J.Eur.Math.Soc. 19,659–723 (cid:13)c EuropeanMathematicalSociety2017 DOI10.4171/JEMS/678 SebastianCasalaina-Martin·SamuelGrushevsky KlausHulek·RaduLaza Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (withanappendixbyMathieuDutourSikiric´) ReceivedMay1,2014andinrevisedformDecember15,2014 Abstract. Themainpurposeofthispaperistopresentaconceptualapproachtounderstandingthe extensionofthePrymmapfromthespaceofadmissibledoublecoversofstablecurvestodifferent toroidalcompactificationsofthemodulispaceofprincipallypolarizedabelianvarieties.Bysepa- ratingthecombinatorialproblemsfromthegeometricaspectswecanreducethistothecomputation ofcertainmonodromycones.Inthiswaywenotonlyshednewlightontheextensionresultsof Alexeev,Birkenhake,Hulek,andVologodskyforthesecondVoronoitoroidalcompactification,but wealsoapplythistoothertoroidalcompactifications,inparticulartheperfectconecompactifica- tion,forwhichweobtainacombinatorialcharacterizationoftheindeterminacylocus,aswellasa geometricdescriptionuptocodimensionsix,andanexplicittoroidalresolutionofthePrymmap uptocodimensionfour. Keywords. Moduli,Prymvarieties,periodmaps,abelianvarieties Introduction AfundamentaltoolinthestudyofalgebraiccurvesisthetheoryofJacobians.Assigning to a curve its principally polarized Jacobian defines the Torelli period map M → A g g from the coarse moduli space of curves of genus g to the coarse moduli space of principally polarized abelian varieties (ppav) of dimension g. It is a well known fact, due to Mumford and Namikawa [Nam80], that the Torelli map extends to a morphism M → A¯V fromtheDeligne–MumfordcompactificationtothesecondVoronoitoroidal g g S.Casalaina-Martin:DepartmentofMathematics,UniversityofColorado, Boulder,CO80309,USA;e-mail:[email protected] S.Grushevsky:DepartmentofMathematics,StonyBrookUniversity, StonyBrook,NY11794,USA;e-mail:[email protected] K.Hulek:Institutfu¨rAlgebraischeGeometrie,LeibnizUniversita¨tHannover, 30060Hannover,Germany;e-mail:[email protected] R.Laza:DepartmentofMathematics,StonyBrookUniversity,StonyBrook,NY11794,USA; e-mail:[email protected] M.DutourSikiric´:RudjerBoskovic´Institute,Bijenicka54,10000Zagreb,Croatia; e-mail:[email protected] MathematicsSubjectClassification(2010):Primary14H40,14K10,14H10 660 SebastianCasalaina-Martinetal. compactification.Morerecently,AlexeevandBrunyate[AB12]havestudiedextensions oftheTorellimaptoothertoroidalcompactificationsandhaveshownthattheperiodmap extendstoamorphismtotheperfectconecompactificationA¯P,butnottoamorphismto g thecentralconecompactificationA¯C forg ≥9,disprovingaconjectureofNamikawa. g WhiletheTorellimapisinjectiveforallg,forg ≥4itisnotdominant.Onegeometric approach to understanding higher-dimensional ppavs is via Prym varieties, which are ppavs associated to connected e´tale double covers of curves. Associating to a cover its principally polarized Prym variety defines the Prym period map Rg+1 → Ag, where Rg+1 is the coarse moduli space of connected e´tale double covers of curves of genus g + 1. The Prym period map is dominant for g ≤ 5, and has been used to provide a geometric approach to the Schottky problem for g = 4,5, to study the rationality of threefolds,andtogiveabetterunderstandingofthegeometryofA andA . 4 5 IncontrasttothecaseofJacobians,ithasbeenknownsincetheworkofFriedmanand Smith[FS86]thatthePrymperiodmapdoesnotextendtoamorphismfromBeauville’s modulispaceRg+1ofadmissibledoublecoverstoanyofthestandardtoroidalcompacti- fications.SubsequentworkofAlexeev,Birkenhake,andHulek[ABH02]andVologodsky [Vol02] identifies the indeterminacy locus of the rational map Rg+1 (cid:57)(cid:57)(cid:75) A¯Vg; it is the closureofthelocusofso-calledFriedman–Smithcoverswithatleastfournodes(see§6). In this paper, we investigate the problem of extending the Prym map to other toroidal compactifications.Ourmainresultsare: • A complete combinatorial characterization of the indeterminacy locus of the Prym maptotheperfectandcentralconecompactifications(Theorem5.6).Thetechniques alsogiveacompletecombinatorialcharacterizationoftheindeterminacylocusofthe PrymmaptothesecondVoronoicompactification,providinganotherproofof[ABH02, Thm.3.2]. • A geometric characterization of the indeterminacy locus of the Prym map Rg+1 (cid:57)(cid:57)(cid:75) A¯Pg to the perfect cone compactification up to codimension 6 in Rg+1 in termsofFriedman–Smithcovers(Theorem7.1). • An explicit resolution of the Prym map Rg+1 (cid:57)(cid:57)(cid:75) A¯Pg up to codimension 4 (Theo- rem8.1).ThisalsoresolvesthePrymmaptoA¯V andA¯C uptocodimension4. g g InAppendixE,MathieuDutourSikiric´ alsoprovesanextensionresultforthePrymmap tothecentralconecompactification(TheoremE.1). In this paper, we approach the extension problem for the Prym map in terms of the Hodge-theoretic framework of a general period map M → D/(cid:48) from a moduli space toaclassicalperioddomain.Thisallowsustodeterminetheconditionsforextensionsof periodmapstomodulispacesthatarecompactifiedsothatthemonodromytransforma- tions are of Picard–Lefschetz type (i.e. given by rank 1 forms). In this way we separate the geometric aspects of the problem from the combinatorial issues involved in dealing withvariousadmissibleconedecompositions. In particular, the approach unifies the arguments for Jacobians and Pryms, and we discuss the Torelli map throughout for motivation. As a result, we also get a new proof oftheextensionresultsof[ABH02]forRg+1 (cid:57)(cid:57)(cid:75)A¯Vg.In[ABH02],theauthorshavethe additional goal of determining compactified Pryms as stable semiabelic pairs; focusing ExtendingthePrymmap 661 here on the extension condition allows us to give a more direct, Hodge-theoretic argu- ment. With the work in [ABH02], translating from our results to the language of stable semiabelicpairsisstraightforward(§2.4,§9).Inaddition,oneofouroriginalmotivations for this work was investigating the extension of the period map for cubic threefolds to amorphismfromasuitableGITcompactificationofthemodulispaceofthreefoldstoa suitable compactification of A , stemming from our work [CML09] and [CML13], and 5 usingsomeoftheresultsofourwork[GH12].Themethodsweuseinthispaperapplyin thatsettingalso,andwewillreturntothestudyoftheperiodmapforcubicthreefoldsin subsequentwork. A few words about the structure of the paper. We start in Section 1 by reviewing some basic facts about the toroidal compactifications (second Voronoi, perfect, central) thatweconsiderinourpaper.Wethendiscuss(Section2)thegeneralframeworkofde- generations of Hodge structures and the connection to toroidal compactifications. This is mostly standard (see e.g. [Cat84] for an exposition), but we find it convenient to in- cludeashortdiscussionofthis,adaptedtoourneeds.InSection3,webrieflyreviewthe standardcompactificationofthemoduliofPrymvarietiesbyadmissiblecovers[Bea77] andtheassociatedcombinatorialdata(graphswithaninvolution,etc.).InSection4,we specializethediscussionofSection2tocurvesandPrymvarietiesanddiscussthecom- putationofthemonodromyconesintermsofthedualgraph.Themonodromyconefor Jacobiansisclassical(e.g.[Nam76])andthatofPrymsisessentiallycontainedin[FS86] and[ABH02].Nonetheless,webelievethatourpresentationunifies,simplifies,andclar- ifiessomeoftheargumentsintheliterature.Ourgoalwillbetoapplysimilartechniques tothestudyofothermodulispacesviaHodgetheoryinthefuture. Withthesepreliminaries,newresultsstartinSection5,wherewerecasttheextension criteria for the Torelli map, and then prove combinatorial criteria, in terms of the dual graph,fortheextensionofthePrymmaptovarioustoroidalcompactificationsofA ,ob- g tainingTheorem5.6andthusgivinginadditionanewproofof[ABH02,Thm.3.2].We thenproceedtorelatethesecombinatorialconditionstogeometricconditionsonadmis- siblecovers.Theso-calledFriedman–Smithcoversarecentraltothisdiscussionandwe describeinSection6theirmonodromyindetail:inSubsection6.2wecomputethemon- odromy cones, and in Theorem 6.4 we discuss their properties with respect to the fans definingdifferenttoroidalcompactifications.InSection7,weusethesecomputationsto describe the indeterminacy locus of the Prym map geometrically, and it is interesting to note that this behavior for the perfect cone compactification is quite different from that for the second Voronoi compactification. We are able to give a complete geometric characterizationoftheindeterminacylocusofthePrymmaptotheperfectconecompact- ificationA¯P uptocodimension6(Theorem7.1),utilizingtherecentresultsofMeloand g Viviani[MV12]. Thecomputationsalsoallowustodescribetheresolutionoftheperiodmapintermsof explicit,toroidalmodificationsofthemodulispaceofadmissiblecovers.InSection8we describetheresolutionoftheperiodmaptotheperfectconecompactificationcompletely uptocodimension4(Theorem8.1).InSection9westartadiscussiononthefibersofthe Prym map. More precisely, we discuss which types of admissible covers are mapped to whichstrata.Thisalsoprovidesanotherlinkto[ABH02]sincewediscusstherelationship 662 SebastianCasalaina-Martinetal. betweenthemonodromyconesandthedegenerationdataof1-parameterfamilies,which inturndeterminesemiabelicvarietieswhicharelimitsofPryms. ManyoftheargumentsinthepaperregardingthePrymmapinlowcodimensionrely on working through a number of examples, and explicit computations of monodromy cones. These are somewhat lengthy and technical, and to maintain the structural unity of the argument we collect these explicit computations in the appendices. Appendix A treats the combinatorics of the Friedman–Smith cones and relates these to various cone decompositions.InAppendixBwediscusssomeexampleswherethePrymmapextends; this comes down to proving that certain monodromy cones belong to either the second Voronoi,perfectconeorcentralconedecomposition.AppendixCcontainssomelengthy calculations where we discuss further degenerations of Friedman–Smith examples. In particularwecomputetheirmonodromyconesanddiscusstowhich,ifany,conedecom- positionsthesebelong.Finally,inAppendixDwediscussamethodwhichallowsusto simplifycertainmonodromyconesandthustoreducetopreviouscalculations. Notation Wewillusecalligraphicletterstorefertomodulistacks(e.g.Ag,Rg+1,etc.),anditalic lettersfortheassociatedcoarsemodulispaces(e.g.Ag,Rg+1,etc.).Sinceallthespaces occurring here (with the exception of Alexeev’s stack of stable semiabelic pairs) are Deligne–Mumford stacks, all the period maps are assumed to be locally liftable, and the extensions are insensitive to finite covers, there is essentially no difference between usingstacksortheassociatedcoarsemodulispace.Infact,wewilltypicallysticktothe coarsemodulispace,exceptforthesituationswherewewanttoemphasizethemodular meaning. 1. Briefreviewoftoroidalcompactifications In this section, we briefly review the theory of toroidal compactifications of A (see g [AM+10],[Nam80]and[FC90]formoredetails),focusingonthethreeclassicallyknown toroidalcompactifications(uptorefinementoffans,i.e.blow-ups),thatistheperfectcone (alsoknownasfirstVoronoi),secondVoronoi,andcentralconecompactification.Primar- ilythepurposehereistofixthenotationandterminologyneededlater. Notation1.1. Asiscustomary,whennecessary,wewillusesubscripts(e.g.HZ)toindi- catethecoefficientsformodulesandalgebraicgroups.Unlessspecified,thecoefficients areeitherQorR. 1.1. TheSatake–Baily–Borelcompactification Fix a free abelian group H of rank 2g, and a non-degenerate, skew-symmetric, bilinear formQonH.WeletD betheclassifyingspaceofpolarizedweight1Hodgestructures onH: D :={F ∈Grass(g,HC):Q(F,F)=0, iQ(F,F)>0}∼=GR/K, ExtendingthePrymmap 663 where GR ∼= Sp(2g,R) and K = U(r) is the maximal compact subgroup. By taking Qtobethestandardsymplecticform,D canbe(canonically)identifiedwiththeSiegel upperhalf-spaceH ,thespaceofsymmetricg×gcomplexmatriceswithpositivedefinite g imaginarypart.ThefractionallineartransformationsgiveanactionofGZ = Sp(2g,Z) ∼ onD =H ,andweset g A :=H /Sp(2g,Z). g g The Satake–Baily–Borel (SBB) compactification A∗ is a normal, projective compactifi- g cationofA thatadmitsastratification g A∗g =Ag (cid:116)Ag−1(cid:116)···(cid:116)A0. We recall that A∗ and the above stratification are obtained (set-theoretically) by g adding to D the so-called rational boundary components F , and then taking the quo- W0 tient with respectto the natural GZ = Sp(2g,Z) action. Namely, therational boundary componentsF ofDcorrespondtothechoiceofrationalmaximalparabolicsubgroups W0 PW0 ⊂Sp(Q,HQ),whichinturncorrespondtothechoiceofatotallyisotropicsubspace W0 ⊆HQ(ofwhichPW0 isthenthestabilizer).NotethatsinceSp(2g,Z)actstransitively onthesetofisotropicsubspacesW0ofHQoffixeddimension,thesetofrationalbound- arycomponentsisessentiallyindexedbyν (= dimW ) ∈ {0,...,g}.Furthermore,the 0 choiceofW0definesaweightfiltrationonHQ: W−1 :={0}⊆W0 ⊆W1 :=(W0)⊥Q ⊆W2 :=HQ. (1.1) ThepolarizationQinducesapolarization(non-degeneratesymplecticform)Q¯ onGrW = 1 W /W . It is then standard (e.g. [Cat84, p. 84]) that the boundary component F is the1 cla0ssifying space Dg(cid:48) (with g(cid:48) = g −ν) of Q¯-polarized Hodge structures on GW0rW1 , givingthecomponentAg(cid:48) =FW0/GZ ofA∗g (N.B.F{0} =D,andaftertheidentification FW0 =Dg(cid:48) =Hg(cid:48),theactionofGZrestrictstotheactionofSp(2g(cid:48),Z).) 1.2. Toroidalcompactifications Toroidal compactifications are certain refinements of the SBB compactification A∗, de- g pending on a choice of a compatible collection of admissible cone decompositions, (cid:54). EachsuchchoicegivesacompactificationA¯(cid:54) withacanonicalmapA¯(cid:54) →A∗.Herewe g g g reviewafewpointsabouttheconstructionfromtheperspectiveofHodgetheory(essen- tiallyfollowing[Cat84]). TheconstructionisrelativeoverA∗,andonestartsbyconsideringatotallyisotropic g subspace W0 ⊆ HQ of dimension ν ≤ g and the corresponding boundary component ofA∗g.ConsiderthentherealLiesubalgebraofsp(Q,HR)preservingW0: n(W0):={N ∈sp(Q,HR):Im(N)⊆W0}. ThenforanyN ∈ n(W )wehaveN2 = 0,andthusN definesaweightfiltrationcom- 0 patiblewiththatinducedbyW (see(1.1)).Inotherwords,wehave 0 Im(N)=W (N)⊆W ⊆W =W⊥ ⊆W (N)=ker(N)=Im(N)⊥, 0 0 1 0 1 664 SebastianCasalaina-Martinetal. andinparticularanaturalsurjection GrW (:=W /W )(cid:16)Gr (N)(:=W (N)/W (N)). (1.2) 2 2 1 2 2 1 Furthermore,sinceN isanilpotentsymplecticendomorphism,wegetanaturalisomor- phism Gr (N)−→N Gr (N)−Q−(−N−(·−),→·) Gr (N)∨, 2 0 2 (1.3) v (cid:55)→N(v)(cid:55)→Q(N(·),v), which can be interpreted as giving a non-degenerate bilinear form Q on Gr (N). The N 2 formQ turnsouttobesymmetric,andbypull-backcanbeviewedasaformonGrW; N 2 thusthereisanaturalmap(definedoverQ) n(W )−→∼ Hom(Sym2GrW,R), (1.4) 0 2 which(asisnothardtosee)isanisomorphism. Asdescribedabove,n(W )iscanonicallyidentifiedwiththeLiealgebraofsymmetric 0 bilinearforms(orequivalentlysymmetricg(cid:48)×g(cid:48)matriceswithg(cid:48) =g−ν)onGrW.With 2 thisidentification,weconsidertheconeofpositivedefiniteg(cid:48)×g(cid:48)symmetricmatrices n(W )+ :={N ∈n(W ):Q ispositivedefinite}. 0 0 N Let (cid:54) be a compatible collection of admissible cone decompositions (see §1.3). Now for each cone σ ∈ (cid:54) , there is an associated space B(σ ) together with a map W0 W0 W0 B(σ ) → F , where F is the rational boundary component associated to W (see W0 W0 W0 0 e.g.[Cat84,p.91]).Thesemapsarecompatibleinthesensethatifτ ≤ σ isaface, W0 W0 thenthereisacommutativediagram (cid:47)(cid:47) B(τ ) B(σ ) W0 W0 (cid:36)(cid:36) (cid:122)(cid:122) F W0 OannaectthioennosentsDD(cid:54)(cid:54),an=d(cid:83)theWn0((cid:83)seσtW-t0h∈e(cid:54)oWre0tBic(aσllWy)0)A.¯(cid:54)gTh=eaDct(cid:54)io/nGoZf,GinZdu=cinSgp(a2lsgo,Zan)aetxutreanldmsatop A¯(cid:54) →A∗. g g 1.3. Admissibleconedecompositionsforquadraticforms We now review some basic terminology and results about cone decompositions. Let (cid:51) beafreeZ-moduleofrankg.Thespaceofquadraticformson(cid:51)is(Sym2(cid:51))∨,which comesequippedwithanaturaldiagonalactionofGL((cid:51))=AutZ((cid:51)).Oneconsidersthe opencone C ⊂(Sym2(cid:51))∨⊗ZR, Q ofpositivedefinitequadraticforms,andthenletsC beitsrationalclosure.Obviously, C and CQ are GL((cid:51))-invariant. For any subgroup (cid:48) ⊆ GL((cid:51)) (typically we will be ExtendingthePrymmap 665 interested in (cid:48) = GL((cid:51))), a (cid:48)-admissible rational polyhedral decomposition (cid:54) (for short,anadmissibledecomposition)ofC isa(cid:48)-invariantcollectionof(rational,convex, Q polyhedral) subcones covering C which satisfies certain natural axioms (see [Nam80] or[FC90,Ch.IV,Def.2.2,p.96]fordetails),mostnotablytherequirementthatthereare onlyfinitelymanyorbitsofconesof(cid:54)modulotheactionof(cid:48). FortheconstructionofthetoroidalcompactificationsA¯(cid:54) onerequiresanadmissible g decompositionforthespaceofquadraticformsassociatedtoeachisotropicsubspaceW 0 (see (1.4)). As discussed, all isotropic subspaces W of fixed dimension are conjugate, 0 andthuswhatoneneedsisanadmissibledecompositionforeachlattice(cid:51)(cid:48) ofrank0 ≤ g(cid:48) ≤ g,compatibleinthefollowingsense.Wesaythat(cid:54)(cid:48) and(cid:54) arecompatibleifthere existsasurjection(cid:51) (cid:16) (cid:51)(cid:48) suchthat(cid:54)(cid:48) isobtainedfrom(cid:54) viapull-backbythenatural inclusion CQ((cid:51)(cid:48)) ⊆ CQ((cid:51)). If this is the case for one surjection (cid:51) (cid:16) (cid:51)(cid:48), it will be trueforallsurjections.Inparticular,specifyinganadmissibledecompositionfor(cid:51)then uniquely specifies compatible admissible decompositions for all lattices (cid:51)(cid:48) of smaller rank.Inshort,allweneedtodefineatoroidalcompactificationA¯(cid:54) isanadmissiblecone g decompositionfortherankglattice. ThreeadmissibledecompositionsareclassicallyknownforA ,namelytheso-called g secondVoronoidecomposition,theperfectcone(orfirstVoronoi)decomposition,andthe centralconedecomposition(thesecan,ofcourse,befurthersubdivided).Thesedecom- positions are discussed in [Nam80, §8, §9]. We shall address all three decompositions andtheassociatedtoroidalcompactifications.Thoughwewillnotreviewtheirdefinitions (theinterestedreadershouldsee[Nam80]),wewilldiscusstherelevantfactsaboutthem inthefollowingsubsection.Thereisalsoanotheradmissibledecomposition,namelythat into C-types [RB78], which is less known to algebraic geometers. This coincides with thesecondVoronoidecompositionforg ≤ 4,butforg ≥ 5secondVoronoiisaproper refinement of the C-type decomposition. To our knowledge no geometric interpretation ofthecorrespondingtoroidalcompactificationisknown. Finally, we recall some terminology. A cone σ ⊆ CQ is called basic if the integral generatorsofits1-dimensionalfacescanbecompletedtoaZ-basisof(Sym2(cid:51))∨.Itis calledsimplicialifthesegeneratorscanbecompletedtoaQ-basis,i.e.iftheyarelinearly independent. 1.4. Admissibleconedecompositionsandrank1quadrics In the geometric context of our paper, we will only be interested in cones spanned by rank 1 quadrics (i.e. squares of linear forms), since our (log of) monodromy operators willberank1.Forsuchconesitisessentiallyacombinatorialproblemtodecideifthey belongtothesecondVoronoi,perfect,orcentralconedecompositions.Theseresultsare wellknownandwewillreferthereaderto[AB12]and[MV12]forfurtherdetails. For(cid:96)1,...,(cid:96)n ∈(cid:51)∨R\{0},letσ :=R≥0(cid:104)(cid:96)2i(cid:105)ni=1bethecorrespondingconegenerated byrank1quadricsinSym2(cid:51)∨.Givenabasisfor(cid:51),wewilloftenrefertotheconeσ by R writingthematrixwhosei-throwistheexpressionfor(cid:96) intermsofthedualbasistothe i givenbasis,andtoanysuchmatrixwewillassociatesuchacone. 666 SebastianCasalaina-Martinetal. Inthisset-up,wethenhavethefollowingcombinatorialresultsthatdeterminewhether asetoflinearformsin(cid:51)∨generateaconecontainedinaconeofoneofthethreestandard admissibledecompositions. Lemma1.2 (SecondVoronoi). Let(cid:51)beafreeZ-moduleofrankg.Suppose(cid:96) ,...,(cid:96) 1 n ∈(cid:51)∨areprimitivenon-zerolinearforms.Thefollowingareequivalent: (1) {(cid:96)2,...,(cid:96)2}lieinacommonconeofthesecondVoronoidecomposition. 1 n (2) R≥0(cid:104)(cid:96)21,...,(cid:96)2n(cid:105)isaconeinthesecondVoronoidecomposition. (3) Any R-linearly independent subset {(cid:96)j}j∈J ⊆ {(cid:96)1,...,(cid:96)n} is a Z-basis of the Z-moduleR(cid:104)(cid:96)j(cid:105)j∈J ∩(cid:51)∨. (4) Any R-linearly independent subset {(cid:96)j}j∈J ⊆ {(cid:96)1,...,(cid:96)n} of maximal rank is a Z-basisoftheZ-moduleR(cid:104)(cid:96)j(cid:105)j∈J ∩(cid:51)∨. Proof. Thisiswellknown.Wedirectthereaderto[AB12,Lem.4.5]andthereferences therein. (cid:117)(cid:116) OnemaytakeasadefinitionthatamatroidalconeisasecondVoronoiconegeneratedby rank1quadrics(thisisessentiallythecontentofLemma1.2).Itfollowsfromthelemma thatafaceofamatroidalconeismatroidal,andthatmatroidalconesaresimplicial.We denoteby(cid:54) ⊆(cid:54) thecollectionofmatroidalcones. mat V Toconnectthediscussionwiththatof[ABH02],werecallthenotionofadicing.Fix a collection of codimension 1 affine spaces {Hi}i∈I in (cid:51)R. Let H = (cid:83)i∈I Hi be the associatedarrangementofaffinespaces.ThearrangementH isstratifiedbytheintersec- tions of the H . We say that H defines a dicing of (cid:51) if the union of the 0-dimensional i strataofH isexactlythelattice(cid:51). Lemma1.3. Let (cid:51) be a free Z-module of rank g. Suppose that (cid:96) ,...,(cid:96) ∈ (cid:51)∨ are 1 n R-linearlyindependent.Then(cid:96) ,...,(cid:96) formaZ-basisfor(cid:51)∨ ifandonlyiftheydeter- 1 n mineadicingof(cid:51)R.Moreprecisely,thismeansthatthecollectionofhyperplanes Hi,m :={x ∈(cid:51)R :(cid:96)i(x)=m} withi =1,...,nandm∈Zdefinesadicingof(cid:51). Proof. Thisfollowsfromthedefinitionsandislefttothereader. (cid:117)(cid:116) Remark1.4. Associated to a quadratic form q ∈ C is the so-called Delaunay decom- positionof(cid:51)⊗ZR.ThesecondVoronoidecompositionisdefinedsothattheDelaunay decompositionofaquadricremainsunchangedforallquadricsinagiven(open)second Voronoi cone. We will only be interested in quadratic forms that lie in second Voronoi conesgeneratedbyrank1quadrics.Inthiscase,theDelaunaydecompositionhasawell known and simple description (see [ER94, Thm. 3.2] or [ABH02, proof of Lem. 3.1]): If(cid:96)1,...,(cid:96)n ∈ (cid:51)∨ span(cid:51)∨R,andσ = R≥0(cid:104)(cid:96)21,...,(cid:96)2n(cid:105)isasecondVoronoicone,then the Delaunay decomposition for any (positive definite) quadric q ∈ σ◦ is given by the (dicing)hyperplanearrangementassociatedto(cid:96) ,...,(cid:96) . 1 n ExtendingthePrymmap 667 Lemma1.5 (Perfect cone). Let (cid:51) be a free Z-module of rank g. Suppose (cid:96) ,...,(cid:96) 1 n ∈(cid:51)∨areprimitivenon-zerolinearforms.Thefollowingareequivalent: (1) {(cid:96)2,...,(cid:96)2}lieinthesameconeoftheperfectconedecomposition. 1 n (2) ThereexistsaquadraticformQon(cid:51)∨ suchthat R (a) Q((cid:96))>0forall(cid:96)∈(cid:51)∨\{0},i.e.Qispositivedefinite. R (b) Q((cid:96))≥1forall(cid:96)∈(cid:51)∨\{0}. (c) Q((cid:96) )=1,i =1,...,n. i Proof. This follows from the definition of the perfect cone decomposition in [Nam80]. (Seealsotheproof of[AB12,Thm.4.7].) (cid:117)(cid:116) Remark1.6. Since cones in the perfect cone decomposition are generated by rank 1 quadrics,aconeintheperfectconedecompositionisasecondVoronoiconeifandonly if it is matroidal (i.e. (cid:54) ∩(cid:54) ⊆ (cid:54) ). Recently Melo and Viviani [MV12, Thm. A] P V mat showed that matroidal cones are in the perfect cone decomposition (i.e. (cid:54) ⊆ (cid:54) ), mat P establishing that (cid:54) ∩(cid:54) = (cid:54) . Note in particular that the following special case P V mat of[MV12,Thm.A]followsdirectlyfromthedefinitionsandLemma1.5:ifσ ∈ (cid:54) is mat generatedbyatmostgrank1quadraticforms,thenσ ∈(cid:54) .Inparticular,ifq ∈σ ∈(cid:54) P P isarank1quadric,thenR≥0(cid:104)q(cid:105)isafaceof σ. Lemma1.7 (Central cone). Let (cid:51) be a free Z-module of rank g. Suppose (cid:96) ,...,(cid:96) 1 n ∈(cid:51)∨areprimitive,non-zero,linearforms.Thefollowingareequivalent: (1) {(cid:96)2,...,(cid:96)2}lieinthesameconeofthecentralconedecomposition. 1 n (2) ThereexistsaquadraticformQon(cid:51)∨ suchthat R (a) Q((cid:96))>0 forall(cid:96)∈(cid:51)∨\{0},i.e.Qispositivedefinite. R (b) Q((cid:96))≥1 forall(cid:96)∈(cid:51)∨\{0}. (c) Q((cid:96) )=1,i =1,...,n. i (d) Q((cid:96))∈Z forall(cid:96)∈(cid:51)∨. Proof. This follows from the definition of the central cone decomposition in [Nam80]. (Seealsotheproof of[AB12,Thm.4.8].) (cid:117)(cid:116) Remark1.8. We note that all but the last condition above are the same as for the per- fect cone compactification, and thus it turns out that if a collection of rank 1 quadratic forms lies in a central cone, they also lie in a perfect cone, but not vice versa (see also Remarks5.2and5.3below). Given an admissible cone decomposition (cid:54), we will denote by (cid:54)(1) the collection of conesthataregeneratedbyrank1quadrics.Notethatifσ ∈ (cid:54)(1) andτ isafaceofσ, thenτ ∈(cid:54)(1).Notealsothatbydefinition(cid:54) =(cid:54)(1).Wecansummarizethediscussion P P aboveasfollows: σ ∈(cid:54)(1)(=(cid:54) ) orσ ∈(cid:54)(1) ⇒ σ ∈(cid:54) (=(cid:54)(1)). V mat C P P 668 SebastianCasalaina-Martinetal. Remark1.9. Themetrics (cid:88) (cid:88) Q (x):= x x , Q (x):= x x (1.5) A i j D i j 1≤i≤j≤n 1≤i≤j≤n,(i,j)(cid:54)=(1,2) defineconesoftypeAandDrespectivelyintheperfectconedecomposition(infactalso in the central cone decomposition). Cones of type A are matroidal, whereas for n ≥ 4, typeDconesarenot(andalsofailtobesimplicial). Remark1.10. At this point we recall the relation between the three known admissible decompositions. For g = rank(cid:51), g ≤ 3, all three decompositions (namely the second Voronoi,perfectconeandcentralcone)coincide.Forg =4itisstilltruethattheperfect coneandthecentralconedecompositionscoincide,andthesecondVoronoidecomposi- tionisarefinementofthese.Moreprecisely,theonlynon-basicconeoftheperfectcone decomposition,namelytheD cone,issubdividedintobasicconesinthesecondVoronoi 4 decomposition(see[RE88]fordetails).Forg = 5thesecondVoronoidecompositionis stillarefinementoftheperfectconedecomposition[RB78],butthisisnolongerthecase forg ≥6[ER01].Ingeneral,allthreedecompositionsaredifferentinthesensethatnone isarefinementofother. 2. Monodromyconesandextensionstotoroidalcompactifications ThecentralquestionaddressedinthispaperisthatofextendingtheperiodmapforPrym varieties to toroidal compactifications. The basic set-up for such a problem is that of a locally liftable map P : B◦ → D/(cid:48) from a smooth base B◦ to a locally symmetric variety(e.g.mapsarisingfromweight1variationsofHodgestructure(VHS)associated tofamiliesofvarietiesX◦/B◦).Wethenconsiderapartialsimplenormalcrossingsmooth compactificationB◦ ⊂ B andweareaskingaboutextensionsofthemapP fromB toa (cid:54) given(fixed)toroidalcompactificationD/(cid:48) .Sincetheproblemisessentiallylocal,we mayassumewithoutlossofgeneralitythatB◦isapolycylinder(i.e.B0 =(S◦)k×Sn−k ⊂ B = Sn,whereS◦ = S \{0}andS istheunitdisk),andthatthemonodromyoperators aroundtheboundarydivisorsareunipotent. With this set-up the extension question has an elegant answer. Namely, one defines a monodromy cone associated to the period map P, and then P extends if and only if the monodromy cone is compatible with the cones of the admissible decomposition (cid:54). Wereviewthisbelow,followingCattani[Cat84],withafocusonweight1variationsof Hodgestructures(althoughsomeoftheconsiderationsapplymoregenerally). 2.1. Degenerationsofweight1Hodgestructures ThemonodromyconeforavariationofHodgestructuresisabasictoolinunderstanding extensions of period maps. Here we review the definition of the log of monodromy, the monodromycone,andtheconnectionwithquadraticforms.
Description: