ebook img

Extensions of multiply twisted pluri-canonical forms PDF

0.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extensions of multiply twisted pluri-canonical forms

EXTENSIONS OF MULTIPLY TWISTED PLURI-CANONICAL FORMS 1 1 CHEN-YUCHI,CHIN-LUNGWANG,ANDSZ-SHENGWANG 0 2 n a 1. INTRODUCTION J 4 In this work we study the problem of extending “multiply twisted” pluri- 2 canonicalformsfromsmooth divisorsinacomplexprojectivemanifold. Wefirst statethemaintheoremandthenreviewsome earlierresults. Definitions andno- ] G tationcanbefoundinSection2. A Theorem1.1. Let X be a projectivemanifoldof dimension n, D X a smoothdivisor ⊂ h. withcanonicalsectionsD. Leth beanalmostsemipositivemetric(cf.2.3)onthelinebundleDsuchthat s at is essentiaDlly bounded on X, i.e. bounded by a fixed number almost everywhere, a|nDd|lheDt m (L ,h ),...,(L ,h )besemipositivelinebundles(cf.2.3)suchthattherestrictionofthe 1 1 m m [ singularmetrich toL iswelldefined,i.e.notidentically+∞alongD. 2 Ifthereisarjealnuj|mDberµ>0suchthat v µ√ 1Θ >√ 1Θ 7 − hj − hD 7 ascurrentsonXforj=1,...,m,thenforeverysectionσof 0 2 m 1. (KD+Lj|D)⊗I1I2···Im 0 Oj=1 1 onD,whereI denotethemultiplieridealsheavesI(h ),thereexistsaglobalsection 1 j j|D σof : v m i (K +D+L ) =m(K +D)+L + +L X e X j X 1 ··· m r Oj=1 a onXsuchthatσ D = σ (dsD)⊗m(cf.2.1). | ∧ Extension theorems of this type (for m = 1) date back to the work of Oh- e sawaandTakegoshi[11]onextendingholomorphicfunctionsfromsubmanifolds ofSteinmanifoldswithweightedL2 estimates. Theirkeyideaistouseamodified Bochner–Kodaira inequality to achieve the L2 estimate for a skewed ∂ operator. ThistheoremwasgeneralizedbyManivel[10]tothecaseofholomorphicsections ofvectorbundles. Variantsof theirtheoremswereusedbyAngehrnandSiu[1], intheirstudyofFujita’sconjecture,toprovethesemicontinuityofmultiplierideal sheaves under variation of the singular metrics, and used by Siu [18, 19], in his proof of the invariance of plurigenera, to extend pluricanonical forms from the centralfiberofasmoothprojectivefamilyofcomplexmanifoldstothetotalspace. The argument exploited in [19] was generally referred to as a “two tower” argumentbySiu. Indeed,in[19],thetheoremofOhsawa-Takegoshitype(m = 1) 1 2 CHEN-YUCHI,CHIN-LUNGWANG,ANDSZ-SHENGWANG is for the canonical bundle twisted by a suitable line bundle. In passing from a single canonical bundle to pluricanonical bundles, Siucombined the extension theoremwith Skoda’stheoremon (effective)idealgeneration aswell asa supre- mum norm estimate. Later Pa˘un [13] simplified Siu’s approachby showing that the supremum norm condition can be replaced by an L2 one and the invariance of plurigenera can be deduced directly from the extension result without using Skoda’stheorem. Moreprecisely,heprovedthefollowingresult: Theorem1.2(Pa˘un[13]). Letπ : X ∆beaprojectivefamilyovertheunitdiskand (L,h)asemipositivelinebundleonXs→uchthattherestrictionh X iswelldefined. Then everysectionof(mKX0+L|X0)⊗I(h|X0)onX0extendstoas|ec0tionofmKX+L. His proof consists of an elegant single tower climbing induction argument. Theinduction isonthe multiple ofthe canonicalbundletwisted bythefixedline bundle L equipped with afixed singular metric h. Itis then naturalto ask, when climbingthetower, canweadddifferentlinebundleseachwithitsownsingular metricinsteadofjustaconstantpair(L,h). Ifthiscanbeachieved,onemaypos- siblyobtainanextensiontheoremof“multiplytwisted”pluricanonicalforms. In fact,Demaillyprovedthefollowingresult: Theorem1.3(Demailly[3]). LetXandπbeasinTheorem1.2and(L ,h )(16 j6m) j j semipositivelinebundlesonXsuchthathj|X0 arewelldefined.SupposeI(hj|X0) =OX0 Xfo0rejx=ten2d,s..t.o,ams.ecTthioennoevfe(rmyKseXct+ionL1of+(mKX+0L+mL).1|X0 +···+Lm|X0)⊗I(h1|X0)on ··· Notethat,althoughTheorem1.3enablesonetoadddifferentlinebundlesL , j only one of them is allowed to be equipped with a singular metric whose mul- tiplier ideal sheaf is nontrivial. This motivates us to look at the statement like Theorem1.1,whichremovesthisrestriction. Thiswasrecentlyachievedin[20]. Theorem1.4([20]). Letπ :X ∆beaprojectivefamilyovertheunitdiskand(L ,h ) j j → (16 j 6 m)semipositivelinebundlesonXsuchthathj|X0 arewelldefined. Thenevery s(emctKioXn+ofL(1m+KX··0·++LL1m|X)0o+nX··,·w+heLrmeI|Xj0)is⊗thIem1Iu2lt·ip·l·ieIrmidoeanlXsh0eaexvteeInd(shtjo|Xa0s)ecotnioXn0o.f InspiredbytheresultsofTsuji,Takayama,andHacon-McKernanrespectively inconnectionwiththeirworkonpluricanonicalseries[15],[14],and[8],weproved our theorem under the setting of pairs of a complex projective manifold and a smooth divisor whose associatedline bundle satisfiessome conditions on curva- ture. The projective familycaseis relativelyeasierin thatthe line bundle associ- atedtothecentralfiberistrivial,henceitcanbeignoredinthenecessarycurvature condition,i.e.thecurvatureinequalityinTheorem1.1holdsautomatically. MostofourargumentsintheproofofTheorem1.1followcloselyPa˘un’sone towerargument. Themajornewinputtoovercomethenon-trivialityofmultiplier idealsheavesI(h ),whichoccursduringtheintermediateinductivesteps,isa j D | morecarefulchoice oftheauxiliarytwisting amplelinebundle (denotedby A in ourargument). Thisbundleneedstobesufficientlyampletotakecareofboththe requiredmetricpropertiesandtheglobalgenerationforrelatedcoherentsheaves. ThecompletediscussionispresentedinSection3andSection4. Forcompletenessandself-containednessofthisarticle,weincludeinAppen- dix 1 (Section 5) a proof of the Ohsawa–Takegoshi type theorem which we will EXTENSIONSOFMULTIPLYTWISTEDPLURI-CANONICALFORMS 3 use. Theproofisexactlythesameastheproofin[19],exceptthatwedealwiththe situation inwhich the line bundle D is not trivial. A similar statementappeared in[17],Theorem2. ItisworthnotingthatFriedrichsandHo¨rmander’sresults([5] and[7])onthedensityinthegraphnorm(cf.Remark5.2)playsanessentialrole when using the Bochner–Kodaira formula to get a priori estimates. This density resultrequirestheweightfunctionstobesmoothortohaveatmostsuitablymild singularities. Therefore,toallowh tobeasingularmetric,onehastoreducethe D prooftothecasewhenitissmooth. Wediscusssuchareductionindetailforcom- pleteness,althoughitmightbewellknowntoexperts.Inaddition,Theorem1.1is arefinementof[17],Theorem1. Infactwe onlydealtwiththe caseh beingsmoothinourfirstversionsub- D mittedonOctober2010sincewewerestillstrugglingonthissubtleregularization issueatthattime. WedevelopedourtreatmentinAppendix1followingideasof Siuwhichwelearntfromseveralofhislecturesandprivatenotes. Weconsidera locallybiholomorphic projectionfroma Steinmanifold toaEuclideanspaceand applytheconvolutionmethodonthetargetEuclideanspace. We also noticed that in a recent preprint by Demailly, Hacon, and Pa˘un [4], an extension theorem similar to Theorem 3.1 has been proven. They also gave a detaileddiscussionontheprocessofsmoothingsingularmetrics. Theirapproach isbasicallyasfollows. FirstoneimbedsaSteinmanifoldV(whichwillbethecom- plementofsomesuitablesufficientlyampledivisorHintheprojectivemanifoldX underconsideration)inanambient M(whichisanEuclideanspaceintheircase). Then, by a theorem of Siu (Theorem 4.2 in [4]) one can construct a Stein neigh- borhoodW of V in the ambient space M which admits a holomorphic retraction r : W V. Tosmoothen plurisubharmonic functions onV, one firstpulls them → backtoWviar,whicharestillplurisubharmonic. Afterapplyingtheusualconvo- lution method in the Euclideanspace M to regularizethe pulled back functions, onetakestheirrestrictionsonV. These two methods are different. Although both methods crucially use the Stein property and convolution, the difference lies in that the approach in [4] is “injective”andoursis“projective”. We are able to extend Theorem 1.1 to allow L ’s to be R divisors instead of j genuinelinebundles. Wearegratefultotherefereeforaskingthisquestion. Since theproofrequiressomeothertechniques,wewillpresentitinaseparatework. Acknowledgements. This collaboration arose from discussions during the seminarseries“AnalyticApproachtoAlgebraicGeometry”inDecember2008and March2010atNationalTaiwanUniversitysponsored bythe NationalCenter for Theoretic Sciences and Taida Institute of Mathematical Sciences. Two major ref- erenceswe studied are Siu’sHarvardlecturenotes on “Complex geometry” and theexcellentonlinebook“Complexanalyticanddifferentialgeometry”writtenby Demailly. We aregratefulto bothauthorsfor their inspiring writings andgener- oussharing. Alsowewouldliketothanktherefereeforpointingoutagapinan earlier version of the proof of Lemma 5.1, which led us to formulate the almost semipositivityconditionforh inourTheorem1.1. D C.-L.wouldliketoexpresshissinceregratitudetoProfessorEckartViehweg forprovidingcrucialhelpduringhisearlystageofmathematicalcareer. 4 CHEN-YUCHI,CHIN-LUNGWANG,ANDSZ-SHENGWANG 2. PRELIMINARIES AND CONVENTIONS 2.1. Adjunction. Given a smooth divisor D in a compact complex manifold X, we use the same letter D to denote the line bundle associated to D. In order to justify the restriction of sections of adjoint line bundles on X to get sections of adjointlinebundlesonD,weneedtotakeacloserlookattheadjunctionformula K (K +D) . LocallyDisgivenbyasetofequations s = 0 withrespect D X D α ≃ | { } toanopencover U . Therelationss = g s onU U givea1-cocycle g α α αβ β α β αβ { } ∩ { } of the sheave OX∗ which defines the line bundle D, and tautologically the locally definedfunctionss ’sgiveacanonicalsection,denotedbys ,whichisuniqueup α D toscalingandwillbefixedthroughoutallarguments. Theshortexactsequence 0→ ND∗/X → TX∗|D → TD∗ →0 impliesacanonicalisomorphismbytakingwedgeproduct: KD+ND∗/X =KX|D. (Weadopttheadditivenotationfortensorproductsoflinebundles.) Ontheotherhand,dsα isalocalframeof ND∗/X onUα. Leteα bealocalframe ofDonU forallα.Therelations = g s ande = g e impliesthat ds e α α αβ β β αβ α α α { ⊗ } definesaglobalframe,denotedbydsD,ofthelinebundleND∗/X+D|D,andhence ND∗/X+D|Distrivial. Thisinducedtheisomorphism KD ≃KD+ND∗/X+D|D =KX|D+D|D bysendingηtoη ds . D ∧ 2.2. Singularmetricsandpseudonorms. Theterm“singularhermitianmetric”or “singularmetric”alwaysmeansahermitianmetricwhoselocalweightfunctions arelocallyLebesgueintegrable,andhencesmoothmetricsarecountedassingular metrics. ForsuchmetricshweuseΘ todenotetheircurvaturecurrents. Locally h wehaveh =e−ϕ withΘh = ∂∂¯loge−ϕ =∂∂¯ϕ. − LetXbeacomplexmanifoldofdimensionnandLalinebundleonXwitha singularmetrich. Letsbea(Lebesgue)measurablesectionofmK +L. Suppose X s and h are represented by functions f(z) and h(z) in terms of local coordinates z =(z1,...,zn),zj = xj+√ 1yj,oftrivializingchartsofL. − 2 Definition2.1. Wedefineameasurable(n,n)-form s m bysetting h ih s m2 = h(z)m1 f(z) m2dx1 dy1 dxn dyn h ih | | ∧ ∧···∧ ∧ 2 locally. s m isclearlywelldefinedandisnonnegativewithrespecttothecanoni- h ih calorientationonXassociatedtodx1 dy1 dxn dyn. Thereforewedefine ∧ ∧···∧ ∧ 2 s = s m 6∞. hh iih ZXh ih Thisnumberiscalledthepseudonormofswithrespecttoh. SupposegisasmoothhermitianmetriconT withKa¨hlerformω. ginduces X ωn ahermitianmetriconthecanonicalbundleK ,denotedas g . LetdV = be X ω ω n! thevolumeformonXinducedbyg. Itiseasilyseenthat 2 2 s m = s m dV . h ih | |gω⊗m⊗h ω EXTENSIONSOFMULTIPLYTWISTEDPLURI-CANONICALFORMS 5 Usingthisexpressiononeseesdirectlythefollowingfacts: (i) Suppose L and L′ aretwo line bundles with singular metrics h and h′ re- spectively. For anymeasurablesections s of mKX+L and s′ of L′, and l Nwe ∈ have 2 2 2 (2.1) hs⊗s′ihm⊗h′ =|s′|hm′hsihm and 2 2 (2.2) sl lm = s m. h ih⊗l h ih (ii) If s is a measurable section of m K +L and h is a singular metric on j j X j j L , j = 1,...,r,thenwecandeducefromtheusualHo¨lderinequalitythe“Ho¨lder j inequalityforpseudonorms”: (2.3) hhs1⊗···⊗sriimh11⊗+······⊗+hmrr 6hhs1iimh11···hhsriimhrr. 2.3. Almostsemipositivelinebundlesandpseudoeffectivedivisors. Asemipos- itive line bundle (resp. an almost semipositive line bundle) is a pair (L,h) of a linebundle Landasingularhermitianmetrichon Lsuchthat√ 1Θ isaclosed h − positive current in the sense of Lelong (resp. the sum of a closed positive current andasmooth(1,1)-form),orequivalently,eachofitslocalweightsisanontrivial plurisubharmonic function, i.e. not identically ∞ (resp. the sum of a nontrivial − plurisubharmonicfunctionandasmoothfunction). Wewillcallsuchhasemipos- itivemetric(resp. analmostsemipositivemetric)onL. Themultiplieridealsheaf associatedtoanalmostsemipositivesingularmetrichisthecoherentsheafoflocal L2 sectionsandisdenotedbyI orbyI(h). h h Remark2.1. OnaprojectivemanifoldX,apair(L,h)isalmostsemipositiveifand onlyifthereexistasemipositivelinebundle(L ,h )andalinebundlewithsmooth 1 1 hermitianmetric(L ,h )suchthatL = L L andh =h h . 2 2 1 2 1 2 ⊗ ⊗ A typicaltype of semipositive line bundlesconsists of effectiveline bundles bythefollowingconstruction. Definition 2.2. Let S = s ,...,s be a set of nontrivial global holomorphic sec- 1 l { } tions of a line bundle L. For any σ L where x X, we choose an arbitrary x ∈ ∈ smoothmetrichonLanddefine σ 2 σ 2 := | |h . | |hS l ∑ s (x) 2 | j |h j=1 If s is a section of K +L and S = s ,...,s a set of global holomorphic X { 1 l} sectionofL,thenforanysmoothmetrichonLwehave s 2 (2.4) s 2 = h ih . h ihS l ∑ s 2 | j|h j=1 6 CHEN-YUCHI,CHIN-LUNGWANG,ANDSZ-SHENGWANG It is clear that the definition does not depend on the choice of h. Locally if the sections s arerepresentedbyfunctions f thentheweightfunctionis j j { } { } l ϕ :=log ∑ f 2 j | | j=1 (cid:16) (cid:17) whichisplurisubharmonic,andhence√ 1Θ =√ 1∂∂log(Σ f 2)>0. − hS − j| j| Denote byPsef(X) N1(X) the closure of the realconvex cone generated R ⊆ bynumericalclassesofsemipositivelinebundlesoverX. Inthealgebraiccase,we havethefollowinginterpretation. Remark 2.2. (cf. [2]) If X is projective then Psef(X) = Eff(X) = Big(X), where Eff(X)(resp.Big(X))istheclosureofeffective(resp.big)coneofX,whichisalso knownastheconeofpseudoeffectivedivisors. 3. THE MAINEXTENSION RESULT 3.1. An extension theorem for adjoint line bundles. We will need the follow- ingextensiontheoremofOhsawa–Takegoshitypeforadjointlinebundles,whose proofwillbegiveninAppendix1. Theorem3.1. Let X beaprojectivemanifold, D X asmoothdivisor. Supposeh an D ⊆ almost semipositivemetric on theline bundle D such that s is essentially bounded onX and(L,h)beasemipositivelinebundleonX. Ifthere|isDa|hrDealnumberµ > 0such that µ√ 1Θ >√ 1Θ − h − hD ascurrentsonX,thenforeverysectionsof(K +L ) I(h )thereexistsasection D D D | ⊗ | sofK +D+Lsuchthats = s ds and X D D | ∧ s 2 6C s 2 e e ZXh ihD⊗h ZDh ih whereC >0onlydependsoness.sup s andµ. eX| D|hD NotethatthestatementofTheorem1.1for m = 1isexactlythestatementof Theorem3.1. Hencewefixfromnowonapositiveinteger m 2andconsidera ≥ non-zeroσasinthehypothesisofTheorem1.1. 3.2. Reduction to constructing a semipositive metric on m(K +D)+∑mL . X 1 j Notethatm(K +D)+∑mL = K +D+(m 1)(K +D)+∑mL . Inorder X 1 j X − X 1 j toproveTheorem1.1viaTheorem3.1,weneedtocreateasemipositivemetrich 0 on(m 1)(K +D)+∑mL suchthat − X 1 j µ√ 1Θ >√ 1Θ − h0 − hD ascurrentsand σ ds⊗(m−1) 2 < ∞. ZDh ∧ D ih0 Theconstructionofh goesasfollows. First,wechoose Atobesoamplethatthe 0 followingconditionshold: EXTENSIONSOFMULTIPLYTWISTEDPLURI-CANONICALFORMS 7 (A )Foreachr =0,1,...,m 1,thelinebundle(m r)Aisgeneratedbyits 1 − − (r) globalsections{tl }16l6N. (A ) The coherent sheaf (K +L + A ) I on D is generated by its 2 D j D D j | | ⊗ globalsections{sj,l}16l6N foreach16 j6m. (A )ThefollowingmapinducedbyI I I I issurjective: 3 1 m 1 m ⊗···⊗ → ··· m H0 D,(K +L +A ) I D j D D j | | ⊗ Oj=1 (cid:0) (cid:1) H0 D,(mK +∑mL +mA ) I I . −→ D 1 j|D |D ⊗ 1··· m (cid:16) (cid:17) ThiscanbeachievedbyLemma6.1inAppendix2. (A )Everysectionof m(K +D)+∑mL +mA onDextendstoX. This 4 X 1 j |D isaconsequenceoftheSerrevanishingtheorem. (cid:0) (cid:1) Supposethatwehaveasemipositivemetrich∞ (whichwillbeconstructedin Lemma4.3byusingtheauxiliaryamplebundle A)on m(K +D)+∑mL such X 1 j that σ∧ds⊗Dm h∞ 6 1. We take h0 = h∞mm−1(h1···hm)m1. The curvaturecondition holdssince (cid:12) (cid:12) (cid:12) (cid:12) µ(m 1) 1 m µ√ 1Θ = − √ 1Θ + ∑µ√ 1Θ >√ 1Θ − h0 m − h∞ m − hj − hD j=1 bythecurvatureassumptioninTheorem1.1. The finiteness condition also holds. To see this, first note that, by (2.1) and (2.2), hσ∧ds⊗D(m−1)i2h0 = h(σ∧ds⊗D(m−1))⊗mihm20⊗m 2 =h(σ∧ds⊗Dm)⊗(m−1)⊗σihm∞⊗(m−1)⊗h1⊗···⊗hm 2 2 = (σ∧ds⊗Dm)⊗(m−1) hm∞⊗(m−1)hσihm1⊗···⊗hm =(cid:12)(cid:12) σ∧ds⊗Dm 2h∞ m(cid:12)(cid:12)m−1 hσihm21⊗···⊗hm 6hσihm21⊗···⊗hm. (cid:16)(cid:12) (cid:12) (cid:17) (cid:12) (cid:12) By(A ), 3 σ t(0) = ∑nl τ τ ⊗ l l;1,p⊗···⊗ l;m,p p=1 8 CHEN-YUCHI,CHIN-LUNGWANG,ANDSZ-SHENGWANG whereτ aresectionsof (K +L +A ) I forl = 1,...,N. Again,by l;j,p D j|D |D ⊗ hj|D (2.1)and(2.2), ∑N t(0) m2 σ m2 = ∑N σ t(0) m2 (cid:16)l=1(cid:12) l (cid:12)h⊗Am(cid:17)h ih1⊗···⊗hm l=1h ⊗ l ih1⊗···⊗hm⊗h⊗Am (cid:12)N (cid:12)nl 2 6 ∑ ∑ τ τ m l=1p=1h l;1,p⊗···⊗ l;m,pih1⊗···⊗hm⊗h⊗Am whereh isafixedsmoothmetricon A. A M :=min∑ t(0) m2 >0 0 D l l h⊗Am (cid:12) (cid:12) existssince∑ t(0) m2 isanonvanishing(cid:12)smo(cid:12)othfunctionby(A )and Discom- l l h⊗Am 1 pact.Therefore(cid:12) (cid:12) (cid:12) (cid:12) 2 1 N nl 2 σ m 6 ∑ ∑ τ τ m . h ih1⊗···⊗hm M0 l=1p=1h l;1,p⊗···⊗ l;m,pih1⊗···⊗hm⊗h⊗Am Bytheabove,(A ),and(2.3), 1 σ ds⊗(m−1) 2 ZDh ∧ D ih0 1 N nl 2 6 ∑ ∑ τ τ m M0 l=1p=1ZDh l;1,p⊗···⊗ l;m,pih1⊗···⊗hm⊗h⊗Am 1 N nl m1 m1 6 ∑ ∑ τ 2 τ 2 <∞. M0 l=1p=1(cid:18)ZDh l;1,pih1⊗hA(cid:19) ···(cid:18)ZDh l;m,pihm⊗hA(cid:19) ApplyingTheorem3.1toproveTheorem1.1isthenjustifiedifsuchh∞ exists. 4. CONSTRUCTION OF THE METRICh∞ 4.1. AmodificationofSiu andPa˘un’sinduction. Herewe follow the argument in [13] and [19]. For every positive integer k = qm+r (q = [k/m] the Gauss symbolofk/mand06r6m 1theremainder),welet − m L(k) := q∑L +L + +L j 1 r ··· j=1 andletF :=k(K +D)+L(k)+mAwhere Aistheamplebundlechosenin3.2. k X Were m(K +D)+L(m) known to have a family of sections which do not X (m) vanishidenticallyalongDandtheirrestrictionstoDarebasicallyσ ds⊗ mul- ∧ D tipliedbysome functions whichdonothavecommon zeros, wecansimply take h∞ tobethesemipositivemetricdefinedbythem(Definition2.2). However,wedonotknowapriorithatm(K +D)+L(m) haveanynonzero X sections(wearetryingtoproduceone). Instead,forthe ampleline bundle A we can find a set of sections S of F = k(K +D)+L(k)+mA whose restrictions k k X to D have properties similar to those mentioned above (Lemma 4.1). Then we EXTENSIONSOFMULTIPLYTWISTEDPLURI-CANONICALFORMS 9 trytoobtain h∞ by“takingthe q-root”ofthe semipositive metricshSqm on Fqm = q(mK +mD+L(m))+mAto“eliminate”thelinebundlefactormA(Lemma4.3). X Now we let Λ := ∏r 1,...,N for r = 1,2,...,m 1. For every J = r 1{ } − (j ,...,j ) Λ ,wedefine 1 r r ∈ (r) s :=s s J 1,j1 ⊗···⊗ r,jr with the convention that Λ = 0 s(0) := 1 for r = 0. We define the special 0 { } 0 index set Λ∗m to be ∏1m{1,...,N} and sections sˆ(Jm) = s1,j1 ⊗···⊗sm,jm for all J = (j1,...,jm) ∈Λ∗m. Weconsiderforeachk ≥ mthefollowingstatement: (E) : Thereexistsafamilyofsections k S = σ(k) : J Λ ,16l 6 N k { J,l ∈ r } ofF overXsuchthat k e (4.1) σJ(,kl)|D =σ⊗[k/m]⊗s(Jr)⊗t(lr)∧ds⊗Dk forall J Λ andl =1,...,N,wherer = k [k/m]m. r ∈ e − Lemma4.1. (E) holdsforallk > m. Moreover, thereexistsaconstantC > 0which k 0 (r) onlydependsoness.sup s , µ, σ,andthechoicesof t and s in (A ) and X| D|hD { l } { j,l} 2 (A )abovesuchthat 3 (4.2) ∑ σ(k) 2 6C ZXl=J1∈,Λ...,rNh J,l ihD⊗hSk−1⊗hr∗ 0 e forallk >m,wherer = k [k/m]mand − r if r =0, r∗ := m if r6=0. (cid:26) Proof. First,(E) holdsby(A ). Weproceedtoprovethat(E) implies(E) for m 4 k 1 k anyk > m. Notethat F = K +D+F +L andhence F − = K +(F + Lr∗)|D+(ND∗/X+D|D)kby2.1X. Wearegko−in1gtora∗pplyTheoremk|D3.1totDhesituka−t1ion L = Fk−1+Lr∗ and s = σ⊗[k/m]⊗s(Jr)⊗t(lr)∧ds⊗D(k−1). We choose the singular metrichonF +L tobeh h . Therestrki−ct1ionhr∗ isSwk−e1l⊗lderfi∗nedby(4.1), (A ), (A ),and (A ); h is Sk 1|D 1 2 3 r∗|D welldefinedbythehy−pothesisofTheorem1.1. Thereforeh iswelldefined. By D | 2.3andthehypothesisofTheorem1.1, µ√ 1Θ = µ√ 1Θ +µ√ 1Θ >√ 1Θ − h − hSk 1 − hr∗ − hD − andthecurvatureconditionisfulfilled. Inthefollowingwewillshowthat ZDhσ⊗[k/m]⊗s(Jr)⊗t(lr)∧ds⊗D(k−1)i2hSk−1⊗hr∗ 6C′ (r) forapositivenumberC′ whichonlydependsonthechoicesof{tl }and{sj,l}in (A )and(A )above.Thiswillimplysisasectionof K +(F +L ) I 2 3 D k−1 r∗ |D ⊗ h and,combinedwiththepseudonorminequalityonTheorem3.1,willyield(4.2). (cid:0) (cid:1) 10 CHEN-YUCHI,CHIN-LUNGWANG,ANDSZ-SHENGWANG Case1: r =0,i.e.[k/m] =[(k 1)/m]. 6 − WechoosesmoothmetricshA on A D,h(r−1)on(r 1)KD+L(r−1) D,andh′ | − | on[k/m](mKD+L(m))+(k−1)(ND∗/X+D|D). Weleth := h′⊗h(r−1)⊗h⊗Am on Fk−1|D. Writing J = (J0′,j0)with J0′ ∈ Λr−1,by(2.1),(2.4),and(4.1),wehave hσ⊗[k/m]⊗s(Jr)⊗t(lr)∧ds⊗D(k−1)i2hSk 1⊗hr − = hσ⊗[k/m]⊗s(Jr)⊗t(lr)∧ds⊗D(k−1)i2h⊗hr lJ′=′∈1∑Λ,.r..−,N1 (cid:12)(cid:12)σ⊗[(k−1)/m]⊗s(Jr′−1)⊗t(l′r−1)∧ds⊗D(k−1)(cid:12)(cid:12)2h = σ⊗[k/m]∧ds⊗D(k−1) 2h′ s(J0r′−1) 2h(r−1)hsr,j0i2hA⊗hr t(lr) 2h⊗A(m−r) l(cid:12)(cid:12)J′=′∈1∑Λ,.r..−,N1 (cid:12)(cid:12)σ⊗[k/m]∧d(cid:12)(cid:12)s⊗D(cid:12)(cid:12)(k−1)(cid:12)(cid:12)2h(cid:12)(cid:12)′(cid:12)(cid:12)s(Jr′−1)(cid:12)(cid:12)2h(r−1)(cid:12)(cid:12)t(l′r−(cid:12)(cid:12)1)(cid:12)(cid:12)2h(cid:12)(cid:12)⊗A(m−r+1) (r 1) 2 (r) 2 = sJ0′− h(r−1) tl h⊗A(m−r) s 2 J′∈∑Λ(cid:12)(cid:12)r−1(cid:12)s(Jr′(cid:12)(cid:12)−1)(cid:12)2h(r−1) × l′∑N=1(cid:12)(cid:12)t(l′r−(cid:12)(cid:12)1) 2h⊗A(m−r+1)h r,j0ihA⊗hr t(r) (cid:12)2 (cid:12)s 2 (cid:12)(cid:12) (cid:12)(cid:12) 6 l h⊗A(m−r)h r,j0ihA⊗hr. (cid:12) N(cid:12) (cid:12)l∑=1(cid:12) tl(′r−1) 2h⊗A(m−r+1) ′ (cid:12) (cid:12) (cid:12) (cid:12) By(A )andthechoicesofs , 1 r,j t(r) 2 s 2 C :=max l h⊗A(m−r)h r,jihA⊗hr 1 l,r ZD (cid:12)(cid:12)l∑N=1(cid:12)(cid:12) t(l′r−1) 2h⊗A(m−r+1) ′ (cid:12) (cid:12) (cid:12) (cid:12) exists. Itisclearthat ZDhσ⊗[k/m]⊗s(Jr)⊗t(lr)∧ds⊗D(k−1)i2hSk−1⊗hr 6C1. Case2: r =0,i.e.[k/m] =[(k 1)/m]+1. − WechoosesmoothmetricshA on A D,h(m−1)on(m 1)KD+L(m−1) D,hˆ on | − | KD +Lm|D +A|D, and h′ on [(k−1)/m](mKD+L(m))+(k−1)(ND∗/X+D|D). Weleth := h′⊗h(m−1)⊗h⊗Am on Fk−1|D. Now J ∈ Λ0 = {0}, by(2.1),(2.4),and (4.1),wehave

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.