerCULES team, 2010, A&A, 518, L42 WolfireM.G.,etal.1995,ApJ,443,152 Yusef-ZadehF.,WardleM.,&RoyS.2007,ApJ,665,L123