ebook img

Extension and Interpolation of Linear Operators and Matrix Functions PDF

311 Pages·1990·6.695 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extension and Interpolation of Linear Operators and Matrix Functions

Operator Theory: Advances and Applications 47 Editor I. Gohberg Extension and Interpolation of Linear Operators and Matrix Functions Extension and Interpolation of Linear Operators and Matrix Functions Edited by I. Gobberg 1990 Springer Basel AG Editor's address: Prof. 1. Gohberg Raymond and Beverly Sackler Faculty of Exact Sciences School of Mathematical Sciences Tel Aviv University 69978 Tel Aviv, Israel CIP-litelaufnabme der Deotschen Bib6othek Extension and Interpolation of Linear Operators and Matrix Functions 1 ed. by 1. Gohberg. (Operator theory ; Voi. 47) ISBN 978-3-7643-2530-5 ISBN 978-3-0348-7701-5 (eBook) DOI 10.1007/978-3-0348-7701-5 NE: Gohberg, Izrael' [Hrsg.]; GT This work is subject to copyright. Ali rights are reserved, whether the whole or part of the material is concemed, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use a fee is payable to »Verwertungsgesellschaft Wort«, Munich. © 1990 Springer Basel AG Originally published by Birldlauser Verlag Basel1990 ISBN 978-3-7643-2530-5 OT47 Operator Theory: Advances and Applications VoI.47 Editor: I. Gohberg Tel Aviv University Ramat Aviv, Israel Editorial Office: School of Mathematical Sciences Tel Aviv University Ramat Aviv, Israel Editorial Board: A.'Atzmon (Tel Aviv) M. A. Kaashoek (Amsterdam) J. A. Ball (Blacksburg) T. Kailath (Stanford) L. de Branges (West Lafayette) H. G. Kaper (Argonne) K. Clancey (Athens, USA) S. T. Kuroda (Tokyo) L. A. Coburn (Buffalo) P. Lancaster (Calgary) R. G. Douglas (Stony Brook) L. E. Lerer (Haifa) H. Dym (Rehovot) E. Meister (Darmstadt) A. Dynin (Columbus) B. Mityagin (Columbus) P. A. Fillmore (Halifax) J. D. Pincus (Stony Brook) C. Foias (Bloomington) M. Rosenblum (Charlottesville) P. A. Fuhrmann (Beer Sheva) J. Rovnyak (Charlottesville) S. Goldberg (College Park) D. E. Sarason (Berkeley) B. Gramsch (Mainz) H. Widom (Santa Cruz) J. A. Helton (La Jolla) D. Xia (Nashville) D. Herrero (Tempe) Honorary and Advisory Editorial Board: P. R. Halmos (Santa Clara) S. G. Mikhlin (Leningrad) T. Kato (Berkeley) R. Phillips (Stanford) P. D. Lax (New York) B. Sz.-Nagy (Szeged) M. S. Livsic (Beer Sheva) Birkhauser Verlag Basel· Boston· Berlin v Table of Contents Editorial Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii D. Alpay, 1. A. Ball, 1. Gohberg, L. Rodman Realization and factorization for rational matrix functions with symmetries . . . . . 1 O. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Preliminaries .......................................... 4 2. Axiomatic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Admissible automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 General theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3. The associated group ..................................... 16 3.1 Realization theorems, the associated matrix, and examples. . . . . . . . . . 16 3.2 Factorization within the associated group . . . . . . . . . . . . . . . . . . . . . 19 4. Type I a symmetries ...................................... 23 5. Type I b symmetries ...................................... 27 6. Type II a symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7. Type IIb symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8. Degree preserving automorphisms of GL" (!R) ..................... 44 9. Continuous and analytic automorphisms of GL (JR) ... . . . . . . . . . . . . . . 55 m References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 D.Alpay, P. Dewilde, H. Dym Lossless inverse scattering and reproducing kernels for upper triangular operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2. Preliminaries .......................................... 69 3. A pair of transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4. An elementary Blaschke factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5. Lis and linear fractional transformations ... . . . . . . . . . . . . . . . . . . . . . . 90 6. An approximation problem ................................. 96 7. Reproducing kernel subspaces of Hilbert Schmidt operators . . . . . . . . . . . . . 102 8. Operator ranges ........................................ 113 9. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 1. A. Ball, M. Rakowski Zero-pole stmcture of nonregular rational matrix functions . . . . . . . . . . . . . . . 137 o. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 1. Pole pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 2. Orthogonality inlRn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3. Zero structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4. Functions with a given local null-pole structure . . . . . . . . . . . . . . . . . . . . . 175 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 VI H. Bercovici, C. Foias, A. Tannenbaum Structured interpolation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 2. Classical commutant lifting theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 3. Remarks on the structured singular value ........................ 198 4. Block diagonal!:::, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 5. Structured singular values and dilations. . . . . . . . . . . . . . . . . . . . . . . . . . 208 6. Structured commutant lifting theorem .......................... 211 7. Structured Nevanlinna-Pick theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 8. Example ............................................. 216 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 D. A. Dritschel, 1. Rovnyak Extension theorems for contraction operators on Krein spaces . . . . . . . . . . . . . 221 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Chapter 1: Operator Theory on Krein Spaces ....................... 224 1.1 Definitions and preliminaries .......................... 224 1.2 Defect operators and Julia operators ..................... 234 1.3 Contraction and bicontraction operators ................... 238 1.4 Additional results on contractions and bicontractions ... . . . . . . . . 249 Chapter 2: Matrix Extensions of Contraction Operators ................ 254 2.1 The adjoint of a contraction ........................... 254 2.2 Column extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 2.3 Rowextensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 2.4 Two-by-two matrix completions . . . . . . . . . . . . . . . . . . . . . . . . . 267 Chapter 3: Commutant Lifting of Contraction Operators . . . . . . . . . . . . . . . . 273 3.1 Dilation theory ................................... 273 3.2 Commutant lifting ................................. 280 3.3 Characterization of extensions ......................... 285 3.4 Abstract Leech theorem ............................. 289 Appendix A: Complementation theory ........................... 292 Appendix B: More on Julia operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 301 VII EDITORIAL INTRODUCTION This volume consists of five papers which develop further the theory of extension and interpolation of linear operators and matrix functions. The first paper, "Realization and factorization for rational matrix functions with symmetries," of D. Alpay, J.E. Ball, I. Gohberg, and 1. Rodman, is related to the problem of homogeneous interpolation for rational matrix functions with symmetries. It contains a description of properties of realization of a rational matrix function with given symmetries and the solution of the inverse problem which is the interpolation problem of constructing a symmetric rational matrix function from its null pole data. Factorization is also one of the themes of this paper. The paper concludes with an analysis of different types of symmetries. The second paper, "Lossless inverse scattering and reproducing kernels for upper tri angular operators," of D. Alpay, P. Dewilde, and H. Dym, is concerned with lossless inverse scattering for nonstationary systems. The theory of point evaluations and Blaschke prod ucts is developed for the nonstationary case. These tools will be used in future publications on nonstationary generalizations of Nevanlinna Pick interpolation problems, where both the interpolation points and the values consigned to these points will be block diagonal operators. The third paper, "Zero-pole structure of nonregular rational matrix functions," of J .A. Ball and M. Rakowski, is concerend with homogeneous interpola*ion problems for nonregular rational matrix functions. Here is described the null pole structure of such matrix functions. The inverse problem, which is an interpolation problem of constructing a rational matrix function from its null pole data, is also solved. In the fourth paper, "Structured interpolation theory," of H. Bercovici, C. Foias and A. Tannenbaum, is solved a Nevanllnna Pick type interpolation problem for matrix valued functions. The novelty here is that instead of putting up restrictions on the norm of the matrix function which is its singular value, a more sophisticated structured singular value from systems theory is used. The latter is a generalization of the norm and the spectral radius. The paper contains a new version of the commutant lifting theorem. The fifth paper, "Extension theorems for contraction operators on Krein spaces," of D.A. Dritschel and J. Rovnyak, starts with an introduction to operator theory on Krein spaces and continues with general theorems on extensions of contractive operators. The main theme is the theory of commutant lifting for contraction operators in Krein spaces. One of the most eminent mathematicans of our time, Mark Grigorievich Krein passed away in Odessa on October 17, 1989. Almost all of the authors submitted their papers with a dedication to the memory of M.G. Krein, who made extremely important contributions in the topics of this volume. The editor feels it very appropriate to follow this sponta neous action and is joining the authors in dedicating the whole volume to the memory of M.G. Krein as an expression of respect and admiration. Operator Theory 1 Advances and Applications, Vol. 47 © 1990 Birkhiiuser Verlag Basel REALIZATION AND FACTORIZATION FOR RATIONAL MATRIX FUNCTIONS WITH SYMMETRIES Daniel Alpay, Joseph A. BallI, Israel Gohberg and Leiba Rodman! IN MEMORY OF MARK GRIGORIEVICH KREIN In this paper we study rational matrix valued functions which are symmetric in various senses. The problems of realization and minimal factorization are the main themes discussed for these classes of functions. O. INTRODUCTION. Let F be a field which will be considered fixed thoughout the paper. By 'R we denote the quotient field F(z) of the polynomial ring F[z] of F in the indeterminate Zj more concretely EJ=-oo one can view 'R as consisting of formal Laurent series fJ zi which have a presentation as p(z) . q(z)-l with p and q polynomials. When the field is infinite, one can identify elements of'R as functions from F into Fj for a finite field this point of view has the draw back that a nonzero element of'R may correspond to the zero function. Let GLm('R) be the multiplicative group of all regular (i.e. with determinant not equal to the zero element of'R) m X m matrices over 'Rj elements of GLm('R) thus more concretely may be thought of as formal Laurent series with coefficients equal to matrices over F or, if F is infinite, as matrix (over F)-valued functions on F. Given an automorphism A of this group GLm('R), we say that the rational matrix WE GLm('R) = = is A-symmetric if A(W) W. For example, let F a; and let A be the automorphism on GLm('R) defined by A(W)(z) = W(-z)*-l. Then the A-symmetric rational matrices are exactly those rational matrix functions with unitary values on the imaginary line. In general, our main aim is to describe all A-symmetric rational matrices and secondly, to describe all factorizations of A-symmetric rational matrices with fac tors which are also A-symmetric. We are also interested in the problem of characterizing the elementary A-symmetric matrices, i.e. those A-symmetric matrices with no nontrivial represen tation as a product of A-symmetric matrices. These three problems can also be considered for rational matrices with respect to several symmetries. = In this paper we will be especially interested in the case when F a; and the automor- 1 Research of these authors was partially supported by grants from the National Science Foundation. 2 Alpay et al. phism A has one of the following four forms: = (Ia) A(W)(z) M-1W 0 cp(z)M (Ib) A(W)(z) = M-1W 0 cp(z)M = (ITa) A(W)(z) M-1[W 0 cp(z)]-IT M (IIb) A(W)(z) = M-1[W 0 cp(z)]-h M where M is a fixed invertible matrix and cp is a Mobius transformation. Our main approach to solving this problem is the representation of proper rational matrices in the form (1.1) W(z) = D + C(zI - A)-IB where A, B, C and D are finite matrices of appropriate sizes. Such a representation for W( z) we refer to as a realization of W(z). All four types of automorphisms mentioned above belong to the class of automorphisms which have the following property: there exists a map (A, B, C, D) ..... (AA, BA, CA, DA) such that if W(z) = D + C(zI - A)-l B whenever both W(z) and A(W)(z) are analytic and invertible at infinity. Here we work only with minimal realizations, i.e., we assume that the (square) size of A is as small as possible among all presentations ofW(z) in the form (1.1). We also assume that the map (A,B,C,D) ..... (AA, BA, CA, DA) satisfies some additional properties which hold for the types of automorphisms listed above. Namely, we demand that L'[ L,[ ([ ~l BA~2 BB~2 C1 D1C2]A' (DID2)A) = ([ AOA B~~2A], [ B~~2A ] , [CIA D1AC2A], (D1AD2A)) . and, for T E a:;nxn there exists a map T ..... TA (called the associated map to A) such that In each of the four types of examples listed above these four properties are easily verified. For any automorphism A which satisfies these properties, we classify the A-symmetric matrices

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.