Mon.Not.R.Astron.Soc.000,1–18(2015) Printed29January2016 (MNLATEXstylefilev2.2) External photoevaporation of protoplanetary discs in sparse stellar groups: the impact of dust growth Stefano Facchini1,2(cid:63), Cathie J. Clarke1 and Thomas G. Bisbas2,3,4 1InstituteofAstronomy,MadingleyRoad,CambridgeCB3OHA,UK 2Max-Planck-Institutfu¨rExtraterrestrischePhysik,Giessenbachstrasse1,85748Garching,Germany 3UniversityCollegeLondon,GowerPlace,London,WC1E6BT,UK 4DepartmentofAstronomy,UniversityofFlorida,Gainesville,FL32611,USA 6 1 0 Submissiondate 2 n a ABSTRACT J 7 Weestimatethemasslossratesofphotoevaporativewindslaunchedfromtheouteredge 2 of protoplanetary discs impinged by an ambient radiation field. We focus on mild/moderate environments (the number of stars in the group/cluster is N (cid:38) 50), and explore disc sizes ] ranging between 20 and 250AU. We evaluate the steady-state structures of the photoevap- R orative winds by coupling temperature estimates obtained with a PDR code with 1D radial S hydrodynamicalequations.Wealsoconsidertheimpactofdustdraggingandgraingrowthon . h thefinalmasslossrates.Wefindthatthesewindsaremuchmoresignificantthanhavebeen p appreciatedhithertowhengraingrowthisincludedinthemodelling:inparticular,massloss - rates(cid:38) 10−8M /yrarepredictedevenformodestbackgroundfieldstrengths((cid:38) 30G )in o (cid:12) 0 thecaseofdiscsthatextendtoR>150AU.Graingrowthsignificantlyaffectsthefinalmass r t lossratesbyreducingtheaveragecrosssectionatFUVwavelengths,andthusallowingamuch s a morevigorousflow.Theradialprofilesofobservablequantities(inparticularsurfacedensity, [ temperatureand velocitypatterns) indicatethatthese windshavecharacteristic featuresthat are now potentially observable with ALMA. In particular, such discs should have extended 1 gaseousemissionthatisdustdepletedintheouterregions,characterisedbyanon-Keplerian v rotationcurve,andwitharadiallyincreasingtemperaturegradient. 2 6 Key words: accretion, accretion discs — circumstellar matter — protoplanetary discs — 5 hydrodynamics—planetarysystems:formation 7 0 . 1 0 6 1 INTRODUCTION they are embedded. Even more interestingly, Mann et al. (2014) 1 (seealsoMann&Williams2010)haveshownthatthedustcom- Thereisobservationalevidencethattheenvironmentofstarform- : ponent of discs tends to be less massive in the immediate vicin- v ingregionscansignificantlyaffecttheevolutionofprotostellarand ity of the dominant O star in the ONC, θ1C. Mann et al. (2015) i protoplanetarydiscs.Untilrecentyearstheonlyevidenceofsuch X havenotobservedsuchatrendinanotherO-starsbearingcluster, interplayhascomefromsingleobjectsshowingclearsignaturesof r NGC2024.Formilderstarformingregions,westilllackobserva- anon-goinginteractionbetweentheirdiscandtheambientenviron- a tionalevidenceofhowimportanttheenvironmentcanbeinshap- ment(e.g.O’Dell,Wen&Hu1993;Bally,O’Dell&McCaughrean ing the structure and the evolution of discs. Upcoming spatially 2000; Vicente & Alves 2005). With the advent of sub-millimetre resolvedsurveysofdiscsmightbeabletoclarifythis.Earlierstud- surveys,wecannowstartaccessingstatisticalsamplesofrelevant ieshaveanalysedwhetherdiscfrequencydependsondistancefrom propertiesofprotoplanetarydiscs(mostlytheirmassandouterra- themostmassivestarsinOBstars-bearingclusters.Mostofthem dius)andinferwhethertheydoshowimprintsofbeingaffectedby agreethatinthecloseproximitytotheluminousOstars,discfrac- the environment. Such studies have shown that this is indeed the tiondeclinesbyafactorof∼ 2.Thistrendhasbeenobservedfor case in the most extreme star forming region within 500pc from exampleinNGC2244(Balogetal.2007),inNGC6611(Guarcello us,theOrionNebulaCluster(ONC).Inthiscluster,deJuanOve- etal.2007,2009),inNGC6357(Fangetal.2012)andinCygOB2 laretal.(2012)havesuggestedthattypicaldiscsizesdecreaseasa (Guarcelloetal.inprep.).However,theseresultsarestillcontro- functionofthestellarsurfacedensityoftheenvironmentinwhich versial:forexample,Richertetal.(2015)haverecentlyarguedthat suchdecreasingtrendindiscfractioncouldbeenhancedbysample incompletenessinsomeofthesestudies.Inlesspopulousclusters, (cid:63) [email protected] (cid:13)c 2015RAS 2 Facchini,ClarkeandBisbas inwhichthenumberofsourcesnearOstarsissmaller,amorero- gravitational potential well of the central star. Since the outer re- bustresultisthatnoevidenceofspatialgradientisobserved(e.g. gions of discs contain the bulk of the mass and since the rate of Roccatagliataetal.2011). discevolutionisdeterminedbytheouterdiscradius,suchexternal Therearetwomainenvironmentalmechanismsthatcanaffect winds have important implications for disc lifetimes and surface protoplanetarydiscs:star-discinteractions,andphotoevaporation. densityprofiles.Indeed,asnotedbyClarke(2007)andconfirmed Indenseclusters,duringthelifetimeofadisc(∼3−10Myr,e.g. byAnderson,Adams&Calvet(2013),suchwindsacceleratedisc Haisch, Lada & Lada 2001; Mamajek 2009; Fedele et al. 2010), clearing not on account of the mass lost in the wind (which is a gravitationalencounterswithotherstarsmayperturbthedisc,trun- fraction of that accreted onto the star over the disc lifetime) but catingittoadefinedouterradius,andsteepeningthesurfaceden- insteadbecausetheymodifythedisc’souterboundary,preventing sityprofile(seeHall1997;Breslauetal.2014;Rosottietal.2014; discspreadingandkeepingtheviscoustimescalerelativelyshort. Vincke,Breslau&Pfalzner2015,andreferencestherein).Veryfew Lada & Lada (2003), Porras et al. (2003) and others have objects that might be undergoing such encounters have been de- shown that the probability density function for cluster member- tected(Salyketal.2014;Cabritetal.2006;Daietal.2015),since ship number N for clusters in the Solar Neighbourhood scales thetimescaleofobservabilityisveryshort. with 1/N2. Therefore the cumulative probability for a star to be Anarguablymoreimportantmechanismisthephotoevapora- born in a cluster of size (cid:54) N is inversely proportional to N tioncausedbytheenergeticradiationpermeatingtheyoungasso- (e.g.Adams2010).Within2kpcoftheSun,themedianvalueof ciations. When stars form in groups, EUV (Extreme Ultraviolet) thisdistribution(alsotakingintoaccountisolatedstars)is∼ 300 andFUV(FarUltraviolet)radiationofthemostmassivestarsheats (Adams et al. 2006; Allen et al. 2007). The majority of proto- theouterregionsofprotoplanetarydiscs,andcandriveagaseous planetary discs are then very likely to evolve embedded in rel- flow from the disc surface (Hollenbach et al. 1994; Adams et al. atively ‘mild’ (low N) environments. Clusters and groups with 2004, hereafter A04). Such a scenario has been very successful N (cid:54)500havetypicalFUVfieldsG (cid:54)3000G (e.g.Fatuzzo FUV 0 in explaining the so-called ‘proplyds’ (Johnstone, Hollenbach & &Adams2008),whereG isthelocalFUVinterstellarfield(1.6× 0 Bally1998;Sto¨rzer&Hollenbach1999;Richling&Yorke2000), 10−3ergs−1cm−2,Habing1968).Fatuzzo&Adams(2008)have i.e.darksilhouettediscsorcocoon-likestructuresobservedinstar alsoshownthattheFUVfluxdependsstronglyonthemostmassive formingregions.Suchobjectshavebeenobservedforexamplein starinthecluster,andontheintra-clustercolumndensityofabsorb- the ONC (O’Dell, Wen & Hu 1993; Bally, O’Dell & McCaugh- ingmaterial.Starsinsmallgroups(N ∼ 50−100)arelikelyto rean 2000), in Cyg OB2 (Wright et al. 2012), in Carina (Smith, beimpingedbyanenvironmentalFUVfieldof∼30−300G ,i.e. 0 Bally & Morse2003), and in otherstar forming regions showing slightlylargerthanthelocalfield.Themajorityofprotoplanetary massiveOBassociations(i.e.luminoussourcesofhighenergyra- discsarethenverylikelytolieinthesubcriticalregimeofexternal diation).WhentheUVfluximpingingontothediscsislesssevere photoevaporation,atleastintheSolarNeighbourhood. thaninthesestarformingregions,theeffectofsuchmasslosson Note that at such low values the external radiation becomes theevolutionofprotoplanetarydiscs,andtheimpactontheirplanet comparabletotheradiationfromthecentralstarevenatlargeradii formationpotential,ishoweverrarelyconsidered. (e.g.Berginetal.2003).Inparticular,Franceetal.(2014)looked To be more quantitative, external photoevaporation can be atasampleofCTTSsandestimatedtheFUVfieldclosetothecen- summarisedinthreedifferentregimes.WhentheEUVcomponent tralobjectbyderivingtheFUVcontinuumandhotgaslinespro- isdominant,duetotheproximityofamassiveOstar(e.g.θ1Cin filesfromhighspectralresolutionHSTobservationsatFUVwave- theONC),theEUVfluxreachesthesurfaceofthedisc,heatingit lengths.TheyobtainedFUVfieldsof∼107G at∼1AU,which 0 upto∼ 104 K.Acompletelyionisedflowisformed,drivinggas areduetobothstellarandaccretioncontributions.Byconsidering outwardsandphotoevaporatingthedisc(Hollenbachetal.1994). geometrical dilution only, FUV fields of 300 and 30G are thus 0 When the EUV flux is less severe, the FUV field can generate a expectedat180and580AU,respectively.However,thebulkofthe neutralwindthatisopticallythicktotheEUVradiation,sincethe discisshieldedbyitsinnerregions,especiallyforlowflaringan- FUVcomponenthasalargerpenetratingdepththantheEUVone. gles,andmostoftheradiationisabsorbed∼2scale-heightsabove Whenthisisthecase,twodifferentregimesmayoccur,depending themidplane,asshowninthermo-chemicalmodels(forexample, onthediscsizeRd.WedefinethegravitationalradiusRg ofthe Bruderer et al. 2012, compute an FUV intensity of ∼ 100G0 at discastheradiusatwhichthethermalenergyisequaltothegrav- ∼100AUandz/R∼0.2forHD100546).Besides,themidplane itational binding energy (equivalently, as the radius at which the oftheouterdisccanbedirectlyimpingedbytheambientradiation, soundspeedisequaltotheescapevelocity): andgascanberemovedmoreeasily.Thusintheouterregionsof GM µm (cid:18) T (cid:19)−1(cid:18)M (cid:19) discsexternalphotoevaporationcouldplayadominant(oratleast R = ∗ H ≈140AU ∗ , (1) comparable) role with respect to the photoevaporation driven by g k T 1000K M B (cid:12) the FUV radiation of the central star (Gorti & Hollenbach 2009; whereT isthetemperature,M isthemassofthecentralstar,and Gorti,Hollenbach&Dullemond2015).Evidentlythisisanissue ∗ µthemeanmolecularweight(inthiscaseweusedatomicgaswith thatwillonlybefinallysettledusing2Dradiationhydrodynamical µ = 1.3).WhenR > R ,thewindislaunchedsupersonically simulationsincludingbothinternalandexternalFUVsources. d g (e.g.Johnstone,Hollenbach&Bally1998).Suchdiscsaredefined The subcritical regime of external photoevaporation is the tobesupercritical.However,moderateFUVfieldsarenotableto most difficult to probe observationally. However, there are some heatuptheouterregionsofdiscstohighenoughtemperaturessuch observed signatures that might be indicating that such a mecha- that R < R . A04 have shown that when this is the case, the nismisoccurringeveninquiteisolatedsystems(i.e.verylowex- g d flowstructurecanbedescribedbyanonisothermalParkerwind, ternalUVfluxes).ApotentialexampleofthisisthediscaroundIM with the addition of a centrifugal term. This model uses the rea- Lup.Panic´etal.(2009)haveshownthatoutsidethemm-brightdisc sonable assumption that the mass loss rate from the outer rim of (R =400AU;Pinteetal.2008),thegasstructureasprobed out,dust thediscdominatesthemasslossratefromthesurfaceofthedisc byCOemissionlinesindicatesasteepdecreaseinthesurfaceden- (seetheAppendixinA04),wherethegasismoreembeddedinthe sityprofile,whichresemblestheprofilesobtainedbyA04intheir (cid:13)c 2015RAS,MNRAS000,1–18 Externalphotoevaporationofprotoplanetarydiscs 3 summarise the photoevaporative model by A04, and explain how ourdescriptiondiffersfromtheirs.InSections3-6wedetailthe mainingredientsofourmodel;respectivelythethermalproperties, gashydrodynamics,dusthydrodynamics,andtheiterationproce- duretoobtainthefinalsolutions.InSection7wepresentourre- sults,whicharethendiscussedinSection8.InSection9wesum- mariseourconclusions. 2 COMPARISONWITHPREVIOUSWORK Weconsiderthesubcriticalregime(R < R )previouslyinvesti- d g gatedbyA04andassumethatthediscisirradiatedbyanisotropic FUVambientradiation.A04haveshownthattheratiobetweenthe Figure1.Schematicillustratingaphotoevaporatingdiscimpingedbyan masslossratefromthediscsurfaceM˙ andthemasslossfrom caamnbbieendtiFreUcVtiornaadliaotriomno,rineitshoetrsoupbiccr,itdiceaplernedgiinmgeo(nRthde<soRurgce).oTfhierrraaddiiaattiioonn. the disc edge M˙ scales as M˙sur/M˙ ∼sur(Rd/Rg)1/2. Since they Fromtheouteredgeofthedisc,asubsonicradialflowdevelops,untilit focus on the subcritical regime, where Rd < Rg, the mass loss reachesthecriticalradiusRc,wheretheflowvelocityisclosetothesound rateisdominatedbytheradialflowemergingfromtheouterrimof speed.Fromthispointoutwardsthevelocityofthewindisapproximately thedisc,andnotbythematerialflowingfromitssurface.Thusthe uniform.Inthissubcriticalregime,themasslossfromthedisc’souterrim subsonicwindcanbedescribedwitha1Dradialmodel(seeFig.1 ismoresignificantthanthemasslossfromthediscsurface. foraschematicofthemodel).A04computedthetemperatureasa functionoflocalgasdensitynandFUV(fromtheambientradia- tion)opticaldepthτ byusingthephoto-dissociationregion(PDR) flowmodels.O¨bergetal.(2015)havealsodetectedaDCO+double codebyKaufmanetal.(1999).Theythencoupledthistemperature ringedstructure,whichcouldbetracingaradiallyincreasingtem- dependencewiththesteadystatemomentum/continuityequations peraturegradientintheouterregionsofthediscinagreementwith inordertoiterativelyfindaself-consistentsteadystatesolutionof thepredictionsfromexternalphotoevaporativemodels(thoughthe thegaseousflow.Themodelwepresentinthispaperisverysimi- authorsinterpretthedataintermsofnon-thermaldesorptionofCO lartotheoneproposedbyA04,butcontainssomekeydifferences, ices).Notethatsimilarfeaturesarealsopredictedbyphotoevapo- that will be described in more detail between Sections 3 - 5. In rationmodelswherethewindsaredrivenbytheFUVfieldemitted particular: bythecentralstarandbytheaccretingmaterial(Gorti&Hollen- bach 2009; Gorti, Hollenbach & Dullemond 2015). From simple (i) Wetakedeviationsfromisothermalityintoaccountinlocat- calculations of external photoevaporation models the gas flow in ingthecriticalpointoftheflow,incontrasttoA04whoimposethe theouterregionsofthisdiscwouldbehighlydustdepleted,since conditionthattheflowistransonicatthelocationcorrespondingto thedragforceisveryweakforthelargegrainsprobedbysubmm thesonicpointforisothermalgas.Thisself-consistentlocationof observations, and such an effect is compatible with the dust de- thecriticalpointresultsinadifferentlocationandlocalflowveloc- pletedouterregionsofthedisc.Thereareothersystemswherethis ityatthispointcomparedwiththeisothermalsolution.Ourresults secondeffect(aradiallydecreasingdust-to-gasratio,asprobedby demonstratethatthisdifferenceisthemostimportantone,sinceit line/continuumsizediscrepancies)isobserved(e.g.Pie´tu,Dutrey modifies mass loss rates significantly. Having located the critical & Guilloteau 2007; Andrews et al. 2012; Rosenfeld et al. 2013; pointoftheflowweareabletointegrateinwardstothediscedge deGregorio-Monsalvoetal.2013).NotehoweverthatBirnstiel& (in contrast to A04 who adopt an iterative scheme in integrating Andrews(2014)haveshownthatsuchdiscrepanciescanalsobeex- outwardsfromthediscedge). plainedbythesize-dependentradialdriftofdustparticles,without (ii) Theself-consistentlocationofthecriticalpointallowsusto appealingtoanouterdiscwind.Wewillsuggestalternativeobser- obtainsolutionsoveralargerrangeofparameterspacethanA04. vationaldiagnosticsthatcandiscriminatebetweenthetwoscenar- Specifically we are able to find solutions for lower values of the ios. interstellarfieldGFUV (i.e.downto30G0)andforawiderrange In this paper, we firstly aim to compute the mass loss rates ofouterdiscradii(outtoRd =250AU). of discs affected by external photoevaporation in the subcritical (iii) Havingdeterminedaflowsolutionatfixeddusttogasratio regime, byextending the parameter space investigatedby A04 to wethentakeaccountofthefactthatonlythesmallgrainsareen- larger (but still subcritical) discs, and milder ambient fields. Our trainedintheflowandre-computetheflowsolutionimplementing methodofsolutionbroadlyfollowsthatofA04butwithsomeim- thereduceddusttogasratiointheflow. portantdifferencesrelatingtotheeffectofnon-isothermalityincor- (iv) Our code computing the temperature structure is different rectlylocatingthecriticalpointoftheflow.Wealsoiteratetowards fromA04(seeSection3below). aself-consistentsolutionwhichtakesintoaccountthefactthatonly smallgrainsareentrainedintheflow.Notethattheeffectofpartial entrainment of dust grains upon the thermal structure of the flow 3 TEMPERATUREESTIMATES-PDR hasbeenrecentlyappliedtotheinternalphotoevaporationscenario byGorti,Hollenbach&Dullemond(2015).Wefinallypresenttyp- FUVradiation(6 (cid:54) hν < 13.6eV)playsacrucialroleindeter- icalradialprofilesofthemainhydrodynamicalquantities,andpro- mining the thermal structure and corresponding chemistry in so- pose potential observational signatures of ongoing photoevapora- called photodissociation regions (PDRs) where gas undergoes a tioninthissubcriticalregime. transition between ionised and molecular state. If a disc is inter- The paper is structured as follows. In Section 2 we briefly acting with an ionising radiation field impinging externally, then (cid:13)c 2015RAS,MNRAS000,1–18 4 Facchini,ClarkeandBisbas 10-18 10-18 3cm)1100--2109 tPoEt 3cm)1100--2109 erg/s/1100--2221 CHH_22i__ofpnohr_mdis erg/s/1100--2221 tCCo tIII ( ( e10-23 FUV_p e10-23 O I rat10-24 ζCR rat10-24 CO eating1100--2265 tcguharesb_mgr ooling1100--2265 gas_gr H C 10-27 10-27 10-4 10-3 10-2 10-1 100 101 102 10-4 10-3 10-2 10-1 100 101 102 A A V V Figure2.Heatingandcoolingratesperunitvolumeforaslabofmaterialofdensityn = 104cm−3 impingedbyaFUVfieldofGFUV = 300G0, afterithasreachedthermo-chemicalequilibriumcomputedwiththereducedchemicalnetwork.Thedust-to-gasratiois10−2andthePAH-to-dustratiois 2.6×10−2.Theheatingfunctions(labelledinthelegend)arerespectively:totalheatingrate(tot);photoelectricheating(PE);Cionisation(Cion);H2 formation(H2form);H2 photodissociation(H2phdis);FUVpumping(FUVp);cosmicrays(ζCR);turbulentheating(turb);chemicalheating(chem); gas-graincollisions(gasgr).MoredetailscanbefoundinBisbasetal.(2012). betweentheionisationfront(ifpresent)anditsdensegas,there- Table1.Abundancesofspeciesusedinthepresentwork,fromAsplund gionisopticallythintoFUVradiationbutopticallythicktoEUV etal.(2009). radiation(hν (cid:62)13.6eV).Thiscausesthegastobeinastateofpar- tialdissociationwherethetemperatureissetbytheFUVradiation H 4×10−1 Mg+ 3.981×10−5 field. Under these conditions, determination of the gas tempera- H2 3×10−1 C+ 2.69×10−4 turerequiresmodellingofvariousheatingandcoolingprocessesin He 8.5×10−2 O 4.898×10−4 termsofacomplexandnon-linearsetofdifferentialequationsde- scribinganetworkofchemicalreactions.Inthelasttwodecades, many groups have managed to develop numerical codes that are of 30, 300 and 3000G . The spatial extent of each density pro- 0 abletosolvesuchproblems(seeRolligetal.2007,forapaperde- file is chosen so that the visual extinction, A , is in the range V tailinginter-comparisonbetweensuchcodes).Belowwedescribe 10−7 (cid:54) A (cid:54) 10. Density is sampled every 0.1 dex, and A V V the3D-PDRcode(Bisbasetal.2012)thatweusetoobtainthegas every0.05dex.Theresultsaretheninterpolatedwithcubic-spline temperature as a function of column density, grain opacity, local functionstoamuchfinergrid.Thecosmicrayionisationrate,ζ , CR gasdensityandFUVfield. is taken to be ζ = 5×10−17s−1. The treatment of PAHs is CR discussedinthenextSection.Weevolvethechemistryineachsim- ulationfor10Myr.Wehavecheckedthatthetemperaturebalance 3.1 3D-PDR isreachedonshortertimescales,∼ 10kyr.Aposteriori,wehave verifiedthattheflowtimescaleisalwayslongerthan10kyr,thus The3D-PDRcode(Bisbasetal.2012)isathree-dimensionaltime- temperaturebalancewithintheflowisareasonableassumption. dependentcodetreatingphotodissociationregionsofarbitraryden- sitydistribution.Usinganiterationschemeitsolvesthechemistry ateverycellconsistingofthegaseousstructureuntilthermaland 3.2 DustandPAHs chemicalequilibriumhasbeenreached.3D-PDRusesasetofvar- iousheatingandcoolingfunctionsfullydescribedinBisbasetal. Dustplaysakeyroleinthedeterminationofthegastemperature. (2012),andshowninFig.2foraspecificcase.Thecodehasbeen Forexample,forthedensityrangeaddressedhere,themainheat- used in various one-dimensional (Bisbas et al. 2014; Bisbas, Pa- ingmechanismofthegasisusuallyphotoelectricheatingfromthe padopoulos&Viti2015)andthree-dimensional(Offneretal.2013, atomiclayersofPAHs(e.g.Weingartner&Draine2001;Croxall 2014;Gachesetal.2015)applications.The1Dversionofthecode et al. 2012), but it can also affect the temperature through other UCL-PDRhasbeenbenchmarkedwithmanyotherPDRcodes(Rol- mechanisms such as H2 formation and gas-grain collisions. Sec- ligetal.2007). ondly,dustcanhaveasignificantimpactonthechemistry,which In this paper, we have adopted the code modifications de- eventuallysetstheabundancesofthemaincoolants,e.g.bycon- scribed in Bisbas et al. (2014). We use a reduced version of the trollingtheamountofices.Notethatallthesemechanismsdepend UMIST 2012 network (McElroy et al. 2013) which contains 33 onthetotalsurfaceareaofdustgrains.Finally,dustsetstheattenu- species (including e−) and 330 reactions. Table 1 shows the ini- ationfactoroftheFUVradiationviathepenetratingdepthτ,where tialabundancesusedbythe 3D-PDR codeatthebeginningofthe wesetτ = 1.8AV = NHσFUV andNH isthehydrogencolumn calculations(takenfromAsplundetal.2009).Usingthefullchem- density.Adetaileddescriptionofthislasteffectwillbedescribed icalnetworkof215speciescausesdifferenceinthetemperatureby inSection5. upto∼10−15%.Sinceotherunknownparameters(suchaspoly- Typicalinterstellardustcanbemodelledwithasimpledistri- ciclic aromatic hydrocarbon abundances, see below) lead to even butiondn˜/ds∝s−q,wheren˜isthenumericaldensityofdustpar- largeruncertainties,weoptedforthereducednetworktosavecom- ticles,andsisthegrainsize.Itiswellknownthatintheinterstellar putationaltime.Weconsiderone-dimensionaluniformdensitypro- mediumqassumesatypicalvalueq∼3.5(historicallylabelledas fileswith102 < n < 108cm−3 interactingwithradiationfields MRNdistribution,fromMathis,Rumpl&Nordsieck1977).More (cid:13)c 2015RAS,MNRAS000,1–18 Externalphotoevaporationofprotoplanetarydiscs 5 140 140 n=102 120 120 n=103 n=104 100 100 n=105 ) 80 ) 80 n=106 K K ( ( T 60 T 60 40 40 20 20 0 0 10-4 10-3 10-2 10-1 100 101 10-4 10-3 10-2 10-1 100 101 A A V V 250 250 200 200 150 150 ) ) K K ( ( T100 T100 50 50 0 0 10-4 10-3 10-2 10-1 100 101 10-4 10-3 10-2 10-1 100 101 A A V V 800 450 700 400 350 600 300 500 ) )250 K K 400 ( (200 T T 300 150 200 100 100 50 0 0 10-4 10-3 10-2 10-1 100 101 10-4 10-3 10-2 10-1 100 101 A A V V Figure3.GastemperatureasafunctionofvisualextinctionAV forthreedifferentvaluesoftheambientFUVfield:30,300and3000G0,fromtoptobottom. Theleftpanelsareassociatedtoagrainsizedistributionwithmaximumgrainsizesmax = 3.5µm,therightpanelstoadistributionwithsmax = 1mm. Linecoloursindicatedifferentgasnumericaldensitiesn,rangingbetween102−106cm−3(thelegendisreportedintherighttoppanel). recently, interferometric observations have suggested a shallower etal.2014,andreferencestherein),tosizes(cid:38)1mm.Graingrowth distributionintheopticallythinregionsofprotoplanetarydiscsat canaltertheheatingandcoolingprocessesmentionedabove. submm - mm wavelengths, where q ∼ 2.5−3 (e.g. Ricci et al. Theonlyobservationindirectlyconstrainingthegrainsizedis- 2010a,b,2012),anddustevolutionmodelshavesuggestedthesame tribution within the photoevaporative winds is by Sto¨rzer & Hol- qualitativeresult(e.g.Birnstiel,Ormel&Dullemond2011).More- lenbach (1999), who estimated the cross section in supercritical over, the maximum grain size does increase substantially in the winds at FUV wavelengths from the location of the ionisation midplane of protoplanetary discs (see the recent review by Testi front around proplyds in Orion. Their best estimate is σ = FUV (cid:13)c 2015RAS,MNRAS000,1–18 6 Facchini,ClarkeandBisbas 8×10−22cm2,wheretheerrorbarsareassumedtobeverylarge, tive grain growth, in this paper we prefer to keep the PAH abun- sincetheusedsampleisverysmall(∼10objects)andtheestimate dance fixed, since there is no clear observational indication that is model dependent. Sto¨rzer & Hollenbach (1999) and later A04 PAHswouldfollowthesmallgrains. noticedthatsuchcrosssectionis∼ 0.3thetypicalISMone,thus InordertocomputethephotoelectricheatingduetoPAHs,we indicatingmoderategraingrowthofthedustentrainedinthewind. adoptthetreatmentbyBakes&Tielens(1994),withtheadditional We compute the cross section at FUV wavelengths (λ = modifications suggested by Wolfire et al. (2003) (with the φ PAH 0.1µm) for an ISM-like dust distribution (q = 3.5 and s = factordefinedintheirequation21equalto0.4). max 0.25µm, see e.g. Draine 2011) using the code described in Wy- att & Dent (2002) (see their section 4.1). We use the optical constants from Li & Greenberg (1997), for iceless silicate grains with a porosity of 0.3. The absorption coefficients of the grains Q (λ,s) are computed using Mie theory (Bohren & Huffman abs 1983),Rayleigh-Ganstheoryorgeometricopticsintheappropri- ate limits (Laor & Draine 1993). Assuming a dust-to-gas ratio to 3.3 Results 10−2 weobtainacrosssectionσ ≈ 2.6×10−21cm2,asex- FUV pected.Wethendeterminethemaximumgrainsizeofadistribution Fig.3showstheresultsofthe3D-PDRcodeforFUVfieldsof30, withq=3.5thathasanassociatedcrosssection0.3timessmaller 300and3000G forthetwograinsizedistributions.Wepresent 0 thantheISM-likeone.Thebestfitgivessmax = 3.5µm.Thisre- thegastemperatureasafunctionofvisualextinctionAV,forlog- sultconfirmsthattheestimatesbySto¨rzer&Hollenbach(1999)are arithmically sampled values of gas density n. As expected, the probingmoderategraingrowth. gastemperatureincreaseswithintensityoftheexternalradiation. InthePDRcode(andthroughoutthewholepaper),wecon- At a given G , for the parameters we have chosen, tempera- FUV sidertwoMRNdistributions(q =3.5)withmaximumgrainsizes tureisusuallyadecreasingfunctionofvisualextinctionA .For V s = 3.5µm and s = 1mm. We fix the dust-to-gas ratio s = 3.5µm temperature does also increase with A in the max max max V to10−2.Thefirstdistributionischosenastogivethesamecross marginally optically thick regime, when n ∼ 103 − 104cm−3. sectionusedbyA04intheirmodels,inordertohaveadirectcom- Similarly,temperatureisnotamonotonicallydecreasingfunction parisonwiththeirresults.Theseconddistributionrepresentsadisc ofdensityn.Thisnon-monotonicbehaviourisawellknownresult where substantial grain growth has occurred, and the population inPDRcodes(Kaufmanetal.1999). ofsmallgrains,whichcontributethemosttothedustsurfacearea Theseresultsdependsonthemetallicityandonthedust-to-gas whenq>3,isreducedbyafactor∼102. ratio,sincetheybothregulatetheheatingandcoolingfunctions.In PolycyclicAromaticHydrocarbons(PAHs)arethedominant particular, reducing the amount of small grains has the net effect heatingsource,sincephotonsareveryefficientinremovingelec- ofslightlydecreasingthetemperatures,aswecanseecomparing tronsfromsuchmono-layeredmolecules.However,theamountof thetemperaturesobtainedwiththetwodifferentdustdistributions. PAHs in protoplanetary discs is not well constrained by observa- The smaller dust total surface area reduces some heating mecha- tions. Infra-Red observations from Spitzer and from the ground nisms,suchasphotoelectricheating,H formationrateandH pho- 2 2 haverevealedstrongPAHemissionfeaturesinsomeHerbigAe/Be todissociation.However,thetotalheatingisstilldominatedbythe stars, whereas very few T Tauri stars have shown them at a de- photoelectriceffectonPAHs.Coolingisnotaffectedsignificantly, tectablelevel(Geersetal.2006,andreferencestherein).Thisdif- sincethemaincoolantsareCIIandOIintheopticallythinregime ference is probably due to the more intense UV field emitted by (seeFig.2).Theneteffectisthattemperatureisnotaffectedsignif- theAe/Bestars(e.g.Visseretal.2007)excitingthePAHs.Forthe icantlybythetotalamountofsmallgrains,providedthatthePAH samereason,PAHemissionisspatiallyconcentratedintheinnerre- abundanceiskeptfixed.Theonlyexceptionisapparentinthehigh gionofthediscs,wheretheUVfluxfromthecentralstarishigher densityandhighFUVfluxcase(n=106andG =3000G ). FUV 0 (Geersetal.2007;Maaskantetal.2014).PAHabundanceindiscs In this regime, heating from FUV pumping of H molecules be- 2 isstillbeingdebated.Observations(e.g.Geersetal.2006;Oliveira comescomparabletothephotoelectricheating(Hollenbach&Tie- etal.2010)tendtoindicatethatPAH-to-dustmassratioindiscsis lens1999,A04).TheabundanceofH moleculesdependsonthe 2 ∼10%ofthePAH-to-dustmassratiointhegalacticISM,whichis H formationrate,whichdependsonthetotaldustsurfacearea.By 2 ≈4×10−2(Draine&Li2007;Tielens2008),buttheestimateis reducingtheamountofsmallgrains,H formationratedrops,and 2 poorlyconstrained.Inthermo-chemicaldiscmodels,differentval- sodoestheFUVpumping,resultinginalowertemperature. uesofPAH-to-dustmassratiohavebeenusedintheliterature,e.g. For the cases considered here and displayed in Fig. 3, at 0.5×10−2 (Bruderer et al. 2012), or 1.3×10−2 (Woitke et al. fixed density the temperature always shows a plateau at low op- 2015). Because of the level of the uncertainties in this value, we tical depths, and then decreases steeply with visual extinction, simplyfixthePAH-to-gasmassratioto2.6×10−4,asinWolfire until it approaches unity and the gas becomes optically thick to etal.(2003),sinceweusetheirprescriptiontocomputethephoto- theexternalradiation.Thesetwocharacteristicswillshapethefi- electricheating.Forthedust-to-gasratioof10−2usedinthispaper, nal profiles of the subsonic winds. Finally, the temperatures are thisvalueyieldsaPAH-to-dustmassratioof2.6×10−2. lowerthantheonescomputedbyA04(e.g.byafactor∼ 2when Another debated topic is whether grain growth affects the G = 300G ),intheregionsofparameterspacethatoverlap, FUV 0 amount of PAHs, i.e. whether they should scale according to the eveninthehottestcasewhens = 3.5µm.Forthesamedust max amount of small grains. This is still largely unconstrained. As an distribution, we obtain temperatures similar to the ones by Kauf- example,oneofthestrongestPAHemissionfeaturesisobservedin manetal.(1999)(andthereforebyA04,whousethesamePDR OphIRS48(Geersetal.2007),wheregraingrowthhascertainly code)byusingtheprescriptionbyBakes&Tielens(1994)(with- occurred (e.g. van der Marel et al. 2013). Even though some re- outthecorrectionbyWolfireetal.2003)forthePAHphotoelectric centmodels(e.g.Gorti,Hollenbach&Dullemond2015)assumea heating. In particular, we reproduce the same trend observed by reducedPAHabundancewhensmallgrainsaredepletedbyeffec- Kaufmanetal.(1999)intheirfig.1. (cid:13)c 2015RAS,MNRAS000,1–18 Externalphotoevaporationofprotoplanetarydiscs 7 4 HYDRODYNAMICS ofthecentrifugalterm.Bysolvingthisequation,wecanobtainthe velocitystructureoftheflow,fromwhichwecanobtainthedensity In the last section we have shown how to derive the temperature structureofthegasviathecontinuityequation. ofthegasinthePDRregionasafunctionoflocaldensitynand visualextinctionA .Wenowwanttocoupletheseresultstothe V hydrodynamicalequationsdescribingtheflowdepartingfromthe 4.2 Thecriticalradius edgeofaprotoplanetarydisc. Thestructureofequation7showsanaturaldefinitionofacritical point:whenther.h.s.oftheequationequals0.Whenthishappens, 4.1 Equationsforthewindstructure thel.h.s.ofthesameequationhastoequal0aswell.Thiscanhap- penwhenuhasanullgradient,orwhenthesecondmultiplicand We develop a 1D description of the problem in a quasi spherical is0.Werequirethissecondcasetobetheone,sincewearelook- geometry, where we self-consistently solve for the radial steady- ingfortheanalogueofthetransonicsolutioninthetypicalParker statestructureofthewindlaunchedfromthediscouteredge.The wind problem (Clarke & Carswell 2007). In the isothermal case, equationsshowninthissectionarebasedonthesimilarmodelby this same procedure defines the sonic radius R , where u2 = f. A04. s Weexpectthecriticalradiustobeofthesameorderofmagnitude Thetimeindependentversionofthecontinuityequationis: asthesonicradius.Byrequiringthatthel.h.s.oftheequationis0, M˙ =4πR2FµmHnv, (2) butdu/dξ(cid:54)=0,weimplicitlydefineacriticalvelocity: wherem isthehydrogenatommassandvisthevelocityofthe ∂f H u2 =f +g , (8) gas.F isthefractionofthesolidanglesubtendedbythediscouter c ∂g edge (see equation 14 by A04). The flow might be not perfectly whichisrelatedtothesoundspeedu viaanadditionaltermtaking s spherical, since the wind might not be pressure confined at the intoaccountpossibledeparturesfromisothermality.Theequation boundariesofthewedgedefinedbythesolidangle4πF.Wecould forthedimensionlesscriticalradiusξ =R /R isthen: c c d modeltheflowwithahyper-sphericalcontinuityequation,where M˙ ∝ Rαandα > 2(α = 2definesthesphericalcase,seeequa- gτ ∂fξ3+2u2ξ2−βξ +β =0, (9) tion2).Forsimplicity,weconsiderthesphericalcaseonlyinthis d∂τ c c c c paper. where all the quantities are evaluated at the critical radius. This Similarly,thetimeindependentmomentumequationis: problemhastobesolvedimplicitly,sinceallthequantitiesdepend dv 1dP GM j2 onwherethecriticalradiusislocated,andontheinitialconditions v + + ∗ − =0, (3) oftheproblem.Locatingthecriticalradiusself-consistentlyisakey dR ρdR R2 R3 ingredientofourapproachinordertobeabletointegratetheflow where j2 = GM∗Rd. We are considering a flow with uniform structureinwardsfromthispointtothediscouteredge.Notethat specific angular momentum, given by the Keplerian angular mo- this is a key difference between our model and the one proposed mentumattheouterradiusofthedisc.Weassumeanidealgaslaw by A04. In Section 7 we will show that taking into account this forthepressureP = nkBT,whereTisafunctionofdensityand non-isothermaltermsignificantlyaffectsthefinalmasslossrates. opticaldepth(asshowninSection3). ForeverysetofparametersM ,R andG thereisafam- ∗ d FUV FollowingA04,wecanexpresstheaboveequationsinadi- ily of solutions each of which has a different value of T , mass c mensionlessform,whereourparametrisationchoiceisslightlydif- lossrateandpressureatR .Werequirethatourflowisinpressure d ferent. We define ξ ≡ R/Rd, f ≡ T/Tc, g ≡ n/nc and u ≡ equilibrium with the disc at Rd; therefore in principle we could v/cs,c,wherecs isthesoundspeedofthegas.Withthesubscript usethepressureatthediscedgeasafurtherindependentvariable c we indicate quantities evaluated at a critical radius Rc > Rd, whichwoulddefinethemasslossrateandflowstructureforagiven whichisdefinedinSection4.2.Notethatwiththesedimensionless discinagivenenvironment(cf.A04).Thishoweverrequiresiter- unitsthelocalsoundspeedu2s iscoincidentwiththetemperature ativesolutionsforvariousguessedflowvelocitiesatRdandisnot f.Wealsodefinetheparametersβ: apreferredmethodinthecasewherethecriticalpointconditions GM µm GM arethemselvesafunctionoftheflowsolution.Sincewestarteach β = ∗ H = ∗ , (4) flowsolutionfromtheself-consistentlydeterminedcriticalpointof R k T R c2 d B c d s,c theflow,itisoperationallyconvenienttouseT astheindependent c andtheopticaldepthτ ≡NHσFUV,where variable.Eachsolutioncanthenbemappedontothecorresponding (cid:90) ∞ valueofthepressureatthediscouteredge. N = n(R(cid:48))dR(cid:48) (5) H InordertoevaluatethecriticalradiusforagivenvalueofT c R weproceedasfollows.Wefirstguessthevalueofthecriticalradius isthecolumndensitybetweenRandinfinity.Wethusobtain: (i.e.asparametrisedbyξ );foraninitialguesswetakethere-scaled c dτ sonicradiusξ ,usingtheisothermallimitofequation9: =−σ R n g=−τ g, (6) s dξ FUV d c d β(cid:20) (cid:18) 8(cid:19)1/2(cid:21) where τd = σFUVRdnc. Combining the continuity and the mo- ξs = 4 1+ 1− β , (10) mentumequation,weobtainasingledifferentialequationforthe dimensionlessvelocityu: andnotingthatβisfixedforgivenTcbyequation4. Once we have an initial guess for the critical radius, for ev- dlnu ∂f 2 ∂f ξ−1 ∂f dξ (u2−f −g∂g)= ξ(f +g∂g)−β ξ3 +τdg∂τ.(7) eryiterationonthevalueofξc wecalculatethepairofvaluesfor the number density and optical depth at this point for which the ThislastequationreducestothestandardParkerwindequa- PDRmodelspredictthatT =T locally.Thissteprequiresanas- c tion(Parker1958),inthelimitofisothermalityandintheabsence sumptionaboutthedensitystructureoftheflowoutsidethecritical (cid:13)c 2015RAS,MNRAS000,1–18 8 Facchini,ClarkeandBisbas 450 3.8 400 30G0 300G 350 0 3.6 3000G 0 300 U)3.4 K)250 /A ( Rc3.2 Tc200 g( 150 lo3.0 100 2.8 50 0 10-4 10-3 10-2 10-1 100 101 20 40 60 80 100 120 140 τ T (K) c c Figure4.Thecriticaltemperature,i.e.theinputparametertoobtainaso- 3.8 lutiontothethermo-hydrodynamicalequations,asafunctionoftheop- ticaldepthevaluatedatthecriticalradiusRc,forGFUV = 30,300and 3.6 3000G0 forsolutionwithRd = 120.Thisimplicitrelationdefinesthe bdoasuhneddarlyinceosntdoitsiomnasxat=R1=mmR.cE.vSeorylidculirnveesirseffeorrtoonesmspaexcifi=cs3o.5luµtimon, AU)3.4 soonlluyt,isoinnsce(sietedSepeecntidosno5n.1t)h.evalueofσFUV,whichvariesfordifferentflow R/c3.2 ( g o l3.0 radius.HerewefollowJohnstone,Hollenbach&Bally(1998)and A04inassumingthatthevelocityisapproximatelyconstantinthis 2.8 regionsothatfromthecontinuityequationwethenobtain: n(R)=n (cid:18)Rc(cid:19)2, forR>R , (11) 20 40 60 80 100 120 140 c R c T (K) c andconsequently (cid:90) ∞ (cid:18)R (cid:19)2 Figure5.Toppanel:criticalradiusdependenceoncriticaltemperaturefor τ =σ n c dR(cid:48) =σ R n . (12) c FUV c R(cid:48) FUV c c GFUV = 30G0andsmax = 1mm,forasetofdiscradiirangingfrom Rc 20AU(topline)to250AU(bottomline),sampledevery10AU.Every Figure 4 gives an example of Tc as a function of τc for an lineillustratesadifferentdiscradiusRd.Bottompanel:solidlinesarethe initialguessRc ∼500AUandforarangeofFUVfluxes.Forlow sameasinthetoppanel,forRd = 20,100and180AU(blue,blackand FUVfluxes,thearenosolutionsinthelowopticaldepthrange(τ < greenlines,respectively).Dashedlinesindicatethesonicradius,asdefined 10−3).Thisconstraintissetbythelowerlimitwehaveimplicitly byequation10. imposedonthedensity,whenwehavenotdealtwithanythingless densethan102cm−3inSection3. Wearenowabletodetermineτ andn bysolvingtheequa- c c 4.2.1 Extendingthesolutions tion: T −T(τ )=0. (13) Inthedefinitionofthesonicradius(seeequation10),byconstruc- c c tionwearerequiringthatβ >8.Thusweareimplicitlysettingan We can evaluate the partial derivatives of T with respect to upperlimittotheT wecansetatagivenR : c d densityandopticaldepth(atfixedR )andusetheseinequations8 c and9.WethensolveforthenextvalueofRc bysolvingequation T < GM∗µmH (cid:39)873(cid:18)M∗(cid:19)(cid:18)20AU(cid:19)K. (14) 9usingabisectormethod.Wetheniteratethewholeprocess,until c 8k R M R B d (cid:12) d we reach convergence on the value of ξ . By doing so, we have c obtainedthecriticalradius,andwehavetheinitialconditionsfor Thisstronglylimitstheexplorableregionofparameterspace,when T (givenbytheinputparameterT ),v,nandτ.Thecriticalradius R islargeandtheFUVflux(andthereforetemperature)ishigh. c d isalwayslargerthanthesonicradius(asdefinedbyequation10), In order to enlarge the parameter space, when β < 8, as a first butatthemostbyafactorofafewtenthsofadex(seeanexample guessforR wechoosethecriticalradiusofthesolutionwiththe c inFig.5).Ontheotherhand,thecriticalvelocityisusuallysmaller same T and the closest value of R showing a iteratively con- c d thanthesoundspeedatthecriticalradius,by∼ 20%atthemost vergedsolutionforthecriticalradius.InFig.5weshowR versus c (seeanexampleinFig.6).Finally,wecanestimatethemass-loss T when G = 30G , for a range of disc radii R between c FUV 0 d rateM˙ fromequation2.Wearereadytostartintegratingequation 20 and 250 AU, sampled every 10 AU. The critical radius does 7inwards,fromthecriticalradiustothediscouteredge,inorder notshowastrongdependenceonR ,atfixedT .Inthiswaywe d c todeducethevelocityprofileofthesubsonicflowbetweenR and areabletoobtainmoresolutions,eventhoughinsomeregionsof d R . parameterspacewedonotmanagetoobtainone. c (cid:13)c 2015RAS,MNRAS000,1–18 Externalphotoevaporationofprotoplanetarydiscs 9 bothradiusandvelocity:ξ=ξ +δξ,andu=u +δu.Weobtain c c 1.05 thefollowingrelation: √ (cid:12) 1.00 δu(cid:12)(cid:12) = −B+ B2−4AD, (15) δξ(cid:12) 2A ξc 0.95 where: c cs, 2g∂f g2∂2f v/c0.90 A=2uc+ u ∂g + u ∂g2; (16) c c ∂f 8g∂f 4g2∂2f ∂2f 0.85 B =2τdg∂τ + ξ ∂g + ξ ∂g2 +2τdg2∂τ∂g; (17) 0.80 (cid:18)2u2 2ξ−3 8g∂f 4τ g∂f 20 40 60 80 100 120 140 D=uc× ξ2c −β ξ4 + ξ2 ∂g + ξd ∂τ T (K) c 4g2∂2f 4τ g2 ∂2f ∂2f(cid:19) + + d +τ2g2 , (18) ξ2 ∂g2 ξ ∂τ∂g d ∂τ2 Figure6.RatioofcriticalvelocitytothesoundspeedatRcforsolutions where all the quantities are evaluated at ξ = ξ . In equation 15 withGFUV=30G0andsmax=1mm,andRd=20,100and180AU c wechosethepositiveroot,inordertopickthesubsonicsolutionat (blue,blackandgreenlines,respectively). ξ<ξ . c SimilarlytoMurray-Clay,Chiang&Murray(2009),wecal- 4.3 Methodofsolution culatethevelocitybyusing: (cid:12) (cid:12) Oncewehavelocatedthecriticalradiusanddeterminedthebound- du du(cid:12) δu(cid:12) aryconditionforflowdensity,opticaldepthandvelocityforagiven dξ =Fexactdξ(cid:12)(cid:12) +(1−Fexact)δξ(cid:12)(cid:12) , (19) T ,adiscradiusandaFUVfluxG ,wecanintegrateequation7 exact ξc c FUV fromRctoRd(inrescaledunits,fromξcto1).WeuseasimpleEu- wheredu/dξ|exactisevaluatedfromequation7,and lercode.Ateverystepwecomputeui+1fromequation7.Then,we (cid:20) (cid:18) f g ∂f(cid:19)(cid:21) calculatedimensionlessdensitygi+1fromthedimensionlessform Fexact =−erf h 1− u2 − u2 ∂g , (20) ofequation2,andτ fromequation6.Atgiveng andτ i+1 i+1 i+1 wecancomputethenewtemperaturepartialderivatives∂f/∂g where erf is the error function. The parameter h = 20 gives i+1 and∂f/∂τi+1fromthePDRoutput,andthereforeobtainthenext the smoothing length of the transition between du/dξ|exact and value of the temperature fi+1. With this set of equations we can δu/δξ|ξc whencomputingu(ξ).Weusethismodifiedversionof self-consistentlysolvefortheflowsteady-state.Weuseaninitially equation7untilFexact =1tothelevelofmachineprecision. logarithmicallyspacedgrid,sincetheabsolutevalueofthegradient ofmostofthequantitiesincreasesasthesolutionapproachesR . d 4.3.2 TemperaturecorrectionsnearR Thishappensmostlyinthetransitionbetweentheopticallythinand d theopticallythickregime,whenthetemperaturedropssteeply(as Somesolutionsbecomecompletelyopticallythickbeforereaching showninFig.3).Inordertobetterresolvethisregionwealsoapply thediscouterradius(i.e.R > R ).InthePDRcalculations,we d anadaptivemeshalgorithm,i.e.werequirethatδξismallenough havesetaminimumtemperatureequalto10K.However,thetem- toensurethattherelativechangeinvelocitybetweentwostepsis peratureoftheflowcouldbehigherthanthat,duetotheimpinging lessthan1%(|ui+1−ui|/ui <0.01). radiationfromthecentralstar.Whenwecomputethetemperature However, we need to apply slight modifications to the algo- oftheflow,wethereforeincludeheatingfromthecentralstar,by rithmatthetwoboundariesoftheintegration,intheproximityof usingthefollowingsimpleprescription: boththecriticalradiusR andthediscouterradiusR . c d T =max(T ,T ), (21) PDR rad whereT isthetemperatureevaluatedviathePDRcode(i.e.the 4.3.1 Thecriticalpoint PDR oneusedsofarinthepaper),andT isgivenby: rad InSection4.2wehavedefinedthecriticalradiusastheradiusat (cid:18) R (cid:19)−1/2 whichther.h.s.ofequation7vanishes.Moreover,atthissamera- T =100K , (22) rad 1AU dius the second multiplicand of the l.h.s. of the same equation is 0.SincewearestartingintegratingthesameequationfromRc,we i.e.atemperatureprofilefoundtofitthespectralenergydistribu- have a null value both at the numerator and at the denominator. tionsofpassivediscs(e.g.Andrews&Williams2005,2007). Thisleadstothepossibilityofhavingmultipletranscriticalsolu- tions (the analogue version of the transonic solutions in the stan- dard isothermal case). More specifically, we will have a solution 5 DUSTCOMPONENT thatwillbesupersonicbetweenR andR ,andonesolutionthat d c willbesubsonic.Wearelookingforthesecondone.Thereforewe InSection4,wehavereportedtheequationsandtheprocedureto needtoenforcethesolutiontorelaxontothesubsonicbranch.We obtainasolutionforthegasquantitiesbetweenthecriticalradius dosobyfollowingaprocedurethatissimilartotheoneusedby and the disc’s outer edge. However, this solution depends on the Murray-Clay,Chiang&Murray(2009)forananalogousproblem. dustpropertieswithintheflow.Inparticular,asmentionedinSec- Weexpandequation7aroundthecriticalpointtofirstorderin tion3.2,theattenuationfactorstronglydependsonthegrainsize (cid:13)c 2015RAS,MNRAS000,1–18 10 Facchini,ClarkeandBisbas distributionandonthemaximumgrainsizes entrainedinthe entr wind.SuchdependencecanbesummarisedinhowσFUVisrelated 10-21 tothesetwopropertiesofthedustmaterial.Inthissection,wealso describethehydrodynamicequationsforthedustparticles,which willbeusedtodeterminethemaximumgrainsizeentrainedinthe )10-22 flow,andthusthecrosssection. 2m c (10-23 V 5.1 Crosssection U F σ Itiswellknownthatprotoplanetarydiscswitnesssubstantialgrain 10-24 growthinthediscs’midplane(seeSection3.2).Suchgraingrowth canbeschematisedintwoeffects:producingashallowerdistribu- tion, i.e. a lower q, and leading to a larger maximum grain size 10-25 s .AsintroducedinSection3.2,inthispaperwefocusontwo 10-7 10-6 10-5 10-4 10-3 10-2 10-1 max distributionswiththesamepowerlawindexq = 3.5butdifferent s (cm) entr maximumgrainsizes(s =3.5µmand1mm).Thesamedistri- max butionshavebeenusedtocomputethedependenceofthetempera- tureonnandA .Asmentionedabove,weconsideradust-to-gas Figure7.Crosssectionatλ=0.1µmasafunctionofthemaximumgrain V ratioof0.01forboththedistributions. size entrained in the flow, for smax = 1mm (black line) and smax = We compute the cross section at FUV wavelengths (λ = 3.5µm (red line). The initial distribution assumes a dust-to-gas ratio of 0.01. The cross section does not vary by much when the distribution is 0.1µm)usingthecodeofWyatt&Dent(2002)asbrieflydescribed inSection3.2.Intheequationsreportedbelow,wedescribeagen- truncatedtosentr(cid:38)λ,sincethelargestcontributiontothecrosssectionin thegeometriclimitcomesfromthesmallestgrainswhenq>3. eral treatment where q can assume different values. We take into accountthatthereisamaximumgrainsizeentrainedinthephoto- evaporativewind,andwecomputethecrosssectionsforthetrun- particles. We discretise the grain size distribution in N = 50 bin cateddistribution: bins,wherethegrainsizeissampledlogarithmicallybetweens min q σFUV =µmHm sδ , (23) andsmax.Thedustmassdensitycanbewrittenas: entr gd 4 where ρj (cid:39) n˜j3πρ¯s3max,j, (27) (cid:90) sentr q = πs2Q (λ,s)s−qds, (24) wherethesubscriptj referstothej-thbinofdustparticles.Here s abs smin ρj isthemassdensityofthej-thbin,andsmax,j isthemaximum 4 πρ¯ grainsizeofthej-thbin. m = (s(4−q)−s(4−q)), (25) entr 34−q entr min Thesteadyversionofthemomentumequationfordustparti- clesis: and (cid:32) (cid:33) dv GM j2 F s(4−q)−s(4−q) v j + ∗ − + D =0, (28) δ =100 max min . (26) jdR R2 R3 m gd s(4−q)−s(4−q) j entr min wherewehaveassumedthatdustispressureless,andthatthebuoy- Intheseequations,δ istheeffectivegas-to-dustratiowithinthe gd ancytermrelatedtothegaspressuregradientisnegligible(which flow,andρ¯isthemeanmassdensityofadustgrain(inthispaper istypicallythecaseforastrophysicalsystems,seee.g.Riceetal. 1g/cm3).Theminimumgrainsizeofthedistributionhasbeenset 2006;Laibe&Price2012).Thefluidquantitiesthatdonotshow tos =5×10−7cminthewholepaper. min anysubscriptrefertogasproperties,asinSection4.Thequantity ThecrosssectionsarereportedinFig.7,asafunctionofthe m is the mass of the j-th dust particle. The last term F repre- j D maximumgrainsizeentrainedintheflow,fors =3.5µm(red max sentstheaerodynamicforceexperiencedbythedustparticle.This line) and s = 1mm (black line). The cross section does not max forcecanassumedifferentexpressions,dependingonthephysical varybymuchwhenthedistributionistruncatedtosentr (cid:38) λ,be- regime.Ifthesizeofthedustparticles(cid:46)λ ,themean-freepath mfp causethelargestcontributiontothecrosssectioninthegeometric ofgasmoleculeswithintheflow,thedragforcereducestotheso- limitcomesfromthesmallestgrainswhenq > 3.Wedonotre- calledEpstein(1924)drag.Ifthesizeoftheparticleislargerthan computethetemperatureT(n)withthePDRcodeforthenewtrun- the mean-free path, drag is a classical fluid Stokes (1851) drag. cateddistributions,sinceitdependsweaklyonthemaximumgrain Withinthewindsaddressedinthispaper,λ > 105cm(using mfp size.AsdiscussedinSection3,thisisduetothefactthatheatingis λ ≈ (σ n)−1,whereσ ∼ 10−16cm2 isthegeometrical mfp gas gas mostlygeneratedbythephotoelectriceffectonPAHsandonsmall cross-section of the gas moleculesand n < 1011cm−3). For the grains,sincethetotalsurfaceareaperunitmassisdominatedby dustparticlesconsideredhere,s(cid:28)λ ,andwecanthereforeuse mfp the small grains of the distribution when q > 3. Cooling is not theEpsteinlimittoestimatethedragterm(e.g.Armitage2010): significantlyaffectedbytheabsenceofthelargestgrains,sinceOI andCIIemissionlinesdominatetheradiativecooling. F = 4πρs2v (v −v), (29) D 3 th j whereρ=µmnisthegasmassdensity,and 5.2 Fluidequationsfordustparticles (cid:115) Inordertoobtainthemaximumgrainsizeentrainedinagaseous v = 8kBT (30) solution, we need to solve the hydrodynamical equations of dust th πµmH (cid:13)c 2015RAS,MNRAS000,1–18