ebook img

Extractive Metallurgy 1: Basic Thermodynamics and Kinetics PDF

361 Pages·2011·12.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extractive Metallurgy 1: Basic Thermodynamics and Kinetics

Extractive Metallurgy 1 Extractive Metallurgy 1 Basic Thermodynamics and Kinetics Alain Vignes First published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2011 The rights of Alain Vignes to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. ____________________________________________________________________________________ Library of Congress Cataloging-in-Publication Data Vignes, Alain. Extractive Metallurgy 1/ Alain Vignes. p. cm. Includes bibliographical references and index. ISBN 978-1-84821-160-5 1. Metallurgy--Handbooks, manuals, etc. 2. Extraction (Chemistry)--Handbooks, manuals, etc. I. Title. TN671.V54 2011 669--dc22 2010031981 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-160-5 Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne. Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Metallurgical Thermochemistry . . . . . . . . . . . . . . . . . . . . 1 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Quantities characterizing the state of a system and its evolution . . . . 3 1.2.1. The types of operations . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2. Stoichiometric description of a chemical system . . . . . . . . . . . 4 1.2.3. Evolution of a system’s state: degree of advancement of a reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4. Characteristic quantities of a phase’s composition . . . . . . . . . . 11 1.3. Thermodynamic fundamentals of reactions . . . . . . . . . . . . . . . . . 16 1.3.1. Reaction enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2. Gibbs free energy of a system, affinity of a reaction and chemical potential of a component . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.3. Expressions of the chemical potential and activities of a component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.4. Affinity of a reaction: law of mass action (thermodynamic modeling of a process) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.3.5. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4. Phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.4.1. Binary phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.4.2. Ternary phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 2. Oxides, Sulfides, Chlorides and Carbides . . . . . . . . . . . . . . 41 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2. Metal-oxygen/metal-sulfur systems activities in the intermediate phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vi Extractive Metallurgy 1 2.2.1. Phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.2. Component activities in the intermediate phases . . . . . . . . . . . 46 2.3. Standard Gibbs free energy: temperature diagrams for oxides – Ellingham-Richardson diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.1. Stoichiometric oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.2. Unstoichiometric compounds . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.3. Thermodynamic data for the reduction of oxides by a reducing gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4. Thermodynamic data for sulfides and chlorides . . . . . . . . . . . . . . 58 2.4.1. Ellingham-Richardson diagram for sulfides . . . . . . . . . . . . . . 58 2.4.2. Stability diagrams for the (M-O-S) systems . . . . . . . . . . . . . . 60 2.4.3. Ellingham-Richardson diagram for chlorides . . . . . . . . . . . . . 62 2.4.4. Stability diagrams of M-O -Cl systems . . . . . . . . . . . . . . . . 62 2 2 2.5. Metal-carbon phase diagrams and the Ellingham-Richardson diagram for carbides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.6. Carbon and carbon oxide reactions . . . . . . . . . . . . . . . . . . . . . . 67 2.6.1. Oxidation reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.6.2. Boudouard’s reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.6.3. The different types of coal . . . . . . . . . . . . . . . . . . . . . . . . 70 2.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 3. Metal Solutions, Slags and Mattes . . . . . . . . . . . . . . . . . . . 73 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2. Metal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.1. Phase diagrams and activities of liquid alloys components . . . . . 74 3.2.2. Activities and solubilities of metalloids in metal solutions . . . . . 83 3.2.3. Solubility and precipitation of oxide and sulfide compounds in metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.3. Mattes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3.1. Structure and physical properties of sulfide melts (mattes) . . . . . 93 3.3.2. Thermodynamic data for the binary Fe-S, Ni-S, Cu-S and Pb-S systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.3.3. Thermodynamic data of ternary mattes . . . . . . . . . . . . . . . . . 97 3.3.4. Thermodynamic data for M-O-S systems . . . . . . . . . . . . . . . . 99 3.4. Slags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.4.1. Structure and physical properties . . . . . . . . . . . . . . . . . . . . . 106 3.4.2. Phase diagrams and activities . . . . . . . . . . . . . . . . . . . . . . . 110 3.4.3. Phase diagrams and activities of oxide mixtures forming the basis of metallurgical slags CaO-SiO -Al O -MgO . . . . . . . . . . . . . 111 2 2 3 3.4.4. Phase diagrams and activities of mixtures of CaO-SiO -Al O -MgO oxides and reducible (iron, manganese and 2 2 3 chrome) oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table of Contents vii Chapter 4. Aqueous Electrolytic Solutions and Salt Melts . . . . . . . . . . . 131 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.2. Thermodynamics of aqueous electrolyte solutions . . . . . . . . . . . . . 131 4.2.1. Chemical potentials and activities of the components of electrolyte aqueous solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.2.2. Aqueous solutions of acids and bases . . . . . . . . . . . . . . . . . . 138 4.2.3. Aqueous solutions of metallic salts: complexation and speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.2.4. Solubility of oxides and hydroxides . . . . . . . . . . . . . . . . . . . 156 4.2.5. Solubility of salts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2.6. Solubility of gases in an aqueous solution . . . . . . . . . . . . . . . 171 4.3. Thermodynamics of salt melts (fluxes) . . . . . . . . . . . . . . . . . . . 173 4.3.1. Compositions and physical properties of fluxes . . . . . . . . . . . . 174 4.3.2. Thermodynamic properties . . . . . . . . . . . . . . . . . . . . . . . . 174 4.3.3. Solubility of oxides in halides . . . . . . . . . . . . . . . . . . . . . . 177 4.4. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Chapter 5. Reaction Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.2. Rate of a chemical reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 184 5.2.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 5.2.2. Expressions of the rate of a chemical reaction . . . . . . . . . . . . . 186 5.3. Homogeneous precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.3.1. Thermodynamics of primary nucleation . . . . . . . . . . . . . . . . 190 5.3.2. Nucleation and primary particle formation processes . . . . . . . . . 191 5.3.3. Secondary nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.4. Kinetics and mechanism of heterogeneous reactions . . . . . . . . . . . 194 5.4.1. Mechanism of heterogeneous chemical reactions . . . . . . . . . . . 194 5.4.2. Rates of heterogeneous reactions in fluid-solid systems . . . . . . . 195 5.4.3. Experimental rates of gasification reactions . . . . . . . . . . . . . . 197 5.4.4. Experimental rates of oxide and sulfide dissolution by acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 5.4.5. Rates of heterogeneous chemical reactions in fluid-fluid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 5.4.6. Experimental rates of transfer processes . . . . . . . . . . . . . . . . 207 5.4.7. Experimental rates of gas-liquid reactions . . . . . . . . . . . . . . . 209 5.5. Reaction rates for in situ conversion of a solid particle . . . . . . . . . . 211 5.5.1. Reduction of an oxide in solid state by carbon monoxide or hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 5.5.2. Roasting of a zinc sulfide particle . . . . . . . . . . . . . . . . . . . . 214 5.6. Heterogeneous precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . 215 5.6.1. Deposition mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 viii Extractive Metallurgy 1 5.6.2. Silicon deposition by heterogeneous thermal decomposition of silane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 5.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Chapter 6. Transport Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.1.1. Identification of the rate-limiting step . . . . . . . . . . . . . . . . . . 222 6.2. Equations of change and relationships between diffusion fluxes and driving forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 6.2.1. Equations of change (in terms of the fluxes) . . . . . . . . . . . . . . 223 6.2.2. Relationships between diffusion fluxes, driving forces and transport properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.3. Interphase mass or heat transport (mass and heat transfer) . . . . . . . . 227 6.3.1. Definitions of heat and mass transfer coefficients . . . . . . . . . . . 227 6.3.2. Kinetics of diffusion-controlled processes . . . . . . . . . . . . . . . 229 6.4. Mass and heat transfer coefficients . . . . . . . . . . . . . . . . . . . . . . 236 6.4.1. Mass and heat transfer (across a phase boundary) between two semi-infinite and stagnant phases . . . . . . . . . . . . . . . . . . . . . . . . 237 6.4.2. Heat and mass transfer between a flat wall and a fluid flowing along the flat surface in forced convection: boundary layer theory . . . . 239 6.4.3. Heat and mass transfer between particles, drops or bubbles and a continuous fluid phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 6.5. Overall kinetics of extraction processes under mixed control . . . . . . 247 6.5.1. Extraction process-type gasification . . . . . . . . . . . . . . . . . . . 247 6.5.2. Transfer process-type solvent extraction . . . . . . . . . . . . . . . . 249 6.5.3. Note on the rule of addition of resistances acting in series . . . . . . 250 6.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Chapter 7. Particulate Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 7.2. Gasification/leaching of a particle . . . . . . . . . . . . . . . . . . . . . . 254 7.2.1. Non-porous particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 7.2.2. Porous particles (pellets) . . . . . . . . . . . . . . . . . . . . . . . . . 259 7.3. Heterogeneous precipitation: growth rate of the particles . . . . . . . . . 263 7.4. In situ conversion of a solid particle . . . . . . . . . . . . . . . . . . . . . 264 7.4.1. Non-porous particle: the shrinking unreacted core model . . . . . . 265 7.4.2. In situ conversion of a porous particle: the grain pellet model . . . 269 7.5. Conversion of a particle undergoing strong exo- or endothermic chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 7.5.1. Exothermic chemical reactions . . . . . . . . . . . . . . . . . . . . . . 270 7.5.2. Endothermic chemical reactions . . . . . . . . . . . . . . . . . . . . . 275 Table of Contents ix 7.6. Transfer processes between two fluid phases, one phase being dispersed (as drops or bubbles) in the second phase . . . . . . . . . . . . . . 276 7.6.1. Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 7.6.2. Mass transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 7.6.3. Hydrogen removal from liquid steel bath by injection of inert gas bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 7.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Chapter 8. Electrochemical Reactions . . . . . . . . . . . . . . . . . . . . . . . 283 8.1. Overview of electrochemical processes . . . . . . . . . . . . . . . . . . . 283 8.2. Equilibrium electric potential of an elementary electrochemical reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 8.2.1. Nernst equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 8.2.2. Electrode potentials in aqueous solutions . . . . . . . . . . . . . . . . 288 8.2.3. Equilibrium potential metal/ion EM Mz+ in molten salts . . . . . . 292 8.3. Electrochemical equilibria of metals and metalloids (Pourbaix diagrams) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 8.3.1. Diagram of electrochemical equilibria of water . . . . . . . . . . . . 293 8.3.2. Pourbaix diagram for metal-water systems . . . . . . . . . . . . . . . 294 8.3.3. Pourbaix diagram for the Fe, Cu and Zn-Cl-H O systems . . . . . . 300 2 8.3.4. Pourbaix diagrams for the M-NH -H O systems . . . . . . . . . . . 302 3 2 8.3.5. Pourbaix diagrams for the M-HCN-H O systems . . . . . . . . . . . 304 2 8.3.6. Pourbaix diagrams for the M-S-H O systems . . . . . . . . . . . . . 305 2 8.4. Electrochemical kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 8.4.1. Rate of an elementary electrochemical reaction: Tafel’s Law . . . . 307 8.4.2. Diffusion-controlled rate of an elementary electrochemical reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 8.4.3. Rate of a redox chemical reaction . . . . . . . . . . . . . . . . . . . . 313 8.5. Redox electrochemical reactions . . . . . . . . . . . . . . . . . . . . . . . 314 8.5.1. Cementation or displacement reaction . . . . . . . . . . . . . . . . . 315 8.5.2. Leaching (dissolution) of metals . . . . . . . . . . . . . . . . . . . . . 319 8.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Summaries of Other Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 Preface Extractive metallurgy is the art of extracting metals from their ores and refining them. This book deals with the processes, operations, technologies and processing routes of extractive metallurgy, i.e. the (production) extraction of metals from ores, concentrates (enriched ores), scraps and other sources and their refining to liquid metals before casting or to solid metals. In many books dealing with metallurgy, the introduction starts by recalling the steps of the progress of metallurgy. These steps, according to and since Lucrèce, are identical to those of human progress: the copper age, the bronze age, the iron age, the silicon age1. According to Mohen2, the considerable role attributed to the three principal metals in the development of human societies must not be overstressed or overvalued. It is nonetheless true that “metallurgy is the most advanced prehistoric manifestation of the mastery of natural resources” (Mohen). Extracting copper from its ore dates back to the middle of the fifth millennium before our age and extracting iron from its ore dates from the beginning of the second millennium before our age. The winning (production) of metals and alloys today is still one of the basic industries of the transformation of matter. Metals and alloys still are essential resources for metallic, mechanic, electromagnetic, electric and even electronic industries (silicon is treated as a metal). 1 S.L. SASS, The Substance of Civilization: Materials and Human History from the Stone Age to the Age of Silicon, Arcade Publishing, 1999. 2 J.P. MOHEN, Métallurgie préhistorique, Masson, Paris, 1990. xii Extractive Metallurgy 1 This industry is characterized by: – Production (of primary metal) ranging from 1,345 million tons (Mt) of steel a year to 138,000 tons of titanium, in 20073. Steel Aluminum Copper Zinc Lead Nickel Magnesium Titanium 1,345 38 15.6 10.6 7.0 1.66 0.79 0.138 Table 1. World Metal Production in 2007 – Very high growth rates in the years 1950 to 1973, and again since 2000. The production of steel was 200 million tons in 1950. The production of aluminum increased from 2 million tons in 1950 to 10 million tons in 1973, reaching 38 million tons in 2007. If in developed countries the growth in terms of tonnage has strongly slowed in recent decades, this is due to a smaller consumption of these products owing to the increase in mechanical and physical properties of the materials and parts forged from these materials, thus requiring less material for the same usage. However the annual production of steel in China increased from 182 million tons in 2002 to 489 million tons in 20074. – Production costs varying by a factor of 20 to 25 between steel and titanium. The three principal costs in metal production are investment, ore and energy consumption. The energy consumption is about 20 GJ/ton of steel, 80 GJ/ton of aluminum and 160 GJ/ton of titanium. Hence the permanent research into improvements of the processes or operations and/or the development of new processes. – Very high recycling rates. Recycled steel represents 46% of iron sources in worldwide steel production. The “electric furnace processing route” produces 35% of steel. It uses 75% less energy than the integrated route. The recycling rate of aluminum represents 25% of total production and the energy consumption from recycled aluminum represents 5% (energy reflow) of energy consumption from the ore. The production of primary zinc is 7.4 million tons and from recycled zinc is 2.1 million tons. In the case of lead, the production from recycled lead is greater than 50%. – Very high quality products with degrees of purity (i.e. contents of harmful impurities) for the finished products, comparable to the purity of materials for electronics and with very narrow concentration ranges of the alloying elements, to obtain physical or mechanical properties with very small dispersions. For metal castings reaching 300 tons, steel grades with carbon content of less than 25 ppm, 3 US Geological Survey, Minerals Commodity Summaries and Minerals Yearbook, 2007. 4 Source: IISI (International Iron and Steel Institute).

Description:
This book is dedicated to the processes of mineral transformation, recycling and reclamation of metals, for the purpose of turning metals and alloys into a liquid state ready for pouring. Even though "process metallurgy" is one of the oldest technologies implemented by man, technological innovation,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.