Astronomy&Astrophysicsmanuscriptno.kaminski08 c ESO2008 (cid:13) February2,2008 Extended CO emission in the field of the light echo of V838 ⋆ Monocerotis T.Kamin´ski DepartmentforAstrophysics,N.CopernicusAstronomicalCenter,Rabian´ska8,87-100Torun´,Poland 8 e-mail:[email protected] 0 0 Received;accepted 2 ABSTRACT n a Context.V838Moneruptedatthebeginningof2002becominganextremelyluminousstarwithL=106L .Theoutburstwasfollowed J bythemostspectacularlightechothatrevealedthatthestarisimmersedinadiffuseanddustymedium,p⊙lausiblyinterstellarinnature. 0 LowangularresolutionobservationsofthestaranditsclosestvicinityinthelowestCOrotationaltransitionsrevealedamolecular 1 emissionfromthedirectionofV838Mon.TheoriginofthisCOemissionhasnotbeenestablished. Aims.ThemainaimofthispaperistobetterconstrainthenatureoftheCOemission.Inparticular,weinvestigatetheideathatthe ] molecularemissionoriginatesinthematerialresponsiblefortheopticallightecho. h Methods.Weperformedobservationsof13positionswithinthelightechointhetwolowestrotationaltransitionsof12COusingthe p IRAM30mtelescope. o- Results.EmissioninCOJ=1–0andJ=2–1wasdetectedinthreepositions.InthreeotherpositionsonlyweakJ=1 0lineswere found.ThelinesappearattwodifferentvelocitiesV =53.3kms 1andV =48.5kms 1,andbothcomponentsar−everynarrow r LSR − LSR − t withFWHM 1kms 1. s ≈ − Conclusions.ThemolecularemissionfromthedirectionofV838Monisextendedandhasaverycomplexdistribution.Weidentify a [ theemissionasarisingfromdiffuseinterstellarclouds.Aroughestimateofthemassofthemolecularmatterinthoseregionsgivesa fewtensofsolarmasses.Theradialvelocityoftheemissionat53.3kms 1suggestthattheCO-bearinggasandtheechoingdustare − 1 collocatedinthesameinterstellarcloud. v 9 Keywords.radiolines:ISM–ISM:clouds–ISM:molecules–stars:individual:V838Mon–stars:peculiar 8 6 1 1. Introduction Crauseetal. (2003, 2005), Kipperetal. (2004), and Tylenda 1. (2005). V838Monisastarthatbrightenedsignificantlyatthebeginning 0 Althoughthere is greatinterestin V838Mon amongastro- of 2002becominga veryluminousobjectwith a luminosityof 8 physicists and many efforts have been made to gain a deeper 0 106 L . The outburst lasted for 3 months and was character- : izedb⊙yarathercomplexlightcu∼rvewiththreedistinctmaxima understandingofthe object,its natureremainsunclear.A wide v rangeofmechanismshavebeenproposedtoexplaintheoutburst seenintheoptical.SeveralbroadP-Cygniprofilesobserveddur- i including (i) thermonuclear models: a nova-like (Munarietal. X ingthebrighteningimplythattheeventwasaccompaniedbyan 2002) or a He-shell flash (Lawlor 2005; Munari&Henden outflowwithterminalvelocitiesofseveralhundredkms 1 (e.g. r − 2005), and (ii) merging events: a stellar merger of stars with a Kipperetal. 2004). The end of the eruption was characterized massesof8M and0.3M (Soker&Tylenda2003,2007),and bya verysteep decline with a totaldropin brightnessin theV a giantswallow⊙ingplanets⊙(Retter&Marom2003;Retteretal. bandofabout8magwithinonemonth.Unlikenovae,theobject 2006).Itseemsthatthemostpromisingisthestellarmergersce- evolved from a hot stage with an F-type spectrum to progres- nario(Tylenda&Soker2006;Soker&Tylenda2007). sivelylowerandlowertemperaturesandeventuallyitturnedinto a supergiant cooler than M10 (Evansetal. 2003). Named the SinceFebruary2002alightechoofV838Monhasbeenob- firstLsupergiant,thestarhasexhibitedanextraordinarymolec- served(Hendenetal.2002).Itsspectacularevolution,especially ularspectrumstudiedextensivelyinoptical(e.g.Pavlenkoetal. well documented by the series of the Hubble Space Telescope 2006)andinfrared(e.g.Lynchetal.2004).Evenfiveyearsafter (HST) images (Bondetal. 2003; Bond 2007), revealed that theeruption,theobjectcontinuestoevolve-afterfouryearsofa V838 Mon is immersed in a diffuse and dusty medium with a relativelyconstantphotometricbrightness,aneclipse-likeevent very complexspatial distribution.There is no agreementabout has been observed in the B and V light curves (Munarietal. the origin of this matter. An analysis of the light echo images 2007a). Detailed descriptions of the spectral and photomet- performedbyTylenda(2004)showsthatthedustyregionhasa ric behavior of V838 Mon can be found in: Munarietal. rather complex distribution and, most probably, is of interstel- (2002), Kimeswengeretal. (2002), Wisniewskietal. (2003), lar origin(see also Crauseetal. 2005; Tylendaetal. 2005). On theotherhand,therearesuggestionsthatthemattermighthave been ejected by the object itself in the past (Bondetal. 2003; Sendoffprintrequeststo:T.Kamin´ski Bond2007). ⋆ Based on observations carried out with the IRAM 30-meter tele- scope.IRAMissupportedbyINSU/CNRS(France),MPG(Germany), Alightechoanaloguewasdiscoveredintheinfraredwiththe andIGN(Spain). SpitzerSpaceTelescope(Banerjeeetal. 2006).Theanalysisof 2 T.Kamin´ski:COemissioninthefieldofthelightecho Table 1. Positions observed in CO J =1–0 and 2–1 in Sept. 2006. position ∆α ∆δ int.time σ (1 0) σ (2–1) rms − rms [ ] [ ] [min] [mK] [mK] ′′ ′′ V838Mon 0 0 353.6 14.1 46.3 Off1 24 0 66.3 27.3 82.1 Off2 –24 0 55.2 30.7 83.4 Off3 0 24 55.2 33.4 95.8 Off4 0 –24 55.2 30.4 88.4 Off5 48 0 55.2 41.2 154.0 Off6 –48 0 44.2 42.7 130.3 Off7 0 48 55.3 33.9 106.1 Off8 0 –48 55.2 33.2 102.3 Off9 72 0 22.1 46.9 149.2 Off10 –72 0 33.1 36.2 117.3 Off11 –24 24 33.2 51.4 143.9 Off12 24 –24 33.1 50.4 165.7 theinfraredemissiongivesafewtenstoafewhundredsofsolar massesasanorderofmagnitudeestimateforthemassofthegas Fig.1. IRAM and KOSMA beams (HPBWs) overlayed on associated with the emitting dust. This result is a strong argu- the HST/ACS light echo image from 10 September 2006 ob- mentsupportingtheideaofaninterstellaroriginoftheechoing tained with the F814W filter (image downloaded via MAST, matter. http://archive.stsci.edu).Thetwolargestcircles(green)mark Kamin´skietal. (2007a,b) discovered emission in the 12CO the KOSMA telescope beams at 230 GHz and 345 GHz cen- (2–1) and (3–2) transitions at the position of V838 Mon. The teredatthestarpositionandtheyrepresentthelowangularres- emissionwasdetectedinsidethelargeKOSMA-telescopebeams olution observations in CO carried out in 2005 and 2006. The withhalfpowerwidths(HPBWs)of130 and82 .Thedetected ′′ ′′ 13positionsobservedwiththeIRAM30mtelescopeon27-28 linesareverynarrowandappearatLSRvelocityof53.3kms 1. − September2006arerepresentedbythesetofsmallercirclesthat The data analysis performed in Kamin´skietal. (2007b) sug- correspondto the beams at 115GHz (21 , blue) and 230 GHz gest that the emission is extended,but on the basis of the low- ′′ (11 , red). These points with their coordinates are listed in resolution observations it was not certain. Moreover, in obser- ′′ Table 1. The beams drawn with a solid line mark those posi- vations performedin three epochs Kamin´ski et al. foundsmall tionswhereCOemissionwasdetected,whilethebeamsdrawn butpossiblyrealvariationsintheintensityoftheCO(2–1)line. with a dashed line mark observed positions with no detection. Dueto the unknowncontributiontothe intensitychangesfrom The axis show the offset scales with respect to the V838 Mon antenna-pointingerrors,thefindingisalsoveryuncertain. position,whichismarkedwithastarsymbol. Deguchietal.(2007)observedtheregionaroundV838Mon inthe CO (1–0)transitionanddetecteda narrowemissionline 30 north from the star position. This detection together with ′′ The observationswere obtained with the IRAM 30 m tele- the observationsreported in Kamin´skietal. (2007b) show that scope at Pico Veleta, Spain, on 27-28 September 2006. The someformofmolecularmattermustexistclosetothedirection half-powerbeam widths of the telescope are 21.4 and 10.7 at ofV838Mon.Itsnaturehasnotbeensufficientlyestablished,but ′′ ′′ 115GHzand230GHz,respectively.Thespatialgridoftheob- itistemptingtolinktheCOemittinggaswiththedustymedium servationswasarrangedsothatthedistancebetweentwoneigh- illuminatedbytheeruptionofV838Mon. boringpositionsisclosetothetwicethebeam-widthat230GHz, In the current paper, we present follow-up observations of andtheindividualmeasurementsobtainedintheCO(2–1)tran- thefieldaroundV838MonintheCO(1–0)and(2–1)rotational sitioncanbeconsideredasindependent. transitionswithamuchbetterangularresolutionthantheobser- Asfrontendsweusedfour(singlepixel)heterodyneSISre- vationsreportedinKamin´skietal.(2007a,b).Theobservational ceivers(A100,B100,A230,andB230)simultaneously.Theob- details are provided in Sect. 2, while the data are described in servationswerecarriedoutinsinglesidebandmode,withrejec- Sect.3.InSect.4,wediscusstheresults,inparticular,weinves- tion factors of the image sideband set to 22 dB and 17 dB for tigatethe possible originof the CO emission foundin the field the observations at 115 GHz and 230 GHz, respectively. As a around V838 Mon. Sect. 5 contains final conclusions and em- backendweusedthespectrometricarrayVESPA.Allthespec- phasizes the need for future observationsof the echo region in trawereacquiredwitharesolutionof78.1kHzandwithaband- moleculartransitions. width of 107 MHz. The frequency resolution corresponds to a resolution in velocity units of 0.20 km s 1 at 115 GHz, and − 0.10kms 1at230GHz. 2. Observationsanddatareduction − All the observations were performed using a frequency We observed 13 positions within the light echo of V838 Mon, switchingtechnique.Thefrequencyswitchthrowwas15.6MHz includingthestarposition.TheyarelistedinTable1andmarked (i.e.frequencywasswitchedby 7.8MHz),whichisequivalent onthe opticallightechoimagein Fig. 1. Each of thepositions toavelocitythrowof40.7kms±1 at115GHz,and20.3kms 1 − − was observed in the two lowest rotational transitions of 12CO, at230GHz.Pointingandfocusingwerecarriedoutonthestrong i.e.J = 1–0at2.6mm(115.271GHz)andJ =2–1at1.3mm continuumsource0528+134every 2h.Theresultingpointing ∼ (230.538GHz). accuracyofourobservationsisbetterthan4 . ′′ T.Kamin´ski:COemissioninthefieldofthelightecho 3 0.2 The data were calibrated using a chopper wheel method V838 Mon (1−0) (Kutner&Ulich 1981) giving spectra in the antenna tempera- (2−1) ture,T ,i.e.correctedforatmosphericattenuation,ohmiclosses, 0.1 A∗ rearward spillover and scattering. The calibration at the IRAM 30misknowntobeveryaccurateandshouldbebetterthan10% forobservationsat115GHz. 0 The wavy baselines typical for frequency switching obser- vations were reduced by subtracting sinusoidal functions; in a fewcasessubtractionofhighorderpolynomialswasnecessary. Allbadchannelswereremoved,spectrafromtworeceiverswith Off2 (−24, 0) orthogonalpolarizationswere coadded,and the resulting spec- 0.1 trawerefoldedusingthestandardshift-and-addmethod.Finally, theobservationswereconvertedtothemainbeamtemperature, T ,usingforwardandmainbeamefficiencies(F andB re- mb eff eff 0 spectively) of 0.95 and 0.74 at 115 GHz, and of 0.91 and 0.52 at230GHz.Allthedatareductionandanalysiswasperformed usingtheGILDAS1softwarepackage. AlthoughinthispapertheT scaleisused,onecaneasily mb Off4 (0,−24) convertthis intensity scale to ordinary flux density units using the conversion factor S /T of 4.91 Jy K 1 for both the data 0.1 ν mb − setsobtainedat115GHzand230GHz.Allthevelocitiesinthis paperaregivenwithrespecttothelocalstandardofrest(LSR). 0 Totalintegrationtimes(asumoftheintegrationtimesfrom two orthogonally polarized receivers) and noise levels of the folded spectra are given in Table 1. The noise levels are given asastandarddeviation(σ ,inthemainbeamtemperature)of rms alinearfittothefoldedspectrumexcludingallemissionfeatures 2 Off3 (0, 24) andtheiraliases. ] K [b 1 m 3. Results T EmissionintheCO(1–0)transitionwasdetectedat6positions: 0 Off2, Off3, Off4, Off7, Off8, and at the V838 Mon position;at threeofthosepositions,namelyatOff3,Off7,andOff8,alsoCO 12 Off7 (0, 48) (2–1)emissionisclearlypresent.Thebeamswithapositivede- 10 tection are shown with a solid line on Fig. 1. The spectra with 8 thedetectionsareshownonFig.2andalltheemissionlinesare 6 characterizedinTable2intermsoftheircentralvelocities,full 4 widthsathalfmaximum,intensitiesofthepeak,andintegrated 2 intensities. The values given in Table 2 are results of a single Gaussiansfittothelineprofiles.Allthereducedspectraaredis- 0 1.2 playedinFigs.A.1andA.2intheonlineAppendixA. 1 The spectra displayed in Fig. 2 require a technical com- Off8 (0,−48) 0.8 ment. Since frequency switching was employed as the observ- 0.6 ingmethod,the telluric(mesospheric)emissionofCO wasnot 0.4 removed from the spectra (see Thumetal. 1995, for more de- 0.2 tailes about telluric CO emission in frequency switching ob- 0 servations). The telluric emission appears at the LSR veloc- −0.2 ity of the mesosphere in the time of the observations, which −0.4 in our case was typically 8.8 km s−1. After folding proce- ∼ dure the telluric CO affects the spectra by the emission and its 30 35 40 45 50 55 60 65 70 75 two aliases, i.e. absorption-like features shifted by 7.8 MHz V [km s−1] with respectto the emission feature.Unfortunately,a±t the Off8 LSR (0, 48)positioncelestialemissionappearsat(unexpected)ve- Fig.2. Spectra with detected emission in 12CO J = 1–0 (blue) loci−ty of 48.45 km s 1, which closely coincides with the posi- − and J = 2–1(red).Themeasuredparametersoftheseemission tion of the absorption alias of the CO (1–0) telluric emission linesaregiveninTable2.Thestrong’absorption’featurepresent at 49.34 km s 1. Luckily, the emission line at 48.45 km s 1 is − − inthespectraoftheJ =1–0transitionat49kms−1isanaliasof notaffectedbythemesosphecicaliasonthespectrumbeforethe amesosphericCOemission.IntheJ =2–1spectrathe’absorp- foldingprocedure.ThereforeonFig.2wepresentthespectrum tion’featuresarealiasesoftheinterstellaremission(theyappear beforefoldingandallthemeasurementsgiveninTable2forthe symmetricallyonbothsidesoftheemission).Sincethealiasof CO(1–0)lineat48.45kms 1 wereperformedontheunfolded − mesosphericemissionaffectstheprofileofinterstellarCO(1–0) featureattheOff8positioninthefoldedspectrogram,weshow 1 Seehttp://www.iram.fr/IRAMFR/GILDAS theunfoldedspectrumforthisposition. 4 T.Kamin´ski:COemissioninthefieldofthelightecho Table2.ParametersobtainedfromsingleGaussiansfittedtothespectra. 12CO(1 0) 12CO(2–1) position ∆α ∆δ V FWHM T− peak I V FWHM T peak I LSR mb CO LSR mb CO [ ] [ ] [kms 1] [kms 1] [K] [Kkms 1] [kms 1] [kms 1] [K] [Kkms 1] ′′ ′′ − − − − − − V838Mon 0 0 53.4 1.1 0.10 0.13 Off2 –24 0 53.2 1.8 0.12 0.24 Off3 0 24 53.2 0.9 2.22 2.17 53.2 0.9 1.03 0.97 Off4 0 –24 53.3 1.7 0.12 0.22 Off7 0 48 53.3 1.0 9.47 9.77 53.3a 1.1a 12.70a 14.23a Off8 0 –48 48.5b 0.8b 0.61b 0.54b 48.5 0.8 0.50 0.41 a theprofileisclearlynotasingleGaussian b measurementsobtainedattheunfoldedspectrum spectrum,whichhashoweverapoorernoisecharacteristicsthan loss before 2002, it would produce emission features certainly theunfoldedonebyafactorof √2. broader and more complex than the ones we see in the two In the following,we considerthe detected CO (1–0)emis- CO transitions (e.g. Teyssieretal. 2006). Similarly, the emis- sion in two groups, namely weak (T < 0.15 K at the peak) sion found at the star position cannot be identified with the mb and strong features (with peak much greater than 0.15 K). matter lost during and after the 2002 eruption. Indeed, numer- Weak emission is found at Off2, Off4, and at the star position. ousP-Cygniprofilesobservedduringtheoutburstrevealedmat- The emission at all of these positions appears at a velocity of ter expelled with velocities of several hundred km s−1 (e.g. 53.3 km s 1 and does not have any detectable counterpart in Kipperetal. 2004) and the continuous outflow observed in − t∼he corresponding CO (2–1) spectra. Emission in CO (2–1) is V838 Mon since the outburst has a terminal velocity of about notseen,mostprobablyduetohighernoiseinthe230GHzdata. 150kms−1(Munarietal.2007b).Ifanyofthislostmatterradi- The strong emission of CO (1–0) is found at the three po- atesintheCOrotationaltransitions,theemissionshouldappear sitions along the north-south direction: Off3, Off7, and Off8. asaverybroadfeaturewithFWHM>150kms−1. EspeciallyprominentistheemissionatOff3andOff7.Thelines The narrowness of the detected∼CO lines indicates that the both appear at radial velocity of 53.2 km s 1. The emission molecularemissionarisesinaninterstellarmedium.According − foundattheOff8position,ashasa∼lreadybeennoted,appearsat totheclassificationinvanDishoeketal.(1993)andonthebasis theunexpectedradialvelocity48.45kms 1.Allthethreestrong ofline-widthmeasurements(Table2)wecanclassifythemolec- − CO(1–0)featureshavecounterpartsinthe(2–1)spectra.Ratios ularregionsweseeintheCOemissionasdiffuseclouds.Inlight ofthoselinesarediscussedinSect.4.2. ofthe findingofAfs¸ar&Bond(2007), namelythatV838Mon AscanbeseeninTable2,allthedetectedlinesareverynar- is a member of a B-stars association, the narrow CO emission row.Theweakest CO (1–0)featuresappearsomewhatbroader canbeattributedtoaninterstellarmediumwithinthecluster.It thanthestronglines.Notethatthefeaturefoundatthestarpo- maybethematterremainingafterthedissipationofmostofthe sition,wheretheintegrationtimewasmuchlongerthanatOff2 parent molecular material from which the cluster had formed, andOff4,isonlyslightlybroaderthatthestronglines,henceone muchlikethematterseeninthePleiadescluster.Wecannotrule canstatethatthebroadeningoftheweakfeaturesisaneffectof out,however,thepossibilitythatweseeforegroundand/orback- a lowersignalto noise ratioof the spectra.In general,the pro- groundcloudswith respect to the location of the cluster or the filesofthedetectedlinesareverywelldescribedbyaGaussian staritself.Theradiallocationofthecloudsisdiscussedinmore shape, except the most prominent line in our data, i.e. the CO detailinSect.4.3. (2–1)featureatOff7,whichhasaslightlyasymmetricpeak. Using the well known XCO-factor method we can estimate themassofmolecularmatterinsidethecloud.AsfoundinLiszt (2007), the method gives satisfactory results even for very dif- 4. Discussion fuse clouds,i.e. thosewith verysmallcolumndensitiesofCO. Themassofmolecularhydrogencanbeexpressedas: The IRAM observations reported here confirm the suggestion made in Kamin´skietal. (2007b) that the CO emission discov- M =X Ωd2m I , (1) eredinthedirectionofV838Moninthelowangularresolution H CO H2 CO KOSMAdata,isextendedandnotdirectlyrelatedtotheobject whereX istheconversionfactorforthecolumndensityofH CO 2 thateruptedin2002.Indeed,themeasurementsindicatethatthe tointegratedintensityoftheCO (1–0)emission,Ωisthesolid CO emissionhas a verycomplexspatialdistributionandis not angleofthe emittingregion,d isthe distanceto thecloud,and onlylimitedtothepositionofV838Mon.Inthefollowingdis- ICO = R TmbdV is the mainbeamintegratedintensity.Here we cussionwe putsome constraintson theoriginofthemolecular takeX =2.8(inunitsof1020cm 2K 1 km 1 s,Bloemenetal. emission.Inparticular,weinvestigatethepossibilityofaphys- CO − − − 1986)althoughvaluesashighas6canbefoundinliteraturefor ical connectionof the CO emitting matter with the dusty envi- clouds in the outer Galaxy (e.g. Kamin´skietal. (2007b) found ronmentrevealedbythelightecho. X =5.4 for the dark clouds identified in the vicinity of V838 CO Mon).WecanrewriteEq.(1)as: 4.1.Originoftheemission:circumstellarvs.interstellar M =0.4Ωd2I M , (2) H CO Thestrongestargumentagainstcircumstellaroriginof theCO- ⊙ bearing gas is the narrowness of the emission lines. If the ex- whereΩisexpressedinarcmin2,dinkpc,andI inKkms 1. CO − tended molecular regionoriginatesas a result of a stellar mass The solid angle of a single beam at 115 GHz is approximately T.Kamin´ski:COemissioninthefieldofthelightecho 5 0.144arcmin2.Weareinterestedinthetotalmassofthemolec- thatappearsat48.5kms 1maybeconsideredasemergingfrom − ularmatterradiatinginCO(1–0)inthesixpositions.Withthe a foregroundmolecularcloudwith respectto the SiO maser, if sum of all the integrated intensities of 13.1 K km s 1 (see onetrustsinthekinematicaldistances. − ∼ Table 2) and the distance to the star of 6.1 kpc (Sparksetal. 2007) we get a total mass of about 28 M . The CO emission can be more extended than it appears in⊙our spatially limited 4.4.Associationwiththelightechomaterial? measurements,sothetotalmassofmolecularmatterisprobably even higher. Moreover,the above value does not accountfor a The CO emission is located in the field of the light echo. The massofatomicgas,whichcancontributeconsiderablytotheto- questionthatnaturallyarisesiswhetherthemolecularemission talmassofadiffusecloud.Thisroughestimateshows,however, is physically connectedwith the light echo material. The issue that the mass of the sampled regions is already quite high and isworthwhiletoconsider,especiallyinthecontextofdiscussion cannotbeinterpretedasmatterexpelledbythestar. abouttheoriginoftheechoingdust(seeSect.1). Toanswerto theabovequestionthe relativelocationofthe dustandtheradiatingmoleculesalongthelineofsightmustbe 4.2.Spatialcomplexityofthemoleculargas known.Thedistancetotheechomaterialhasbeenestablishedby a geometricanalysisof the echo evolution.As can be foundin The CO (2–1) emission found in our data exhibit various in- Bond(2007,seeFig.3therein),thereflectingregionsseeninthe tensities with respect to the strength of the corresponding CO echoshouldbelocated withinseveralpc fromthestar, so their (1–0)emissiondetectedat the sameposition.The ratiosof the heliocentricdistanceshouldbeabout6kpc(Sparksetal.2007). integratedintensitiesoftheCO(1 0)to(2–1)lines, ,are 10:21 − R The distance to the CO-bearing gas can be only poorly con- 2.22, 0.69, and 1.31 for the positions Off3, Off7, and Off8, re- strained. Kinematical distance to the componentat 53 km s 1, spectively.Forahomogenousdistributionofinterstellargasone − well correlated spatially with the echo on the plane of the sky, wouldexpecttheCO(1 0)linetobestronger,sinceitwasob- − is 7kpc,butduetostreamingmotionstherealdistancecanbe served with the larger beam. The wide variety in the values of ∼ 1 kpc higher or lower. Thus, the association of the molecular inourdatacanbeinterpretedasaresultofahighlycom- 10:21 ∼ R gaswiththedustcannotberuledout. plex distribution of the emitting gas. In other words, that can be an effectof differentbeamfilling factorsforobservationsat ThecurrentunderstandingofV838Monseemstofavorsce- 115GHzand230GHz.Sharpinhomogeneitiesmustthenoccur narioswherethestarisconsideredasaveryyoungobject.Ifso, onthe planeofthe sky atangularscales atleastcomparableto itshouldexhibitsystemic velocityveryclose tothe velocityof ourbeam-sizeat230GHz,i.e.atrangesoforder10 .Thiscor- thelocalinterstellarmedium.Ifthestarhasthesamevelocityas ′′ respondstospatialscalesof 0.3pcatadistanceof6kpc.Such theSiOmaser,thenthelocalinterstellarmedium,includingthe asmallscalestructureiscom∼monlyobservedinCOmapsofdif- lightechomaterial,wouldhavea velocityof54kms 1. Asal- − fuse molecularclouds(see Sect. 4.1). Alternatively,the variety readynotedintheprecedingsection,thisvalueagreesverywell of valuescanbeexplainedbysomewhatunusualpopula- withthevelocityofmostoftheCOemission.Itsuggeststhatthe 10:21 R tionofCOlevelsinthemolecularmedium,butthisseemstobe dustandmoleculargasarelocatedinthesamecloud.However, unlikely. thissuggestionshouldbetreadedcautiously,since,inthecaseof V838Mon,themasercanhavedifferentnaturethaninotherSiO stellarsources(Deguchietal.2007),andconsequentlyitsradial 4.3.Thetwovelocitycomponents velocitycanbedifferentthantherealvelocityofthestar. ThekinematicalcharacteristicsoftheCOemission(seeTable2) Furthermore,in the case of commonorigin of the dust and indicates that the strong emission found in Off3 and Off7, to- CO-bearinggas,onemightexpectthatthereissomeoverallcor- gether with the weak emission appearing in Off2, Off4, and in relation between the dust and CO distribution. Our data have the star position, are all physically related. The emission fea- still too low angular resolution and too poor coverage of the turesfoundatthesepositionsappearatnearlythesamevelocity fieldtolookforanymeaningfulcorrelationsinthebothdistribu- of 53.3 0.1 km s 1 (1σ). Moreover, the emission sampled in tions,butsomegeneralremarkscanbemade.Ascanbeseenin − theCO±(1–0)data,isspatiallycontinuousandformsoneregion Fig.1,theCOemittingregionextendsbasicallyalongthenorth- elongatedinthenorth-southdirection.Thus,theemissionlines southdirection,similarlytothemostprominentreflectionsseen canbeinterpretedasemergingfromthesamediffusecloud.The in the light echo in the epoch close to the radio observations. centralvelocityofthismolecularregionisveryclosetotheve- Theopticalechoishowevermoreextendedintheeast-westdi- locityoftheSiOmaseremissionobservedfromthedirectionof rection. One should remember that the echo on a single epoch V838Mon(54kms 1, Deguchietal.2005),whichisoftencon- image shows only a thin part of the whole dusty environment − sideredastheradialvelocityofthestaritself.Ifso,theemitting (e.g.Tylenda2004),whiletheCOemissionprobesthetotalcol- molecularmatterseeninourdatashouldresideveryclosetothe umndensityofthecloudalongthelineofsight.Moreappropri- star(seealsoSect.4.4). atewouldbe,though,tocomparethemapofmolecularemission withtheopticalpicturessummedoverthetimeoftheobservable The emission detected in the Off8 position is the only one centeredat48.5km s 1. None ofthe spectracontainsan emis- evolutionoftheecho. − sioncomponentatintermediatevelocitiesbetween48.5kms 1 Insummary,thecurrentdatadonotallowustoconclusively − and53kms 1, hencethereisnotransitionzonebetweenthose verifywhethertheCOemissionisassociatedwiththelightecho − twokinematicregionsintheareaofourmeasurements.Thisfur- material,buttheymakesuchapossibilityveryprobable.Tover- ther indicates that the portions of gas emitting at the two dis- ify theidea further,a directmeasurementof the radialvelocity tinctvelocitiesarenotphysicallyconnectedandtheyformsepa- of the echoinggasor morereliable constraintson the systemic ratemolecularcomplexes.Assumingstandardrotationlawofthe velocityofV838Monareneeded.ACOmapwithagoodsam- GalaxyinthedirectionofV838Mon,thegasatlowerradialve- plingandcoveringaregionlargerthanthesizeofthelightecho locityshouldreside 1kpcclosertotheobserver.Theemission wouldbeveryhelpfulaswell. ∼ 6 T.Kamin´ski:COemissioninthefieldofthelightecho 5. Concludingremarks Retter,A.,&Marom,A.2003,MNRAS,345,L25 Retter,A.,Zhang,B.,Siess,L.,&Levinson,A.2006,MNRAS,370,1573 Wepresentobservationstowards13positionsinthefieldofthe Soker,N.,&Tylenda,R.2003,ApJ,582,L105 lightechoofV838MonintheCO (1–0)and(2–1)transitions. Soker,N.,&Tylenda,R.2007,inTheNatureofV838MonanditsLightEcho, Themeasurementsrevealanextendedmolecularregionaround eds.R.L.M.Corradi&U.Munari,ASPConf.Ser.,363,280 Sparks, W. B., Bond, H. E., Cracraft, M., et al. 2007, ArXiv e-prints, 711, thestarattwodistinctradialvelocities.TheCOemittingregion arXiv:0711.1495 iselongatedinthenorth-southdirectionandexhibitsaverycom- Teyssier,D.,Hernandez,R.,Bujarrabal,V.,Yoshida,H.,&Phillips,T.G.2006, plexdistributionontheplaneofthesky.WeidentifytheCOlines A&A,450,167 asemergingfromdiffuseinterstellarclouds.Nomolecularemis- Thum,C,Sievers,A.,Navarro,S.,Brunswig,W.,Pen˜alver,J.1995,IRAMTech. Report228/95. sionthatcanbeassociatedwiththestaritselfwasdetected. Tylenda,R.2004,A&A,414,223 Thepossibleassociationofthemolecularemissionwiththe Tylenda,R.2005,A&A,436,1009 lightechomaterialhasbeeninvestigated.AlthoughtheCOemis- Tylenda,R.,&Soker,N.2006,A&A,451,223 sion appears in the field of the light echo, its detailed spatial Tylenda,R.,Soker,N.,&Szczerba,R.2005,A&A,441,1099 distribution correlates only weakly with the light echo image. Wisniewski,J.P.,Morrison,N.D.,Bjorkman,K.S.,etal.2003,ApJ,588,486 Ontheotherhand,thevelocityoftheCOemissionagreesvery wellwiththevelocityoftheSiOmaserdiscoveredfromthedi- rection of V838 Mon, making the collocation of the dust and CO-bearinggasprobable. Tomoredeeplyinvestigatetheoriginofthemolecularemis- sioninthefieldoftheecho,moreextendedmapoftheregionin differentmolecular transitions is needed. A fully sampled map oftheechoingregionwouldbehelpfultodrawmoreconclusive statements about the suggested connection with the light echo material. Acknowledgements. TheauthorthanksR.Tylendaandtheanonymousreferee for their useful comments and suggestions towards improving the paper. The authorisalsogratefultoM.Pułeckaforherhelpinobtainingtheobservations attheIRAM30mtelescope.Theresearchreportedinthispaperwassupported fromagrantno.N20300432/0448financedbythePolishMinistryofScience andHigherEducation. References Afs¸ar,M.,&Bond,H.E.2007,AJ,133,387 Banerjee,D.P.K.,Su,K.Y.L.,Misselt,K.A.,&Ashok,N.M.2006,ApJ,644, L57 Bloemen,J.B.G.M.,Strong,A.W.,Mayer-Hasselwander, H.A.,etal.1986, A&A,154,25 Bond,H.E.,Henden,A.,Levay,Z.G.,etal.2003,Nature,422,405 Bond,H.E.2007,inTheNatureofV838MonandItsLightEcho,eds.R.L.M. Corradi&U.Munari,ASPConf.Ser.,363,130 Crause,L.A.,Lawson,W.A.,Kilkenny,D.,etal.2003,MNRAS,341,785 Crause,L.A.,Lawson,W.A.,Menzies, J.W.,&Marang, F.2005,MNRAS, 358,1352 Deguchi,S.,Matsunaga,N.,&Fukushi,H.2005,PASJ,57,933 Deguchi,S.,Matsunaga,N.,&Fukushi,H.2007,inTheNatureofV838Mon anditsLightEcho,eds.R.L.M.Corradi&U.Munari,ASPConf.Ser.,363, 81 vanDishoek,E.F.,Blake,G.A.,Draine,B.T.,&Lunine,J.I.1993,inProtostars andPlanetsIII,163 Evans,A.,Geballe,T.R.,Rushton,M.T.,etal.2003,MNRAS,343,1054 Henden,A.,Munari,U.,&Schwartz,M.2002,IAUCirc.7859 Kamin´ski,T.,Miller,M.,Szczerba,R.,&Tylenda,R.2007,inTheNatureof V838 Mon and its Light Echo, eds. R. L. M. Corradi & U. Munari, ASP Conf.Ser.363,103 Kamin´ski,T.,Miller,M.,Tylenda,R.2007,A&A,475,569 Kimeswenger,S.,Lederle,C.,Schmeja,S.,&Armsdorfer,B.2002,MNRAS, 336,L43 Kipper,T.,Klochkova,V.G.,Annuk,K.,etal.2004,A&A,416,1107 Kutner,M.L.,Ulich,B.L.1981,ApJ,250,341 Lawlor,T.M.2005,MNRAS,361,695 Liszt,H.S.2007,A&A,476,291 Lynch,D.K.,Rudy,R.J.,Russel,R.W.,etal.2004,ApJ,607,460 Munari,U.,Henden,A.,Kiyota,S.,etal.2002,A&A,389,L51 Munari,U.,&Henden,A.2005,inInteractingBinaries:Accretion,Evolution, andOutcomes,AIPConf.Proceedings,797,331 Munari,U.,Corradi,R.L.M.,Henden,A.,etal.2007,A&A,474,585 Munari,U.,Navasardyan,H.,&Villanova,S.2007,inTheNatureofV838Mon anditsLightEcho,eds.R.L.M.Corradi&U.Munari,ASPConf.Ser.,363, 13 Pavlenko,Y.V.,vanLoon,J.Th.,Evans,A.,etal.2006,A&A,460,245 T.Kamin´ski:COemissioninthefieldofthelightecho,OnlineMaterialp1 AppendixA: Presentationofallthespectra T.Kamin´ski:COemissioninthefieldofthelightecho,OnlineMaterialp2 Fig.A.1.Thefoldedspectrain12COJ = 1 0foralltheobserved13positions.The’absoprtion’featureat 49kms 1isanalias − − ∼ ofthetelluricCOemission.Thespectrawithpositvedetectionsareplottedwithcolorlines. T.Kamin´ski:COemissioninthefieldofthelightecho,OnlineMaterialp3 Fig.A.2.Thefoldedspectrain12CO J = 2 1foralltheobserved13positions.Thespectrawith positivedetectionareplotted − withcolorlines.