Extended Finite Element Method for Crack Propagation Extended Finite Element Method for Crack Propagation Sylvie Pommier Anthony Gravouil Alain Combescure Nicolas Moës First published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Adapted and updated from La simulation numérique de la propagation des fissures : milieux tridimensionnels, fonctions de niveau, éléments finis étendus et critères énergétiques published 2009 in France by Hermes Science/Lavoisier © LAVOISIER 2009 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2011 The rights of Sylvie Pommier, Anthony Gravouil, Alain Combescure, Nicolas Moës to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. ____________________________________________________________________________________ Library of Congress Cataloging-in-Publication Data Extended finite element method for crack propagation / Sylvie Pommier ... [et al.]. p. cm. Includes bibliographical references and index. ISBN 978-1-84821-209-1 1. Fracture mechanics--Mathematics. 2. Finite element method. I. Pommier, Sylvie. TA409.E98 2011 620.1'1260151825--dc22 2010048620 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-209-1 Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne. Table of Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . xiii List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . xv Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Chapter 1. Elementary Concepts of Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Superposition principle . . . . . . . . . . . . . . . . . 3 1.3. Modes of crack straining . . . . . . . . . . . . . . . . 4 1.4. Singular fields at cracking point . . . . . . . . . . . 5 1.4.1. Asymptotic solutions in Mode I . . . . . . . . 8 1.4.2. Asymptotic solutions in Mode II . . . . . . . . 9 1.4.3. Asymptotic solutions in Mode III . . . . . . . 9 1.4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . 10 1.5. Crack propagation criteria . . . . . . . . . . . . . . . 10 1.5.1. Local criterion . . . . . . . . . . . . . . . . . . . . 10 1.5.2. Energy criterion . . . . . . . . . . . . . . . . . . . 13 1.5.2.1. Energy release rate G. . . . . . . . . . . . 13 1.5.2.2. Relationship between G and stress intensity factors . . . . . . . . . . . 15 v vi X-FEMforCrackPropagation 1.5.2.3. How the crack is propagated . . . . . . . 16 1.5.2.4. Propagation velocity. . . . . . . . . . . . . 16 1.5.2.5. Direction of crack propagation . . . . . . 17 Chapter 2. Representation of Fixed and Moving Discontinuities . . . . . . . . . . . . . . . . . . . . 21 2.1. Geometric representation of a crack: a scale problem . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.1. Link between the geometric representation of the crack and the crack model . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.2. Link between the geometric representation of the crack and the numerical method used for crack growth simulation . . . . . . . . . . . 25 2.2. Crack representation by level sets . . . . . . . . . 29 2.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . 29 2.2.2. Definition of level sets . . . . . . . . . . . . . . . 32 2.2.3. Level sets discretization . . . . . . . . . . . . . 38 2.2.4. Initialization of level sets . . . . . . . . . . . . 49 2.3. Simulation of the geometric propagation of a crack . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.1. Some examples of strategies for crack propagation simulation . . . . . . . . . . . . . . 53 2.3.2. Crack propagation modeled by level sets . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.3. Numerical methods dedicated to level set propagation . . . . . . . . . . . . . . . . 61 2.4. Prospects of the geometric representation of cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Chapter 3. Extended Finite Element Method X-FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2. Going back to discretization methods . . . . . . . 70 3.2.1. Formulation of the problem and notations . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.2. The Rayleigh-Ritz approximation . . . . . . . 72 TableofContents vii 3.2.3. Finite element method . . . . . . . . . . . . . . 73 3.2.4. Meshless methods . . . . . . . . . . . . . . . . . 75 3.2.5. The partition of unity . . . . . . . . . . . . . . . 78 3.3. X-FEM discontinuity modeling . . . . . . . . . . . . 79 3.3.1. Introduction, case of a cracked bar . . . . . . 80 3.3.1.1. Case a: crack positioned on a node . . . 80 3.3.1.2. Case b: crack between two nodes . . . . 81 3.3.2. Variants . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.3. Extension to two-dimensional and three-dimensional cases . . . . . . . . . . . . . 85 3.3.4. Level sets within the framework of the eXtended finite element method . . . . . . . . 93 3.4. Technical and mathematical aspects . . . . . . . . 94 3.4.1. Integration . . . . . . . . . . . . . . . . . . . . . . 94 3.4.2. Conditioning . . . . . . . . . . . . . . . . . . . . . 96 3.5. Evaluation of the stress intensity factors . . . . . 98 3.5.1. The Eshelby tensor and the J integral. . . . 99 3.5.2. Interaction integrals . . . . . . . . . . . . . . . . 103 3.5.3. Considering volumic forces . . . . . . . . . . . 106 3.5.4. Considering thermal loading . . . . . . . . . . 107 Chapter 4. Non-linear Problems, Crack Growth by Fatigue . . . . . . . . . . . . . . . . . . . . . . . 109 4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2. Fatigue and non-linear fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.2.1. Mechanisms of crack growth by fatigue . . . 114 4.2.1.1. Crack growth mechanism at low ∆K . . . . . . . . . . . . . . . . . . . . . 115 I 4.2.1.2. Crack growth mechanisms at average or high ∆K . . . . . . . . . . . . 116 I 4.2.1.3. Macroscopic crack growth rate and striation formation. . . . . . . . . . . . . . 119 4.2.1.4. Fatigue crack growth rate of long cracks, Paris law . . . . . . . . . . . . . . . 121 4.2.1.5. Brief conclusions . . . . . . . . . . . . . . . 122 viii X-FEMforCrackPropagation 4.2.2. Confined plasticity and consequences for crack growth . . . . . . . . . . . . . . . . . . . . . 122 4.2.2.1. Irwin’s plastic zones . . . . . . . . . . . . . 122 4.2.2.2. Role of the T stress . . . . . . . . . . . . . 125 4.2.2.3. Role of material hardening . . . . . . . . 125 4.2.2.4. Cyclic plasticity . . . . . . . . . . . . . . . . 129 4.2.2.5. Effect of residual stress on crack propagation. . . . . . . . . . . . . . . . . . . 134 4.3. eXtended constitutive law . . . . . . . . . . . . . . . 137 4.3.1. Scale-up method for fatigue crack growth . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.3.1.1. Procedure . . . . . . . . . . . . . . . . . . . . 137 4.3.1.2. Scaling . . . . . . . . . . . . . . . . . . . . . . 139 4.3.1.3. Assessment . . . . . . . . . . . . . . . . . . . 149 4.3.2. eXtended constitutive law . . . . . . . . . . . . 150 4.3.2.1. Damage law . . . . . . . . . . . . . . . . . . 151 4.3.2.2. Plasticity threshold . . . . . . . . . . . . . 152 4.3.2.3. Plastic flow rule. . . . . . . . . . . . . . . . 157 4.3.2.4. Evolution law of the center of the elastic domain . . . . . . . . . . . . . . . . . 159 4.3.2.5. Model parameters . . . . . . . . . . . . . . 160 4.3.2.6. Comparisons . . . . . . . . . . . . . . . . . . 160 4.4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . 164 4.4.1. Mode I crack growth under variable loading . . . . . . . . . . . . . . . . . . . . . . . . . 164 4.4.2. Effect of the T stress . . . . . . . . . . . . . . . . 166 Chapter 5. Applications: Numerical Simulation of Crack Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.1. Energy conservation: an essential ingredient . . 173 5.1.1. Proof of energy conservation . . . . . . . . . . 174 5.1.1.1. X-FEM approach . . . . . . . . . . . . . . . 174 5.1.1.2. Cohesive zone models . . . . . . . . . . . . 178 5.1.1.3. Energy conservation for adaptive cohesive zones . . . . . . . . . . . . . . . . . 178 5.1.2. Case where the material behavior depends on history . . . . . . . . . . . . . . . . . 180 TableofContents ix 5.2. Examples of crack growth by fatigue simulations . . . . . . . . . . . . . . . . . . . . . . . . . 182 5.2.1. Calculation of linear fatigue crack growth simulation . . . . . . . . . . . . . . . . . 182 5.2.2. Two-dimensional fatigue tests . . . . . . . . . 183 5.2.2.1. Test-piece CTS: crack growth in mode 1 . . . . . . . . . . . . . . . . . . . . . . 183 5.2.2.2. Arcan test piece: crack growth in mixed mode. . . . . . . . . . . . . . . . . . . 184 5.2.3. Three-dimensional fatigue cracks. Propavanfiss project . . . . . . . . . . . . . . . . 187 5.2.3.1. Internal crack growth rate . . . . . . . . 187 5.2.4. Propagation of corner cracks . . . . . . . . . . 192 5.3. Dynamic fracture simulation . . . . . . . . . . . . . 192 5.3.1. Effects of crack speed a˙ and crack growth criteria . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.3.2. Analytical solution: rectilinear crack propagation on a reference problem . . . . . 195 5.3.3. Kalthoff experiment . . . . . . . . . . . . . . . . 197 5.3.4. Tests on test pieces CCS of Maigre-Rittel. . 200 5.3.5. Réthoré, Gregoire and Maigre tests . . . . . 202 5.3.6. X-FEM method in explicit dynamics . . . . . 206 5.4. Simulation of ductile fracture. . . . . . . . . . . . . 207 5.4.1. Characteristics of material 16MND5. . . . . 208 5.4.1.1. Dynamic characterization of the material . . . . . . . . . . . . . . . . . . . . . 208 5.4.1.2. Fracture tests . . . . . . . . . . . . . . . . . 209 5.4.1.3. Crack advancement measurement device. . . . . . . . . . . . . . . . . . . . . . . 209 5.4.1.4. Description of tests on CT test pieces . . . . . . . . . . . . . . . . . . . . . . . 211 5.4.1.5. Numerical simulation. . . . . . . . . . . . 212 5.4.2. Ring test and interpretation . . . . . . . . . . 219 5.4.2.1. Geometry, mesh, and loading. . . . . . . 220 5.4.2.2. Interpretation of the test in Mode I . . 220 5.4.2.3. Interpretation of the test in mixed mode . . . . . . . . . . . . . . . . . . . . . . . 222 x X-FEMforCrackPropagation Conclusions and Open Problems . . . . . . . . . . . . 227 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Foreword This book, offered to us by Sylvie Pommier, Anthony Gravouil, Nicolas Moës, and Alain Combescure, is undoubt- edly the most awaited book today in the solid mechanics community. It certainly fills a gap in the very important subjectofthenew“eXtended”FiniteElementMethod,known only very recently and available only through specialized articles.Thefact,thatoneoftheauthorsofthisnew“X-FEM” method is also the joint author of this book, makes it all the more valuable. The raison d’être of this book is to provide a method, certainly the only truly efficient one, to model real crack propagation, from the initiation stage to final fracture. We know that the conventional Finite Element Methods using fixed meshes can only deal with this type of problem, either if the crack path travels through mesh nodes, or if we remove mesh elements. This is an extremely important limitation in industrial applications. The new “X-FEM” method no longer requires the mesh to be constantly stuck to discontinuous surfaces or propagating cracks.Itintroducesdiscontinuousfiniteelements.Ituses,as inotherknownmethods,thepartitionofunityandintroduces levelsetstomodelthecracksurfaceandthecrackfront,while maintaining the same mesh. xi
Description: