ebook img

Extraction of neutron structure from tagged structure functions PDF

1.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extraction of neutron structure from tagged structure functions

Extraction of neutron structure from tagged structure functions W. Cosyn∗,† and M. Sargsian∗ ∗DepartmentofPhysics,FloridaInternationalUniversity,Miami,Florida33199,USA †Onleavefrom:DepartmentofPhysicsandAstronomy,GhentUniversity,Proeftuinstraat86, B-9000Gent,Belgium 1 1 0 Abstract. We present work in a model used to describe semi-inclusive deep inelastic scattering 2 off the deuteron. The model uses the virtual nucleon approximation to describe the interaction n of the photon with the bound neutron and the generalized eikonal approximation is applied to a calculate the final-state interaction diagram. Comparison with data taken at Jefferson Lab shows J good agreement in the covered range of kinematics and points at a largely suppressed off-shell 6 rescattering amplitude. TheW and Q2 dependences of the total cross section and slope factor of theinteractionofDISproducts,X,offthespectatornucleonareextracted.StartingfromtheJLab ] dataandourmodelcalculations,weoutlineandapplyanextrapolationmethodtoobtaintheneutron h structurefunctionF athighBjorkenx. t 2N - l Keywords: deep-inelasticscattering,final-stateinteraction,neutronstructurefunction c PACS: 11.80.-m,13.60.-r,13.85.Ni u n [ INTRODUCTION 1 v 8 AreactionthatcanbeusedtostudytheinfluenceofQCDdynamicsatnucleoniclength 5 scales is semi-inclusive deep inelastic scattering off the deuteron (d(e,e(cid:48)p )X), where a 2 s 1 spectatorprotonisdetectedinthefinalstate.Atverylowspectatormomentatheneutron . is nearly on-shell and the reaction can be used to extract information about the “free” 1 0 neutron structure function in a way that minimizes the nuclear binding effects inherent 1 in scattering off a deuteron target. At higher spectator momenta the reaction can be 1 : used to study the modifications of nucleon properties and the role quark degrees of v freedominhighdensityconfigurationsofthedeuteron.Inkinematicswichfavourfinal- i X stateinteractions(FSI),thespace-timeevolutionofhadronizationcanbeexamined.Two r recent Jefferson Lab Hall B experiments have studied the reaction: one at high [1], and a theotheratlowspectatormomenta[2]. In order to provide meaningful interpretations of the measured data, theoretical mod- els that quantify the importance of the FSI in the reaction are needed. The major dif- ficulty in doing this is that one lacks detailed information about the composition and space-time evolution of the hadronic system produced in the deep inelastic scatter- ing and how this changes as a function of Bjorken x and Q2. Several theoretical ap- proaches that provide models for the d(e,e(cid:48)p )X reaction can be found in the literature s [3, 4, 5, 6, 7, 8, 9, 10]. In the following, we will present work in a model based on the general properties of soft rescattering [11]. Results are compared to data taken in the JLabDeepsexperimentandweusetheseresultsanddatatodescribeamethodtoextract theneutronstructureathighx. FORMALISM The interaction of the virtual photon with the bound nucleon is treated with the virtual nucleon approximation (VNA) [4, 5, 12]. In the VNA, the spectator nucleon is taken on the mass shell, while the virtual photon interacts with an off-shell nucleon. The VNA is based on the following main assumptions: (i) only the pn component of the deuteron wave function is considered in the reaction, (ii) the negative energy projection of the virtualnucleonpropagatorgivesnegligiblecontributiontothescatteringamplitude,and (iii)interactionsofthevirtualphotonwithexchangedmesonsisneglected.Assumptions (i) and (ii) can be satisfied when the momentum of the spectator proton is limited to p ≤700MeV/c[13],while(iii)issatisfiedatlargeQ2 (>1GeV2)[14,15]. s ThenuclearwavefunctionintheVNAisnormalizedtoaccountforthebaryonnumber conservation[16,17,18,19]: (cid:90) α|Ψ (p)|2d3p=1, (1) D where α = 2− 2(Es−ps,z) is the light cone momentum fraction of the deuteron carried M D by the bound nucleon normalized in such a way that the half of the deuteron momen- tum fraction corresponds to α =1. Because of the virtuality of interacting nucleon it is impossible to satisfy the momentum sum rule at the same time, which can be qualita- tively interpreted as part of the deuteron momentum fraction being distributed to non- nucleonicdegreesoffreedom. Inthemodel,twoFeynmandiagramsaretakenintoaccount:theplane-wavediagram wheretheon-shellprotonisapurespectatorandtheFSIdiagramwhereasoftrescatter- ingoccursbetweentheproducedX andthespectator.TodescribetheFSIoftheproduced X with the spectator nucleon, the generalized eikonal approximation is applied. At the energiesunderconsiderationintheJLabexperiments,wecanassumetherescatteringto be diffractive and occurring over small angles. The following eikonal form is adopted fortheX−N rescatteringamplitude: fX(cid:48)N,XN =σ(Q2,xBj)(i+ε(Q2,xBj))eB(Q22,xBj)t, (2) where σ, ε and B are the effective total cross section, real part and the slope factor of the diffractive X(cid:48)N →XN scattering amplitude. In the derivation of the FSI amplitude, afactorizedapproachisused,wherebytheinteractionofthevirtualphotonwiththeoff- shell nucleon is taken out of the integration over the intermediate spectator momentum. Suchanapproximationisalsoappliedinquasi-elasticscattering[20,13],beingvalidup tospectatormomentaaround400MeV/c. We define the lab frame four-momenta of the involved particles as p ≡(M ,0) for D D the deuteron, q ≡ (ν,(cid:126)q) for the virtual photon (with the z-axis chosen along(cid:126)q), p ≡ s (cid:113) (E = (cid:126)p2+m2,(cid:126)p )forthespectatorprotonand p ≡(E ,(cid:126)p )=(ν+M −E ,(cid:126)q−(cid:126)p ) s s p s x X X D s s thecenterofmassmomentumoftheundetectedproducedhadronicsystemX.Theinitial momentum of the bound off-shell neutron is defined as p ≡ p −p . After applying i D s all the abovementioned approximations and averaging over φ (the angle between the electronandγ∗,(cid:126)p plane),wecanwriteforthedifferentialcrosssection[11]: s (cid:32) (cid:33) dσ = 4παEM |q| (cid:18)1−y−x2y2m2n(cid:19) Q2 +2tan2 θ2e (cid:12)(cid:12)(cid:12)αi + 1 (cid:12)(cid:12)(cid:12)−1 dxˆdQ2d3p Q2xˆ m Q2 |q|2 1+R (cid:12)α 2xˆ(cid:12) s n q (cid:34) (cid:35) (cid:18)α 1 (cid:19)2 p2 × i + + T F (α,xˆ,Q2)SD(p ). (3) α 2xˆ 2Q2 2N i s q α is the fine-structure constant, −Q2 = ν2−(cid:126)q2 is the four-momentum transfer, m EM n the neutron mass, y= ν , α = 2p−i , α = 2q−, xˆ= Q2 is the Bjorken x for a moving Ee i MD q MD 2pi·q nucleon,θ istheelectronscatteringangle,R= σL ≈0.18istheratioofthelongitudinal e σT totransversecrosssectionforscatteringoffthenucleon,andF istheeffectivenucleon 2N structure function, which is defined at xˆ and in principle could be modified due to the nuclear binding (see e.g. Ref. [4]). We use the SLAC parametrization of Ref. [21] for F . 2N In Eq. (3), the distorted spectral function SD(p ) contains the contributions from the s plane-waveandFSIdiagramandtakesthefollowingform: (cid:12) SD(p )= 1 ∑ (cid:12)(cid:12)ΨsD(ps,p s )+ i (cid:90) d2ps(cid:48),⊥ β(s,√mX(cid:48)) s 3 (cid:12) i i s s 2 (2π)2 4|(cid:126)q| E E sD,ss,si(cid:12) s s(cid:48) (cid:104) × (cid:104)X,p |fon (s,t)|X(cid:48),p (cid:105)ΨsD(p˜ ,s,s ) s X(cid:48)N,XN s(cid:48) s(cid:48) i s (cid:105)(cid:12)2 −i(cid:104)X,p |foff (s,t)|X(cid:48),p (cid:105)p˜ Ψ˜sD(p˜ ,s,s ) (cid:12) , (4) s X(cid:48)N,XN s(cid:48) s(cid:48),z s(cid:48) i s (cid:12) where ΨsD (Ψ˜sD) is the undistorted (distorted) deuteron wave function with spin pro- (cid:112) jection s , β(s,m ) = (s−(m −m )2)(s−(m +m )2) (with s the Mandelstam D X(cid:48) n X(cid:48) n X(cid:48) variable of the rescattering process), m is the invariant mass of the produced hadronic X(cid:48) statebeforetherescatteringand p˜ ≡ p −∆,with s(cid:48),z s,z ν+M m2 −γ ∆= D(E −m )+ X forγ ≤m2 , |(cid:126)q| s p 2|(cid:126)q| X ν+M ∆= D(E −m ) forγ >m2 , (5) |(cid:126)q| s p X where γ = m2+2m ν−Q2 is the produced DIS mass off the stationary nucleon. The n n two regimes in Eq. (5) originate from the condition m2 > m2 , which can be inferred X X(cid:48) from the approximate conservation law for the “−” component in high energy small anglescatterings[11]. The on-shell rescattering amplitude takes the form of Eq. (2). For the off-shell am- plitude foff there is no clear prescription, but following our main goal of studying X(cid:48)N,XN the semi-inclusive DIS based only on basic properties of the high-energy scattering we identifytwoextremecasesforoff-shellpartoftherescatteringamplitude,onewhenitis takentobezero(nooff-shellFSI)andtheotherinwhichoff-shellamplitudeisassumed to be equal to the on-shell amplitude fon referred as maximal off-shell FSI. A third X(cid:48)N,XN approachistoparametrizetheamplitudeas foff = fon e−µ(x,Q2)t, (6) X(cid:48)N,XN X(cid:48)N,XN with µ an extra parameter that can be fitted, providing a measure of the suppression of theoff-shellamplitude.Thisapproachisreferredtoasfittedoff-shellFSI. RESULTS Fig. 1 compares our model calculations with a selection of data taken in the Deeps experiment (for a definition of the spectral function P(p ,cosθ ) see Ref. [1]). For each s s Q2,W, the total cross section σ and slope parameter B in Eq. (3) were taken as free parametersandfittedtothedataforall p values.Inthecaseofthefittedoff-shellFSI, µ s was taken as an extra free parameter. As can be observed in the figures, the calculations including FSI do a fair job of describing the data over the kinematic range of the experiment. The differences between the three different off-shell descriptions becomes smallerwithhigher p .At p =300MeVtheplane-waveandFSIamplitudesareofequal s s magnitude,makingthefinalresultverysensitivetothedifferentdescriptions,especially noticeable in the backward region. At this p value, there is also an oscillating structure s inthedatawhichdisappearswithhigherW,butisstillpresentinthemodelresults. Atthehigherspectatormomenta,thecalculationsincludingFSIcontinouslygrowfor anglesintheforwarddirection,clearlydifferentfromthefairlyflatbehavioroftheplane- wave calculations. This high FSI contribution in the forward region is a consequence of the structure of the phase factor in Eq. (5). At the highest p , the calculations s systematicallyunderestimatethedata,hintingatabreakdownofthefactorizationusedin the derivation of Eq. (3). Over the whole kinematic range of the data, the fitted off-shell FSI calculations are more in agreement with the no off-shell than the maximal off-shell ones,pointinginthedirectionofalargelysuppressedoff-shellrescatteringamplitude. The values of the fitted total cross section σ and slope parameter B used in Fig. 1 are shown in Figs. 2 and 3 for the no off-shell FSI and maximal off-shell FSI calculations. After an initial peak atW =1.2 GeV, corresponding with the creation of a ∆, the value of σ drops to around 25 mb and rises with increasing W. This agrees with the picture of the increased creation of hadronic constituents as W increases. With increasing Q2, the value of the (XN) cross section parameter also becomes consistently smaller in this region,indicatingreducedfinal-stateinteractions.Thiscouldpointattheonsetofacolor transparency signal, but more data points at other Q2 andW values are needed to make more substantial claims. The value of the slope parameter B is also largely correlated withtheQ2,W-dependenceoftheσ parameter. NEUTRON STRUCTURE AT HIGH x We now use the Deeps data and our model calculations to outline a method to extract the neutron structure function F at high x from kinematics at low x. It is based on 2 FIGURE1. (Coloronline)ComparisonbetweentheDeepsdata[1]andmodelcalculations.Thedashed blackcurveisaplane-wavecalculation,theotherincludefinal-stateinteractions.Theeffectivetotalcross sectionandslopeparameterinthefinal-stateinteractionamplitudearefittedparametersforeachQ2,W, the real part is fixed at ε =−0.5. The dot-dashed green curve only considers on-shell rescattering, the dottedbluecurvehasanoff-shellrescatteringamplitudeequaltotheon-shelloneandthefullredcurve usestheoff-shellparameterizationofEq.(6) FIGURE2. (Coloronline)Thefittedvaluesofeffectivecrosssectionσ andslopefactorBfortheno off-shell FSI calculations used in Fig. 1 as a function of the invariant mass W. Full blue curve is for Q2=1.8GeV2,thedashedgreencurveforQ2=2.8GeV2. FIGURE 3. (Color online) The fitted values of effective cross section σ and slope factor B for the maximaloff-shellFSIcalculationsusedinFig.1asafunctionoftheinvariantmassW.Fullbluecurveis forQ2=1.8GeV2,thedashedgreencurveforQ2=2.8GeV2. an analytical continuation of the amplitude to the unphysical limit t(cid:48) = m2−p2 → 0, n i whichcorrespondstoanon-shellneutron.Duetothelowbindingenergyofthedeuteron this singularity of the amplitude is very close to the physical region. It is analogous to the Chow-Low procedure applied in the extraction of ππ and NN cross sections from p(π,p)X and d(n,n)pn reactions [22]. It can be shown that the plane-wave part of the distorted spectral function in Eq. (4) has a double pole in t(cid:48), while the FSI part hasn’t [5].ThisallowsustoextracttheF structurefunctionas 2 t(cid:48)2 FD,exp(x,Q2)+v FD,exp(x,Q2) limFextr(Q2,xˆ,t(cid:48))= L T T , t(cid:48)→0 2N [Res(ΨD(t(cid:48) =0))]2 2xˆν (cid:20)(cid:16)αi + 1 (cid:17)2+ p2T (cid:18)Q2 +2tan2 θ2e(cid:19)(cid:21) mn αq 2xˆ 2Q2 |q|2 1+R (7) D,exp where F are the experimentally measured deuteron structure functions. The rhs of L,T Eq.(7)hasaquadraticdependenceont(cid:48). The approach we now take is to take a trajectory through the Deeps data at a fixed angle that starts at high W,p and goes to low W,p values. This translates into a s s descending series in t(cid:48) → 0 and an ascending series in xˆ → x, as is shown in Fig. 4. FIGURE 4. (Color online) Example of a trajectory int(cid:48),xˆused in the extrapolation procedure for the neutron structure function F . The z-axis shows the ratio of Eq. (7) to the parametrization of Ref. [21]. 2 Theblue(green)curveshowstheplane-wave(FSI)modelcalculationsalongthetrajectory,bluedotsare JLabDeepsdata[1]. In this manner, we can use measurements at low values of xˆ- where F is well known 2N -toextrapolatetoregionswithhighx. FIGURE5. (Coloronline)ExampleofaextrapolationforF atx=0.7.Theblue(green)curveshows 2N the plane-wave (FSI) model calculations along the trajectory, black dots are JLab Deeps data [1]. The dashedcurvesareaquadraticfittothedatapoints,theinterceptatt(cid:48)=0yieldstheF (x=0.7)value. 2N Fig. 5 shows an example of a quadratic fit to the Deeps data, extrapolated tot(cid:48) =0 to obtain the neutron structure function F at Bjorken x=0.7. As the available data sits 2N ononearmofthequadraticcurve,it’snotstraightforwardtodotheextrapolation.Here, we imposed an extra constraint on the quadratic fit, that the t(cid:48) value of its minimum has to coincide with the minimum of the FSI curve along the trajectory. The position of this minimum is related to the size of the FSI term in the distorted spectral function which the model does a good of describing for the kinematics along this trajectory. The three different fit curves were obtained by taking the data point and error bar values respectively for the lowest t(cid:48) data point. With the current data set, the method doesn’t providearobustpredictionforthehighxneutronstructurefunction,astrajectorieswith different spectator angles yield a range of values for F . Ideally, more data at lower p 2N s valueswouldprovidebetterconstraintsandyieldbetterpredictions. ACKNOWLEDGMENTS This work is supported by the Research Foundation Flanders as well as by the U.S. DepartmentofEnergyGrantunderContractDE-FG02-01ER41172. REFERENCES 1. A.V.Klimenko,etal.,Phys.Rev.C73,035212(2006),nucl-ex/0510032. 2. H. Fenker, C. Keppel, S. Kuhn, and W. Melnitchouk (2003), URL http://jlab.org/exp_ prog/CEBAF_EXP/E03012.html,jLAB-PR-03-012. 3. S.Simula,Phys.Lett.B387,245–252(1996),nucl-th/9605024. 4. W. Melnitchouk, M. Sargsian, and M. I. Strikman, Z. Phys. A359, 99–109 (1997), nucl-th/ 9609048. 5. M.Sargsian,andM.Strikman,Phys.Lett.B639,223–231(2006),hep-ph/0511054. 6. C. Ciofi degli Atti, L. P. Kaptari, and S. Scopetta, Eur. Phys. J. A5, 191–207 (1999), hep-ph/ 9904486. 7. C.CiofidegliAtti,andB.Z.Kopeliovich,Eur.Phys.J.A17,133–144(2003),nucl-th/0207001. 8. C. Ciofi degli Atti, L. P. Kaptari, and B. Z. Kopeliovich, Eur. Phys. J. A19, 145–151 (2004), nucl-th/0307052. 9. V. Palli, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti, and M. Alvioli, Phys. Rev. C80, 054610 (2009),0911.1377. 10. C.C.d.Atti,andL.P.Kaptari(2010),1011.5960. 11. W.Cosyn,andM.Sargsian(2010),1012.0293. 12. M. M. Sargsian, S. Simula, and M. I. Strikman, Phys. Rev. C66, 024001 (2002), nucl-th/ 0105052. 13. M.M.Sargsian,Phys.Rev.C82,014612(2010),0910.2016. 14. M.M.Sargsian,Int.J.Mod.Phys.E10,405–458(2001),nucl-th/0110053. 15. M.M.Sargsian,etal.,J.Phys.G29,R1(2003),nucl-th/0210025. 16. L.L.Frankfurt,andM.I.Strikman,PhysicsReports76,215–347(1981). 17. L.L.Frankfurt,andM.I.Strikman,Phys.Lett.B64,433–434(1976). 18. L.L.Frankfurt,andM.I.Strikman,PhysicsLettersB183,254–258(1987). 19. P.V.Landshoff,andJ.C.Polkinghorne,Phys.Rev.D18,153(1978). 20. S.Jeschonnek,Phys.Rev.C63,034609(2001),nucl-th/0009086. 21. A. Bodek, M. Breidenbach, D. L. Dubin, J. E. Elias, J. I. Friedman, H. W. Kendall, J. S. Poucher, E.M.Riordan,M.R.Sogard,D.H.Coward,andD.J.Sherden,Phys.Rev.D20,1471–1552(1979). 22. G.F.Chew,andF.E.Low,Phys.Rev.113,1640–1648(1959).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.